

LOCATING AND EXTRACTING PRODUCT SPECIFICATIONS
FROM PRODUCER WEBSITES

Maximilian Walther, Ludwig Hähne, Daniel Schuster and Alexander Schill
Technische Universität Dresden, Faculty of Computer Science, Institute of Systems Architecture

Helmholtzstr. 10, 01062 Dresden, Germany

Keywords: Document Retrieval, Information Extraction, Federated Search.

Abstract: Gathering product specifications from the Web is labor-intensive and still requires much manual work to
retrieve and integrate the information in enterprise information systems or online shops. This work aims at
significantly easing this task by introducing algorithms for automatically retrieving and extracting product
information from producers’ websites while only being supplied with the product’s and the producer’s
name. Compared to previous work in the field, it is the first approach to automate the whole process of
locating the product page and extracting the specifications while supporting different page templates per
producer. An evaluation within a federated consumer information system proves the suitability of the
developed algorithms. They may easily be applied to comparable product information systems as well to
minimize the effort of finding up-to-date product specifications.

1 INTRODUCTION

Today, customers as well as retailers and service
companies use the Web for gathering detailed
product information. As this information is
distributed on different websites and presented in
heterogeneous formats, this process is both time-
consuming and error-prone.

There are already a number of secondary sources
bundling product information like online shops (e.g.,
amazon.com), product review sites (e.g.,
dpreview.com) or shopping portals (e.g., ciao.de).
The information in individual online shops is
restricted to only the sold products and often error-
prone and not comprehensive. The information on
product review sites is collected and verified
manually and thus of higher quality but restricted to
a special product domain such as dpreview.com to
the domain of digital cameras. Shopping portals
often rely on information gathered from online
shops, thus again only offering incomplete and
error-prone information.

For gathering product information from online
shops these systems are generally able to query
available Web Services, extract the information from
websites using web scraping technologies or receive
the offers directly by feed-like mechanisms.

Gathering product information first-hand from
producers is more reliable, but this requires a lot
more manual work as this data is not offered in a
standardized way by the producers. The operators of
the shopping portals or other product information
systems have to locate the producer’s website, find
the website presenting the product of interest,
pinpoint the product information and extract it. As
this process evidently requires a lot of man hours,
information providers tend to either specialize on
concrete product domains or reduce the presented
information to very general details all products have
in common, such as a product name, a producer
name, a picture, prices, etc.

Figure 1: Example product page (left) and product detail
page (right) - source: canon.co.uk.

From the consumer’s point of view, product
specification data provided by producer websites
(see example in Figure 1) is the most important

 13
Walther M., Hähne L., Schuster D. and Schill A. (2010).
LOCATING AND EXTRACTING PRODUCT SPECIFICATIONS FROM PRODUCER WEBSITES.
In Proceedings of the 12th International Conference on Enterprise Information Systems - Software Agents and Internet Computing, pages 13-22
DOI: 10.5220/0002874300130022
Copyright c© SciTePress

product information, as it creates a general view on
the product of interest and makes it comparable with
related products. Easing the automatic retrieval of
such information would yield a great advantage for
product information systems.

To reach this goal the following conditions have
to be met:
(Req1)

The system has to retrieve the producer’s
product detail page while only being supplied
with a product name and its producer’s name. If
multiple description pages with different
templates exist for the same product, the page
with the specification data is to be selected.

(Req2)
The system has to be able to extract information
being supplied with few similar or even only one
product detail page.

(Req3)
Different page templates for one manufacturer
have to be managed by the extraction process,
e.g., in case of different product categories or
families.
Current methods for information extraction

already cover part of (Req2) while they do not yet
take the product page retrieval into account (Req1).
Different page templates (Req3) are also not yet
considered by existing work.

Thus, the contributions of this paper are
techniques to fit all three requirements mentioned
above. We present an algorithm to locate the product
information page provided by a producer for an
arbitrary product (Section 3) and three
complementary algorithms for finding the product
details on this page and extracting them (Section 4).
The four mentioned algorithms were implemented
and evaluated as described in Section 5. We
conclude the paper in Section 6 discussing future
research directions.

