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Abstract: XML has become the de facto standard for data exchange in enterprise information systems. But whenever 
XML data is stored or processed, e.g. in form of a DOM tree representation, the XML markup causes a huge 
blow-up of the memory consumption compared to the data, i.e., text and attribute values, contained in the 
XML document. In this paper, we present CluX, an XML compression approach based on clustering XML 
sub-trees. CluX uses a grammar for sharing similar substructures within the XML tree structure and a clus-
ter-based heuristics for greedily selecting the best compression options in the grammar. Thereby, CluX al-
lows for storing and exchanging XML data in a space efficient and still queryable way. We evaluate diffe- 
rent strategies for XML structure sharing, and we show that CluX often compresses better than XMill, Gzip, 
and Bzip2, which makes CluX a promising technique for XML data exchange whenever the exchanged data 
volume is a bottleneck in enterprise information systems. 

1 INTRODUCTION 

1.1 Motivation 

XML is widely used in business applications and is 
the de facto standard for information exchange 
among different enterprise information systems. Ex-
amples include the SEPA standard for financial 
transactions, the OTA standard for travel data, the 
internal XML format being used to store MS Office 
documents, and the BMEcat standard for product ca-
talogs. Whenever the amount of processed XML da-
ta is a bottleneck, applications can take advantage of 
XML compression techniques that offer a more effi-
cient and compressed format for accessing the XML 
data. Such a compressed XML data format should be 
queryable, i.e., it should allow navigation operations 
(as e.g. the evaluation of path queries), such that ap-
plications can work directly on the compressed data 
format. This includes that e.g. compressed SEPA da-
ta or compressed product catalogs can be exchanged, 
searched and evaluated by a query processor without 
prior decompression. 

There have been different contributions to the 
field of XML compressors generating queryable 
XML representations, that range from encoding-
based (Zhang, Kacholia, and Özsu, 2004) to schema-
based (Ng et al., 2006), (Werner et al., 2006) to 

DAG-based (Buneman, Grohe, and Koch, 2003) to 
grammar-based (Busatti, Lohrey, and Maneth, 2005) 
compressed representations. We follow the gram-
mar-based XML compression techniques, and we 
propose an XML compression technique, called 
CluX. CluX, like BPLEX (Busatti, Lohrey, and Ma-
neth, 2005), has the advantages of grammar-based 
compression, i.e., 

 it removes redundancies within the structure of 
the XML file by sharing similar sub-trees and 
therefore achieves a more space efficient in-
memory representation than standard XML re-
presentations as e.g. DOM.  
 it provides similar navigation operations as 
DOM directly on the compressed structure, i.e., 
without prior full decompression of the docu-
ment. Therefore, applications based on DOM 
could be adapted with a minimal effort to work 
on the CluX structure instead.  

In comparison to BPLEX, CluX does not neces-
sarily compress XML trees in a bottom-up fashion, 
i.e., CluX is more flexible in the way, how it cons- 
tructs shared patterns being used in the grammar. 

As the XML structure can be compressed with a 
significantly higher compression ratio than text 
nodes and attribute values within an XML docu-
ment, we follow the approach first taken by XMill 
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(Liefke and Suciu, 2000) and separate the compres-
sion of the XML structure from the compression of 
the text nodes, the attributes and the white space 
contained in the XML documents. For the text 
nodes, attribute values and white space we use con-
tainer-based string compression techniques similar 
to those used in XMill. However, the focus of our 
contribution is on compression of the XML structure 
as described within the remainder of the paper. 

1.2 Contributions and Focus  
of the Paper 

This paper proposes an approach to clustering-based 
XML compression, called CluX that provides a 
modifiable clustering technique for generating opti-
mized small grammars representing the compressed 
XML document. We have implemented and eva-
luated different clustering strategies for finding the 
most promising sharing of similar sub-trees. Our re-
sults show that the CluX strategy ‘minimize edges’ 
provides best compression times and the strategy 
‘Minimize succinct storage’ provide strongest com-
pression ratio. 

For simplicity of this presentation, we restrict it 
to XML documents containing only element nodes, 
i.e. attributes are regarded as special element types. 
Note however that our implementation can handle 
full XML documents including attributes, text values 
and white space etc., such that we can compress e.g. 
SEPA data, OTA data, MS Office documents, and 
product catalogs. 

1.3 Paper Organization 

The remainder of this paper is organized as follows. 
Section 2 describes the basic concept of grammar-
based compression, i.e. how an XML tree can be 
stored in a more space saving way by sharing similar 
structures, and it explains how these shared struc-
tures can be represented by patterns being used in 
tree grammars. Section 3 describes how the next pat-
terns to be shared can be determined by a cluster 
analysis and discusses different clustering strategies. 
Section 4 evaluates the presented clustering strate-
gies. Section 5 compares CluX to related work. Fi-
nally, Section 6 summarizes our contributions.   

2 SHARING SIMILAR TREES 

2.1 The Paper’s Example Document 

XML   compressors    computing    directed   acyclic 

graphs, DAGs, (Buneman, Grohe, and Koch, 2003) 
are based on sharing identical sub-tree structures. 
Whenever a sub-tree occurs repeatedly within an 
XML document, a pointer to the first occurrence is 
stored instead of storing the repeated sub-tree anoth-
er time. Instead of only sharing identical substruc-
tures, our approach follows the grammar-based 
compression introduced in BPLEX (Busatti, Lohrey, 
and Maneth, 2005) which is capable to share similar 
sub-trees which differ in small parts. 

The following example is being used not only for 
explaining the difference between these sharing ap-
proaches, but also as a motivation why different 
sharing techniques for similar sub-trees may lead to 
different compression ratios. 

 

Figure 1: Document tree of an XML document with re-
peated matches of patterns. 

Figure 1 shows an example XML document 
represented as a binary tree. This XML document 
tree can be generated by the following grammar us-
ing the non-terminal S as the start symbol, i.e. the 
right hand side of the grammar rule is a term 
representing the pre-order notation of the binary tree 
in Figure 1: 
 
S  r(k1(b(c(d(,),e(,)),), k2(h(c(d(,),g(,)),),  
      k3(b(c(f(,),e(,)),),      k4(h(c(f(,),g(,)),),  
      k5(b(c(i(,),e(,)),), k6(h(c(i(,),g(,)),),)))))),) 

Grammar 1: Grammar corresponding to the binary tree of 
Figure 1. 

2.2 Used Notations 

A term is either a null pointer (denoted by the sym-
bol ‘’) a terminal expression, a nonterminal expres-
sion, or a parameter (denoted by the symbol ‘_’). 

A terminal expression is of the form t(fc, ns), 
where tT is a terminal of the set T of terminal sym-
bols, and fc and ns are terms representing the first 
child and the next sibling of t. A nonterminal ex-
pression is of the form nt(te1, …, ten), where nt  
NT is a nonterminal of the set NT of nonterminal 
symbols, and te1, …, ten are terms. The sets T and 
NT are disjoint, i.e., T  NT = {}. 
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A production rule of arity n, n≥0 is of the form 
lhs  pattern, where lhs, called the left hand side 
consists of a nonterminal and a list of n parameters, 
and the pattern is a term te different from ‘’ and 
‘_’, and te including all the terms nested in te con-
tain the same n parameters.  

A match of a pattern p is a term, where each of 
the n parameters of p is substituted by a term. 

In Grammar 1, b(c(…), ) is a terminal-expres-
sion that represents a node with label ‘b’, which has 
a first-child with label ‘c’ and which does not have a 
next-sibling (denoted by the term  representing the 
null-pointer). 

2.3 The Idea behind Sharing  
Similar Trees 

In general, when storing an XML document in a na-
vigatable form (e.g. as DOM tree), the edges are ex-
pensive to store. Using sub-tree sharing should lead 
to less memory consumption compared to the sto-
rage of the original XML tree. Furthermore, reduc-
ing the number of edges allows bottom-up query 
processing which relies on the number of edges to 
process queries faster. That is why we attempt to re-
duce the number of edges in the compressed XML 
format.  

Approaches like binary DAG compression, that 
share identical sub-trees T in an XML document D 
replace repeated occurrences of T in D by e.g. re-
placing each occurrence of T in D with N and add-
ing a rule that defines N to be a nonterminal that 
represents T. 