2 RELATED WORK

As shown in the introduction, the presented work is
located in the area of product information retrieval
putting a special focus on product document
retrieval (DR) and information extraction (IE), more
precisely, product specification extraction. Several
systems dealing with similar problems were
developed in related research works.

Considering the product information domain,
these systems mostly handle vendor information

provided by online malls or third-party information
in the shape of user reviews.

Systems for gathering vendor information either
access online malls using Web Services or web
scraping wrappers and rank resulting product lists by
federated ranking mechanisms. Detailed information
on such systems including a feasible approach for
federated ranking can be found in (Walther et al.,
2009b). Wong and Lam (2009) present algorithms
for feature mining especially applicable for
extracting product information from vendor sites.
Their evaluation proves the algorithms’ feasibility in
comparison to other systems.

Concerning third-party information like user
reviews, TextRunner (Banko et al., 2007) offers a
facts-based search engine using the principles of
Open Information Extraction. Sources treated by
TextRunner do not only comprise product reviews.
Red Opal (Scaffidi et al., 2007) offers effective
product search mechanisms based on the evaluation
of a product review database. Reviews are examined
concerning special product features, thus enabling
the system to provide a set of products to the
consumer that is expected to satisfy their needs
concerning a chosen feature.

As mentioned above, the presented systems do
not focus on product information provided by
producers. In effect, such information is of particular
interest for the consumer as producers offer
complete, correct and up-to-date information.

In the field of information extraction, many
research results have been published as well. Those
may be divided in supervised, semi-supervised and
unsupervised approaches.

The approach of learning extraction rules from
labeled training documents is referred to as
supervised IE. Rapier (Califf and Mooney, 1997) is
a supervised extraction system that uses a relational
learning algorithm to extract information from job
postings. It initializes the system with specific rules
to extract the labeled data and successively replaces
those with more general rules. Syntactic and
semantic information is incorporated using a part-of-
speech tagger. Other supervised IE systems are SRV
(Freitag, 1998), WIEN (Kushmerick et al., 1997),
SoftMealy (Hsu and Dung, 1998), STALKER
(Muslea et al., 1999) and DEByE (Laender et al.,
2002).

Labeling training data in advance is a labor-
intensive process limiting the scope of the IE
system. Instead of requiring labelled data, semi-
supervised IE systems extract potentially interesting
data and let the user decide what shall be extracted.
IEPAD (Chang and Lui, 2001) is a semi-supervised

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

14

system. Apart from extraction target selection, such
systems are very similar to unsupervised IE systems.

Automatic or unsupervised IE systems extract
data from unlabeled training documents. The core
concept behind all unsupervised IE systems is to
identify repetitive patterns in the input data and
extract data items embodied in the recurrent pattern.
Unsupervised IE systems can be subdivided into
record-level extraction systems and page-level
extraction systems. The former assume multiple data
records of the same type are available being
rendered by a common template into one page while
the latter extract data from multiple pages having the
same page-wide template.

Evidently, record-level extraction systems can
only operate on documents containing multiple data
records and require means to identify the data
regions describing the individual data records. The
latter problem can be tackled with string or tree
alignment techniques. Examples for such systems
are DEPTA (Zhai and Liu, 2005) and NET (Liu and
Zhai, 2005). DEPTA stands for Data Extraction
based on Partial Tree Alignment and is an
unsupervised IE system. It extracts data records
from list pages (e.g., Amazon search result lists)
with an algorithm called MDR, taking advantage of
the tree structure of the HTML page. MDR was first
presented by Liu et al. (2003). The design of MDR
is based on two observations about data records. The
first observation states that similar objects are likely
located in a contiguous region and formatted with
almost identical or at least similar HTML tags. The
second observation is that similar data records are
built by sub-trees of a common parent node.
Unfortunately, multi-record IE systems like DEPTA
are not well-suited for our extraction problem, as
product detail pages are rarely multi-record pages
and typically describe only a single product.