In Grammar 1, there are two matches for each of 
the five patterns d(,), e(,), f(,),g(,), i(,). 
Therefore, these matches can be replaced by the 
nonterminals D, E, F, G, and I respectively, such 
that we get the following grammar: 

 
S  r(k1(b(c(D,E),),k2(h(c(D,G),), 

k3(b(c(F,E),),k4(h(c(F,G),), 
     k5(b(c(I,E),),k6(h(c(I,G),),)))))),) 

D   d(,) 
E   e(,) 
F   f(,) 
G   g(,) 
I  i(,) 

Grammar 2: Grammar corresponding to the binary DAG 
of the XML tree of Figure 1 (b). 

If we were only able to share identical sub-trees, 
we would only find sub-trees of size 1 (consisting of 
nodes d, e, f, g, or i respectively). So replacing the 
repeated occurrence by a pointer would lead to no 

decrease in the number of edges (we get 30 edges 
for the original tree and for the DAG of the tree).1 

But if we look for structures, that are not iden-
tical but similar besides small differences, we find in 
the document tree of Figure 1 two different patterns 
shown in Figure 2(b), one pattern consisting of the 
nodes with labels b, c, and e, and the other pattern 
consisting of the nodes with labels h, c, and g re-
spectively. For each of the two patterns, there exist 
three matches which are highlighted in Figure 2(a). 
Although the matches of the patterns have identical 
inner nodes, they cannot be shared in a DAG be-
cause they differ in the child nodes of the node with 
label c. 

 

Figure 2: (a) Example document of Figure 1 with repeated 
patterns replaced by nonterminals. (b) Repeated patterns. 

Figure 2 (b) shows a pattern consisting of the 
nodes with the labels b, c, and e, where the node 
with the label c is the first-child of the node with the 
label b, the node with the label e is the next-sibling 
of the node with the label c, and the node with the 
label c has a first-child that may be different for each 
use of the pattern. BC_E is the name of the nonter-
minal being used as a shortcut for this pattern in the 
graph of Figure 2 (a). Furthermore, Figure 2 (b) 
shows a similar pattern, consisting of nodes with the 
labels h, c, and g. HC_G is the name for the nonter-
minal being used for this pattern in Figure 2 (a). 
Figure 2(a) shows a compressed version of the same 
document as in Figure 1 where each occurrence of a 
pattern in Figure 1 is replaced with the nonterminal 
corresponding to the pattern.  

The compression achieved by replacing the re-
peated patterns with a nonterminal is that each edge 
inside a pattern is stored only once, i.e. in the pat-
terns shown in Figure 2 (b), instead of three times 
(in Figure 1). In this example, the compressed ver-
sion of the XML document sharing repeated patterns 
shown in Figure 2 (a,b) contains only 22 edges whe-
reas the document in Figure 1 contains 30 edges. 

Therefore, we expect a high benefit from sharing 
similar sub-trees whenever the number of edges de-
termines XML query processing time or memory li-
mitations are the bottleneck of XML processing. 

 

1We assume that null pointers are represented by a special sym-
bol, , and therefore, do not generate an edge. 
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The idea behind grammar-based compression ap-
proaches like CluX is to not only share identical sub-
trees, but to share patterns, i.e. similar sub-trees that 
differ in small details. For example, the sub-trees 
having a root element with label ‘b’ in Figure 1 dif-
fer in one detail: the first-child of the element with 
label ‘c’. The same difference occurs in the DAG 
represented by Grammar 2.  

Within Grammar 3 below, we express the pattern 
BC_E of Figure 2(b) by one grammar rule with the 
left hand side BC_E(_), where the parameter ‘_’ is 
being used for referencing the different child node 
names of the nodes with label ‘c’. This grammar rule 
is being used e.g. when the term b(c(D,E),) in the 
start rule of Grammar 2 is replaced with the term 
BC_E(D) in the start rule of Grammar 3. Here, 
b(c(D,E),) is called a match, and BC_E(D) is called 
a corresponding instantiation of the pattern 
BC_E(_). Similarly, Grammar 3 contains a rule that 
introduces the nonterminal HC_G for the pattern 
consisting of the nodes with the labels ‘h’, ‘c’, and 
‘g’, and replaces each occurrence of this pattern in 
Grammar 2 with the nonterminal HC_G. By apply-
ing these steps of grammar-based compression, 
Grammar 3 is more compact than Grammar 2 
representing the DAG: 
 
S   r(k1(BC_E(D),k2(HC_G(D),  
     k3(BC_E(F), k4(HC_G(F),  
     k5(BC_E(F), k6(HC_G(I),)))))),) 
BC_E(_)   b(c(_,e(,)),) 
HC_G(_)   h(c(_,g(,)),) 
D   d(,) 
F   f(,), 
I   i(,) 

Grammar 3: A grammar sharing patterns b(c(_,e(,)),) 
and h(c(_,g(,)),) contained in similar sub-trees of the 
XML tree of Figure 1. 

2.4 Different Sub-tree Sharing  
Strategies 

In contrast to the minimal binary DAG that is unique 
and that can be computed bottom-up efficiently by 
hashing all sub-trees that have been read, in general, 
there exist several different patterns that can be 
shared and sharing one pattern may exclude sharing 
another pattern. For example, an alternative sharing 
applied to the XML tree of Figure 1 is sharing three 
patterns, i.e., (c,d), (c, f), and (c, i) which yields the 
following compressed document (c.f. Figure 3) 
represented by the grammar Grammar 4 below: 
 
 

 

Figure 3: Sharing 3 patterns (c,d), (c,f), and (c,i). 

S   r(k1(b(CD_(E),), k2(h(CD_(G),),  
    k3(b(CF_(E),), k4(h(CF_(G),),  
    k5(b(CI_(E),),k6(h(CI_(G),))))))),) 
CD_(_)   c(d(,),_) 
CF_(_)   c(f(,),_) 
CI_(_)   c(i(,),_) 
E   e(,) 
G   g(,) 

Grammar 4: A grammar sharing patterns c(d(,),_), 
c(f(,),_), and c(i(,),_) contained in similar sub-trees of 
the XML tree of Figure 1. 

Grammar 4 has 27 edges (in contrast to 22 edges 
for the sub-tree sharing shown in Figure 2 and 
Grammar 3). Note that Grammar 4 prevents sharing 
of e.g. the nodes with labels b and c. So the cluster-
ing strategy, i.e. the sequence of steps sharing simi-
lar sub-trees influences the achieved compression ra-
tio. 

BPLEX is a compressor that parses the grammar 
representing the minimal DAG and searches bottom-
up for multiple non-overlapping occurrences of pat-
terns. Therefore, in our example, BPLEX will yield 
the tree grammar Grammar 4. In contrast, our ap-
proach computes all possible candidates for a pattern 
occurring multiple times within a given window. For 
each of the candidate patterns, our approach calcu-
lates the benefit that is achieved when the candidate 
pattern is shared with the help of a parameterized 
tree grammar rule in order to decide which candidate 
should be shared first. Therefore, our CluX approach 
also considers Grammar 3. 

3 FINDING PROMISING SHARES 

3.1 Patterns - Clustering Similar 
Sub-trees 

The strategy of CluX for further compressing a 
DAG by sharing similar sub-trees consists of an ini-
tialization step and several sharing steps on produc-
tion rules. In the initialization step, we start with a 
set of minimal production rules, i.e., for each non-
leaf element ‘e’ with label ‘l’ occurring in the DAG, 
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we compute a production rule of the form A1( _, _) 
 l( _, _) that produces an element with label l and 
two parameters representing the first-child and the 
next-sibling of e. The start production rule S con-
tains the whole structure of the binary XML tree, but 
each label of a non-leaf node in the binary XML tree 
is replaced with the nonterminal of the production 
rule introduced for this non-leaf element. For exam-
ple, the start production rule S generated for the 
DAG of the XML tree of Figure 1 given in Grammar 
2 is transformed into the start production rule S of 
the following grammar Grammar 5:  
 

SAr(Ak1(Ab(Ac(D,E),),Ak2(Ah(Ac(D,G),), 
       Ak3(Ab(Ac(F,E),),Ak4(Ah(Ac(F,G),), 
      Ak5(Ab(Ac(I,E),), Ak6(Ah(Ac(I,G),),)))))),) 

Ar(_, _)  r( _, _ ) .  
Ak1( _, _)  k1( _, _ ) .  
... 
Ac( _,_)  c( _, _ ) .  
D   d(,) 
E   e(,) 
F   f(,) 
G   g(,) 
I  i(,) 

Grammar 5: After initialization, each non-leaf DAG node 
of Grammar 2 is substituted with a production rule. 