Page-level extraction systems can treat the whole
input page as a data region from which the data
record shall be extracted. However, multiple pages
for induction of extraction wrappers need to be
fetched in advance. Thus, the problem of collecting
training data is shifted into the DR domain and is
rarely addressed by IE researchers. Examples for
page-level extraction systems are RoadRunner
(Crescenzi et al., 2001) and ExAlg (Arasu and
Garcia-Molina, 2003). RoadRunner is an
unsupervised web IE system that compares multiple
pages and generates union-free regular expressions
based on the identified similarities and differences.
RoadRunner initializes the wrapper with a random
page of the input set and matches the remaining
pages using an algorithm called ACME matching.

The wrapper is generalized for every encountered
mismatch. Text string mismatches are interpreted as
data fields, tag mismatches are treated as indicators
of optional items and iterators. ExAlg is an IE
system for automatically deducing the template from
a set of template-generated pages. It has a
hierarchically structured data model and supports
optional elements and disjunctions. A web page is
modeled as a list of tokens in which a token might
either be an HTML tag or a word from a text node.
ExAlg builds equivalence classes of the tokens
found in the input documents. Based on these sets of
tokens, the underlying template is deduced.

The drawback of these page-level IE systems
relating to our extraction problem is the large
number of training data to induce extraction rules.
ExAlg draws upon the target attributes’ occurrence
characteristic which can hardly be derived from only
two training pages, thus not meeting (Req2).
Furthermore, the presented approaches do not take
the problem of document retrieval into account and
hence do not fulfil (Req1). Additionally, the support
for multiple page templates (Req3) is not tackled
yet. The conditions stated above are essential for a
successful employment of such algorithms in
federated consumer product information systems. In
the following, we present our approach building
upon some of the ideas presented here, extending
them to fully fit (Req2) as well as finding new
methods to tackle document retrieval (Req1) and
multiple page templates (Req3).

3 DOCUMENT RETRIEVAL

The retrieval component’s task is to supply the
information extraction algorithm with a genuine
product specification page. We use web search
services such as Google, Bing and Yahoo for this
purpose.

The document set to consider is the total number
of publicly available websites ܹ. Let the product
whose specification page is to be found be . Thus,
all websites presenting information about this
product can be subsumed as ܹሺሻ. Since only
specification pages are of interest, these websites are
defined by ௌܹሺሻ. Specification pages may be
distributed all over the Web being offered by
arbitrary sources. However, product manufacturers
are accounted to be the most trustable sources
concerning their own products. All websites
provided by a manufacturer producing can be
summarized by ܹሺ݉ሺሻሻ. Hence, the document to
be found is one of the websites ܹሺ݉ሺሻሻځ ௌܹሺሻ.

LOCATING AND EXTRACTING PRODUCT SPECIFICATIONS FROM PRODUCER WEBSITES

15

In the majority of cases, only one producer's
specification page exists per product, therefore
following through with |ܹሺ݉ሺሻሻځ ௌܹሺሻ| ൌ 1.
If so, this page is curtly defined as ݓ.

The formula shows that the DR component's task
consists in determining the set of producer websites
ܹሺ݉ሺሻሻ for the producer of filtering out the set
of pages presenting information about and finally
detecting ݓ or choosing one of the found product
specification pages. Thus, the retrieval is laid out as
a two-step process. In a first step, the producer page
is located and, in a second step, the product
specification page is searched restricting the requests
to the producer domain.

3.1 Producer Page Re ltrieva

A producer site comprising ܹሺ݉ሺሻሻ is searched
for by querying the mentioned web search services
with the producer’s name, e.g., "Siemens Home
Appliances". The results returned by all search
engines are ordered using Borda ranking (Liu,
2007). In Borda ranking, every participant
announces an ordered list of preferred candidates. If
there are n candidates, the top-ranked candidate of
each voter receives n points and each lower ranked
candidate receives a decremented score. For being
able to search on the producer’s site, the producer
domain is extracted. It includes the top-level domain
of the host and one further level. For example, from
the URL http://www.gigabyte.com.tw/ the domain
name gigabyte.com.tw is extracted. If the product
page cannot be retrieved on-site, the algorithm falls
back to the next producer site candidate from the
phrase search.