Our approach to sharing similar substructures 
within an XML document was inspired by cluster-
ing. Clustering groups similar objects, where simi-
larity of objects is measured by using a distance 
function d. Depending on the distance function d, 
this process results in different clustering techniques 
and different clustering results. 

Similarly, in each sharing step, we search within 
the start rule S and all other rules for matching pat-
terns p1, …, pn that can be shared by introducing a 
new production rule. In order to find the patterns, the 
sharing of which achieves the highest benefit, we 
examine all matches of a possible pattern within the 
production rules as follows. For example, look at the 
nesting of nonterminals in the start rule of Grammar 
5. Each of the patterns Ac(_,E) and Ac(_,G), where 
the parameter ‘_’ matches anything, occurs three 
times, i.e. has three matches in the start rule, 
whereas e.g. the pattern Ac(D,_) occurs only twice, 
i.e. has two matches in the start rule. Each clustering 
distance function d calculates the benefit of applying 
each of these different possible patterns based on 
substituting their matches with their corresponding 
instantiations (as defined in Section 2.3.) and finally 
use that pattern that achieves the highest benefit. 

We follow a greedy approximation, as in each 
step, we implement that pattern that ‘locally’ 

achieves the highest benefit, which will in general 
not necessarily lead to the highest ‘global’ benefit. 

The benefit is negative, if storing a rule LP for 
a pattern P needs more space than the replacement of 
the matches of P by their instantiations saves within 
all production rules.  

However, when the benefit is positive, we store a 
rule L P and we replace all matches of P within all 
production rules with their corresponding instantia-
tions. We repeat this optimization step until no more 
patterns with positive benefit can be found. 

For example, starting with Grammar 2, we will 
first find the matches C(D,E), C(F,E), and C(I,E) 
that all have an edge connecting nodes with labels C 
and E and match the pattern C(_,E). As no other 
possible pattern achieves a higher benefit, we add 
the production rule C_E C(_,E) to the set of pro-
ductions and, within the start rule, replace the match 
C(D,E) by the instantiation C_E(D), the match 
C(F,E) by the instantiation C_E(F), and the match 
C(I,E) by the instantiation C_E(I). Within the next 
iteration, we find the matches B(C_E(D),), 
B(C_E(F),), and B(C_E(I),) which all have an 
edge connecting nodes with label B to nodes with 
label C_E. The production rule BC_E(_) 
B(C_E(_),) is added and the above given mat-
ches are replaced by BC_E(D), BC_E(F), and 
BC_E(I), as can be seen in Grammar 3. 

Finally, for those production rules for which stor-
ing the rule has a negative benefit, we delete the rule 
and replace each occurrence of a rule instantiation 
with a corresponding instantiation of the right-hand 
side of the production rule. 

3.2 Clustering Strategies 

Similarly, as clustering strategies depend on a con-
crete distance function d, the ‘quality’ of our CluX 
clustering strategies depends on what we count. We 
have implemented 4 different clustering strategies 
that influence the choice of patterns to be shared and 
have evaluated them, in order to find out, which 
strategy achieves the highest compression ratio and 
which strategy achieves the smallest runtime. These 
strategies are called ‘minimize edges’, ‘minimize 
rule size’, ‘minimize succinct storage’ and ‘random’ 
and are described in the following subsections. 

3.2.1 Minimize Edges 

For each possible pattern PP, we count the number 
of matches within all rules. That pattern PP that has 
the most matches is chosen for the next optimization 
step, i.e., a new rule is LPP is added to the rule 
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system and each match of PP is substituted with a 
corresponding instantiation of L. By applying the 
substitution steps, the number of occurrences of pat-
terns may have to be adjusted, in order to determine 
the frequencies of patterns for the next substitution 
step. This is the strategy that locally minimizes the 
number of edges in each step. 

3.2.2 Minimize Rule Size 

For each possible pattern PP, we calculate the stor-
age savings achieved by adding a rule L PP and 
substituting each match of PP with a corresponding 
instantiation of L. For this purpose, we compute the 
memory required for storing a rule L  PP by sum-
ming up 

 the number of nonterminals within PP 

 the number of terminals within PP 

 the number of parameters, i.e. the arity, of L 

 1 (for the nonterminal defining the left-hand 
side of the rule) 

and we subtract the space needed to store the rule 
from the space savings gained by substituting each 
match of the pattern PP with a corresponding instan-
tiation of L. That new rule L  PP that leads to the 
largest savings is chosen in each step. This strategy 
does not consider that the storage costs may be less 
when using a succinct storage format for grammar 
rules. 

3.2.3 Minimize Succinct Storage 

As with the previous strategy, for each possible pat-
tern PP, we calculate the storage savings achieved 
by adding a rule L PP and substituting each match 
of PP with a corresponding instantiation of L. But in 
contrast to the strategy ‘minimize rule size’, we do 
not count the number of symbols and parameters 
used in each rule, but we calculate the costs based on 
the used succinct storage format of the compressed 
grammar. In the following evaluation, we used the 
same succinct format that has been used for BPLEX 
(Fisher and Maneth, 2007). 

3.2.4 Random 

From the set of all possible patterns PP, we ran-
domly choose one. Only those possible patterns PP 
are considered that decrease the total grammar size. 
This strategy is being used as a benchmark for mea-
suring the quality of the other strategies. 

4 EVALUATION 

In a series of measurements, we compared the dif-
ferent clustering strategies ‘minimize edges’, ‘mi-
nimize rule size’, ‘minimize succinct storage’ and 
‘random’ and the bottom-up clustering strategy of 
BPLEX, concerning the compression ratio in terms 
of edges and concerning the compression time. In 
this series of measurements, we considered only the 
structure of the datasets, i.e., we ignore all text data 
(text nodes and attribute values) as text compression 
is independent of the compared approaches to XML 
structure compression.  
We have evaluated CluX on the following datasets: 

 1998statistics (1998 – 656 kB) –Baseball statis-
tics of the year 1998     

 catalog-01 (C1 – 10.4 MB), dictionary-01 (D1 
– 10.4 MB) – XML documents that were gener-
ated by the XBench benchmark 

 hamlet (H – 273 KB) – an XML version of the 
famous Shakespeare play 

 JST_snp.chr (JST- 35.5 MB) – XML data on 
the tumor suppressor gene JST 

 NCBI_gene.chr (NCBI – 23.0 MB) – XML 
data from the National Center for Biotechnical 
Information 

 Treebank (TB – 51.9 MB) – an XML docu-
ment representing a parsed text corpus 

 XMark (XM – 111.1 MB) – an XML document 
that models auctions  

 
Figure 4: The different strategies compared by (a) com-
pression ratio of edges and (b) compression time. 
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Figure 4 shows the evaluation results of the dif-
ferent clustering strategies compared by (a) the 
compression ratio achieved for the number of edges 
occurring in the compressed XML document and by 
(b) the compression time respectively. BPLEX and 
‘minimize succinct storage’ have shown to reach the 
best compression ratio reaching a decrease of edges 
to 8-9% of the number of edges occurring in the 
original XML file on average, whereas ‘minimize 
edges’ has shown to reach the fastest compression 
time, reaching a throughput rate of 12.6 MBit/s on 
average. 

In a second series of measurements, we com-
pared the two strategies ‘minimize succinct storage’ 
and ‘minimize edges’ in combination with BZip2 to 
compress the text data (i.e., text nodes and attribute 
values) with three other approaches: first, gzip – a 
generic compressor based on Huffman encoding and 
LZ77, second, BZip2 - a generic compressor based 
on Burrows-Wheeler-Transformation, third, XMill 
(Liefke and Suciu, 2000) – an XML compressor us-
ing BZip2 for the compression of constant values. 