3.2 Product Detail Page Retrieval

For locating the actual product page, that is, building
the intersection of ܹሺ݉ሺሻሻ and ௌܹሺሻ, again
different web search services are queried, this time
using the product’s name as query and restricting the
search space to the retrieved producer domain. First,
the result sets of the individual search engines are
combined using Borda ranking to form an initial
candidate list (see Figure 2).

Figure 2: Scoring the product page candidates.

Under the supposition of a product page being
discovered but the specification data being contained
in a separate page, each page from the candidate list
is scanned for product detail page links. Each link’s
text is compared with characteristic product detail
page link patterns. The target of the best matching
link is added to the extended candidate list. The
prospective specification page inherits the Borda
score of the linking page if it is not among the
existing search results. Additionally, a specification
score is assigned to this candidate.

Subsequently, each result from the extended
candidate list is rated with a URI score, a title score
and a content score. For the URI score, the URIs of
the candidates are scanned for characteristic terms
associated with positive or negative meanings in the
context of searching for product specification data.
For example, the terms “product” or “specification”
in a URL might indicate that the candidate is indeed
a product specification page. Contrariwise, terms
like “forum”, “news”, “press” or “review” might
signify an irrelevant page in this context and entail a
negative score. Furthermore, the URL is scanned for
substrings of the product name. Accordingly, a URI
score is given to each candidate.

In a next step, the titles of the web pages are
matched with the product identifier. The rationale
behind this concept is to favor pages associated with
the proper product in contrast to specification pages
associated with similar products which might
receive an otherwise high score. Depending on the
percentage of matching terms a title score is
calculated for every candidate.

In a last step, the document contents are scanned
for customary attribute key phrases. For this
purpose, possibly available attribute keys from
former extractions and their occurrence counts are
retrieved. The set of text nodes contained in the page
is matched with these phrases to calculate the
candidates’ content scores.

All computed scores are combined. The
candidate with the highest score is returned as the
alleged product page ݓ. An example can be seen in
Table 1.

4 INFORMATION EXTRACTION

The information extraction component is designed to
extract key-value pairs of product information from
product detail pages on the producers’ sites. Thus,
the following algorithm takes a product detail page
as input and retrieves the product’s specifications
from this page. As keys and values in one product

Google Web
Search

Bing Search

Borda
Ranking

Candidate
List

Page
Crawler

Extended
Candidate List

URI Path
Score

Title
Score

Content
Score

Page
Selection

Product
Detail Page

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

16

Table 1: Final rankings for “Sony Ericsson W595a”.

Document Borda Spec. URI Title Cont. ∑

/cws/products/mobilep
hones/overview/w595a
?lc=en&cc=us

20 0 4 9 0 33

/cws/support/phones/w
595a?lc=en&cc=us 16 0 -2 9 0 23
/cws/corporate/product
s/phoneportfolio/specif
ication/w595a

15 0 6 9 10 40

/cws/products/mobilep
hones/specifications/w
595a?lc=en&cc=us

9 10 6 9 10 44

/cws/support/softwared
ownloads/w595a?lc=en
&cc=us

7 0 -2 9 0 14

detail page share similar XPaths, we try to find those
XPaths and create an extraction wrapper out of
them. An overview of the procedure is given in
Figure 3.

In a first step the given product specification
page is fetched and the DOM tree is created. Then,
extraction wrappers already residing in the system
can be applied. A wrapper consists of an attribute
XPath and a relative key XPath. To extract the
attributes, the wrapper retrieves the node set via the
attribute XPath from the DOM representation of the
input document. The key node is located by the
relative key XPath. Subsequently, the key node is
removed from the attribute node and the remaining
text in the node is presumed to be the value
component. If the extraction fails, the wrapper is not
valid and a new one has to be induced.