 

Figure 5: Compression ratio as file compressors. 

On average, both CluX strategies ‘minimize suc-
cinct storage’ and ‘minimize edges’ compress best 
(c.f. Figure 5), followed by XMill followed by 
BZip2 and finally followed by GZip.  

When looking at the evaluation times, Gzip 
reaches the fastest compression with a compression 
throughput of more than 200 MBit/s on average, fol-
lowed by BZip2 and XMill reaching a throughput of 
more than 35 MBit/s on average, finally followed by 
the two CluX strategies reaching a throughput of 
around 3 MBit/s on average. A similar trend can be 
seen for the decompression, where GZip reaches a 
decompression throughput of more than 1750 
MBit/s on average, followed by BZip2 and XMill 
reaching a throughput of 430 and 270 MBit/s on av-
erage, finally followed by the two CluX strategies 
reaching a throughput of 19.5 MBit/s on average. 

5 RELATED WORK 

Besides generic compressors like gzip, bzip2 or 7zip 
(based on LZMA) that all do not allow for query 
evaluation on the compressed data directly, there  
exist several approaches to XML structure com-
pression. XML structure compression can be mainly 
divided into three categories: encoding-based com-
pressors, schema-based compressors and grammar-
based compressors. All these approaches differ in 
their features, particularly in whether the com-
pressed data structures can be decompressed partial-
ly, whether the compressed data structures are que-
ryable, and whether they support unbounded XML 
data streams. 

Encoding-based compressors allow for a much 
faster compression than the other compressors, as 
only local data has to be considered in the compres-
sion instead of considering different sub-trees as in 
grammar-based compressors. 

The XMill algorithm (Liefke and Suciu, 2000) is 
an example of the first category. The structure is 
compressed, by assigning each tag name a unique 
and short ID. Each end-tag is encoded by the symbol 
‘/’. This approach does not allow querying the com-
pressed data.  

XGrind (Tolani and Hartisa, 2002), XPRESS 
(Min, Park, and Chung, 2003) and XQueC (Arion et 
al., n.d.) are extensions of the XMill-approach. Each 
of these approaches compresses the tag information 
using dictionaries and Huffman-encoding (Huffman, 
1952) and replaces the end-tags by either a 
‘/’symbol or by parentheses. All three approaches al-
low querying the compressed data, and, although not 
explicitly mentioned, they all seem to be applicable 
to data streams.  

Approaches (Bayardo et al., 2004), (Cheney, 
2001), and (Girardot and Sunderesan, 2000) are 
based on tokenization. (Cheney, 2001) replaces each 
attribute and element name by a token, where each 
token is defined when it is used the first time. 
(Bayardo et al., 2004) and (Girardot and Sunderesan, 
2000) use tokenization as well, but they enrich the 
data by additional information that allows for a fast 
navigation (e.g., number of children, pointer to next-
sibling, existence of content and attributes). All three 
of them use a reserved byte to encode the end-tag of 
an element. They are all applicable to data streams 
and allow querying the compressed data. 

The approach in (Zhang, Kacholia, and Özsu, 
2004) defines a succinct representation of XML that 
stores the start-tags in form of tokens and the end-
tag in form of a special token (e.g. ‘)’). They enrich 
their compressed XML representation by some addi-
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tional index data that allows a more efficient query 
evaluation. This approach is applicable to data 
streams and allows querying of compressed data. 
Similarly, the approach presented in (Arroyuelo et 
al., 2010) defines a succinct representation that 
stores parentheses representing start and end tags to-
gether with a stream of symbols representing the tag 
names. It is combined with a BWT-based compres-
sion technique for the constant data that allows ran-
dom access to the compressed data. This approach is 
applicable to data streams and allows querying of 
compressed data. 