Figure 3: General information extraction procedure.

4.1 Wrapper Induction

As depicted in Figure 3, different wrapper induction
algorithms, namely a supervised and two
unsupervised algorithms, are executed. The
supervised algorithm (Induce by Example) is
applicable when provided with key examples (e.g.,
“Optical Zoom” for the digital camera domain)
directly giving a hint on the product attributes to be

extracted from the product detail page. The different
algorithms are shown in Figure 4.

Independent of the chosen algorithm, the first
step comprises the creation of phrase clusters that
might contain the product details to be extracted.
The phrases are all text nodes of the website’s DOM
tree. Only unique phrases are considered, all
recurrent phrases are discarded during clustering.
The clustering is based on the phrases’ generalized
occurrence paths and enclosing tag signatures. The
former is defined as an XPath query unambiguously
selecting a node set only containing the respective
nodes and being stripped of all indices. For example,
the generalized occurrence path of
“//table/tr[4]/td[1]” is “//table/tr[]/td[]”. The latter
consists of the enclosing tag element including its
attributes.

Figure 4: Wrapper induction algorithms.

As can be seen in Figure 5, phrases not occurring
in all input documents are discarded in case multiple
documents are considered. Thus, a phrase cluster
contains all text nodes residing on the same level of
the DOM tree having an identical enclosing tag.
Apparently, the attributes must not reside in the very
same tag to be syntactically distinguishable by the
algorithm. Otherwise, approaches like ExAlg
operating on the token-level have to be adopted.

Figure 5: Clustering text nodes from multiple documents.

Start

Induce by Example
(Supervised IE)

End

Retrieve product
detail page

Apply existing
wrappers

No
Yes

Yes

In: Product
URL

Out: product
features

Wrapper valid?

Example
given?

Induce by Crawling
(Unsupervised IE)

No

Induce by Knowledge
(Unsupervised IE)

Knowledge
given?

Yes
No

Apply wrapper

Start

End

Create phrase clusters

In: Product
page, example

Out: Wrapper

Select cluster containing
key phrase.

Calculate feature and
key XPaths

Start

End

Create phrase clusters

In: Product page,
knowledge

Out: Wrapper

Retrieve all key phrases
from previous extractions.

Select cluster containing
most key phrases.

Calculate feature and
key XPaths

Retrieve similar
product pages

Select cluster with most
strings being contained in

both documents.

Create phrase clusters

Calculate feature and
key XPaths

Out: Wrapper

End

Start

In: Product page

Alg1: Extract by Example Alg2: Extract by Knowledge Alg3: Extract by Crawling

LOCATING AND EXTRACTING PRODUCT SPECIFICATIONS FROM PRODUCER WEBSITES

17

After all text nodes have been assigned to a
cluster, a score for each cluster is computed using a
rating function. Different rating functions are used
depending on the wrapper induction algorithm. The
different induction variants and employed rating
functions are discussed below. Subsequently, an
XPath query is derived from the path of all nodes in
the best rated cluster and a wrapper object is created.
The XPath is converted to a generalized occurrence
path and split on the last eliminated index into
attribute XPath and relative key XPath. If the
wrapper is able to extract any attributes using these
XPaths, the wrapper is returned. Otherwise, the next
cluster with a lower score is considered.

4.1.1 Induction with Example Phrase

The wrapper induction process can be facilitated by
specifying a key phrase of one product attribute as
an example. When such an example is provided, no
additional training document is crawled and the
cluster rating just looks for the example phrase in the
available clusters (left side of Figure 4).

4.1.2 Induction with Domain Knowledge

If no example key phrase is given, but extracted and
confirmed product data is already stored in the
system, all key phrases of this known product data
are matched with each element in the cluster and a
hit is recorded in case of success. The cluster score
is simply modelled as the number of hits (central
part of Figure 4).

4.1.3 Induction with 2nd Product Page

If neither example key phrase nor domain
knowledge is available, the wrapper induction relies
on a training approach. Related product pages are
retrieved to provide a training set. Phrases not
occurring in all training documents are discarded
and the clusters are rated based on their size scaled
by the fraction of non-discarded nodes. The scaling
shall prevent mixing up key and value components.
The latter may happen when individual attributes
have value tuples which build a larger cluster than
the key components of the respective attributes
(right side of Figure 4). How to retrieve related
product pages is described in the following.

4.2 Related Product Page Retrieval

If no domain knowledge is available for the
information extraction component to identify
relevant data on a given product page, the generator

of the IE wrapper requires at least one other page
sharing the same template to detect recurrent
patterns. Thus, similar pages are crawled starting
from the product detail page and selecting a page
with a similar URL, content and structure. This
approach is feasible, as it often takes no more than
two clicks to navigate from a product detail page to
another one of a similar product. Additionally,
similar URLs are more likely to reference template-
sharing pages, e.g., “/product.html?name=D60” and
“/product.html?name=S550”. This is due to routing
mechanisms in template-based web application
frameworks.

The crawler starts at the product detail page and
recursively extracts all referenced URLs until a
given recursion depth is reached. In practice a depth
of two showed suitable results. The URLs then are
sorted by similarity to the original product URL and
provided to the IE component. The URL similarity is
modelled as the weighted Levenshtein distance of
the individual URL components. E.g., differences in
the host name have a larger impact on the final score
than differences in the URL’s query part.

4.3 Text Node Splitting

In practice, product attributes are often stored in a
single text node with a colon separating key and
value items, e.g., "Key: Value". Therefore, text
nodes are split along the alleged separator and only
the first part is stored in the cluster. If such joint
phrases are predominant in a cluster, the wrapper
stores the occurrence path of the cluster as the
attribute path without specifying a key path. In these
cases, the wrapper performs the extraction of the key
and value terms from the joint attribute phrases.

Whether a cluster features joint attribute phrases
is determined based on the fraction of phrases with
an alleged separator. Either most phrases in the
cluster contain a separator or known key phrases are
found featuring a separator. For this reason,
individual phrases are voted for in the respective
rating functions.

4.4 Wrapper Selection

As stated above, product pages residing on the same
producer site often share the same template. Still the
algorithm should be able to handle more than one
template per manufacturer, e.g., considering
different product categories. When extracting
information from an arbitrary product page, it needs
to be decided which wrapper will extract

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

18

information from the page or, in case none is
applicable, whether a new one is to be generated.

It is feasible to let all existing wrapper objects of
the current domain extract information out of a
given product page. Improper extraction rules either
yield no data at all or might mine bogus data.
Therefore, the returned data is matched with existing
data previously extracted by the same wrapper. The
assumption is that a certain template encodes similar
content. For example, the pages of a producer’s
product line share one template, while pages from
another product line are encoded with a different
template. This way, every wrapper of a producer is
assigned a score whose role is twofold. On the one
hand, the score is used to select the proper wrapper
object. On the other hand, a minimal threshold
ensures that a new wrapper is generated in case no
eligible extraction rules exist yet. The threshold is
based on the amount of prior knowledge available
for a certain wrapper.

5 EVALUATION

To evaluate the effectiveness of the approach, the
described algorithms were implemented in Fedseeko
(Walther et al. 2009a), a system for federated
consumer product information search. The presence
of domain knowledge is denoted by the D
superscript in the charts. The gold standard used for
testing consisted of 100 products from 40 different
manufacturers and 10 diverse application domains.
These products were picked to get a broad coverage
of different product categories. For the tests
concerning domain knowledge, 262 key phrases
were inserted into the database gathered from
representative products for each of the 10 domains.

5.1 Product Page Retrieval

For evaluating the retrieval component the gold
standard consisted of the proper domain and page
URL of each product and its producer. The
automatic retrieval results were matched with the
prestored locations. If the locator was able to
identify the proper product page URL, the retrieval
was filed as a success. Due to URL aliases and
localized versions of product pages, non-matching
URLs were checked manually again to identify false
negatives. The results are illustrated in Figure 6.