Schema-based compression comprises such ap-
proaches as XCQ (Ng et al., 2006), XAUST (Sub-
ramanian, and Shankar, 2005), Xenia (Werner et al., 
2006) and DTD subtraction (Böttcher, Steinmetz, 
and Klein, 2007). They subtract the given schema 
information from the structural information. Instead 
of a complete XML structure stream or tree, they on-
ly generate and output information not already con-
tained in the schema information (e.g., the chosen al-
ternative for a choice-operator or the number of 
repetitions for a ‘*’-operator within the DTD). These 
approaches are queryable and applicable to XML 
streams, but they can only be used if schema infor-
mation is available. 

XQzip (Cheng and Ng, 2004) and the approaches 
presented in (Adiego, Navarro, and de la Fuente) 
and (Buneman, Grohe, and Koch, 2003) belong to 
grammar-based compression. They compress the da-
ta structure of an XML document by combining 
identical sub-trees. Afterwards, the data nodes are 
attached to the leaf nodes, i.e., one leaf node may 
reference several data nodes. The data is compressed 
by an arbitrary compression approach. These ap-
proaches allow querying compressed data, but they 
are not directly applicable to infinite data streams. 

The approach presented in (Böttcher, Hartel, and 
Messinger, 2009) and BSBC (Böttcher, Hartel, and 
Heinzemann, 2009) combine encoding-based and 
grammar-based compression (BSBC) or schema-
based and grammar-based compression (Böttcher, 
Hartel, and Messinger, 2009) respectively. Instead of 
an XML document, a DAG that summarizes the 
structure of the XML document is taken as input and 
is compressed further either by encoding a succinct 
representation of the tree structure of the DAG 
(BSBC), or by subtracting schema information from 
the tree structure of the DAG. These approaches al-
low querying of compressed data and are directly 
applicable to infinite data streams, as the backward 
edges within the DAG are only generated within a 
given window size. 

An extension of (Buneman, Grohe, and Koch, 
2003) and (Cheng and Ng, 2004) is the BPLEX al-
gorithm (Busatti, Lohrey, and Maneth, 2005). This 
approach does not only combine identical sub-trees, 
but recognizes similar patterns within the XML tree, 
and therefore allows a higher degree of compression. 
The approach presented in this paper follows the 
same idea. But instead of combining similar struc-
tures bottom-up, our approach searches within a giv-
en window the most promising pair to be combined 
while following one of three possible clustering 
strategies. Both approaches allow querying of com-
pressed data and can be applied to infinite XML data 
streams if the search for similar substructures is re-
stricted to a given window size. 

The approach in (Ferragina et al., 2006) does not 
belong to any of the three categories. It is based on 
BurrowsWheeler BlockSorting (Burrows and Whee-
ler, 1994), i.e., the XML data is rearranged in such a 
way that compression techniques such as gzip 
achieve higher compression ratios. This approach is 
not applicable to data streams, but allows querying 
the compressed data if it is enriched with additional 
index information.  

Different from all other approaches, CluX uses 
clustering for grammar-based XML compression.  

In contrast to the RePAIR algorithm presented in 
(Larsson and Moffat, 2000) for strings and used in 
(Claude and Navarro, 2007) to compress the adja-
cency lists of graphs, we do not only compress lists 
of symbols (i.e., one-dimensional structures) with 
the help of parameter-less grammars, but instead 
compress binary trees (i.e., two-dimensional struc-
tures) with the help of a parameterized grammar. 

6 SUMMARY AND 
CONCLUSIONS 

We have shown how CluX, a clustering-based com-
pression approach for XML trees, uses clustering for 
determining the most promising similar sub-trees 
and shares them by using a single pattern. As an 
XML file compressor, CluX compresses better than 
the XML compressor XMill or than generic com-
pressors like gzip or BZip2. CluX compression can 
be applied to infinite data streams – and in contrast 
to XMill and gzip or BZip2, path queries can be eva-
luated directly on the compressed representation, 
i.e., without prior decompression. By sharing, CluX 
decreases the number of edges down to less than 
10% of an original XML document tree. This allows 
not only a more space saving in-memory representa-
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tion of an XML document tree than standard tree re-
presentations or DOM, but also is promising for 
faster bottom-up query evaluation. Therefore, we re-
gard CluX to be a useful compressor for SEPA or 
MS Office documents, product catalogs and other 
XML data, whenever the data volume is a bottleneck 
in enterprise information systems.  
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