Figure 6: Evaluation of page retrieval.

With a success rate of over 90%, the producer
site identification is quite robust. However, failures
to find the producer site occur when a producer has
distinct sites for different product groups. For
instance, the home appliance product line of
Siemens is not featured at the primary Siemens site
“siemens.com” but offloaded to another domain,
namely “siemens-home.com”. Another frequently
encountered source of error are localized producer
sites. These might list diverse sets of products or use
different product identifiers. However, often traces
of product names are found on other sites of the
producer, e.g., in the news section or in a support
forum. Better retrieval results could be accomplished
by searching the product page on multiple producer
candidates in parallel and combining the results from
all pages.

It is worth stressing the point that only the
retrieval of the product detail page was filed as a
success. In the majority of the failure cases, an
overview page associated with the proper product
was returned. In other cases, an index or comparison
page listing multiple products was identified. Other
failures can be attributed to the retrieval of wrong
products’ pages, ineligible content like product
reviews or news entries.

On the right side of Figure 6 it can be seen that
incorporating domain knowledge (reference attribute
keys) increases the retrieval performance. At the
same time, there is a slightly greater chance of
retrieving a wrong product’s page because the
domain knowledge embodied in the accumulated
key phrases is generic.

Overall, the retrieval component proved a very
good performance concerning producer sites, while
having some deficiencies in the field of product
detail page retrieval. This is especially adverse, as
the information extraction relies on the retrieval of a
correct product detail page. However, the usage of
domain knowledge ameliorates the situation and
thus makes the algorithm quite suitable. Domain
knowledge is already gathered automatically in the
system. Still, optimizations in this field might yield
even better results for the product page retrieval and
thus will be part of future work.

LOCATING AND EXTRACTING PRODUCT SPECIFICATIONS FROM PRODUCER WEBSITES

19

5.2 Related Product Page Retrieval

The goal of the web crawler is to identify a page
generated from the same template as the reference
page. During the tests, this succeeded in 69% of the
cases. Half of the failure cases can be attributed to
the fact that different views being associated with
the same product often have a high page and URL
similarity. However, if there are few common
attributes and only slight deviations in the product-
specific parts of the page, it is more likely that
another view of the original product will be taken for
a related product page. Another problem occurs in
case template-sharing pages are not reachable
through the designed link distance. Though the
recursion limit could be increased, the execution
time easily rises tenfold with every followed link
level. A recursion depth of two was found to be a
suitable trade-off.

In order to make the employed related page
retrieval algorithm comparable, a component for
autonomously locating random product pages of the
same producer has been implemented. However, one
has to take product page detection failures into
account. The considerable chance that the found
page was built from a different template has to be
regarded as well. Moreover, the other product page
might feature a completely distinct set of key
phrases. It was observed that such a system
performed rather poorly in comparison to the
crawler-based approach.

5.3 Information Extraction

Assessing the extraction performance is slightly
more complicated than evaluating the page retrieval
performance, as many attributes are associated with
every product. Each of the three presented extraction
algorithms was confronted with the task of
extracting product attributes from the product pages.
A reference attribute was manually retrieved for
each product and matched with the extracted data.
Whenever the reference attribute was contained
within the set of extracted attributes, it indicated that
(1) the proper data region had been selected, (2) the
proper granularity level was chosen in a nested
template and (3) the value could be mapped to its
associated key phrase. Apparently, it does not
indicate that the extracted data was complete or
correct. Therefore, the first and last attribute were
also recorded for reference and the number of
extracted records was checked.

Figure 7: Evaluation of retrieval and extraction
components.

As Figure 7 reveals, wrapper induction using
crawled documents works for approximately half of
the test products. However, significant extraction
performance improvements were gained with the
availability of domain knowledge. Unfortunately,
some cases cannot be handled even when an
example is provided. This applies to about one in ten
products in the test data. A successful extraction
implies that at least some product attributes were
correctly extracted. More detailed results are given
in Figure 8.

The per-product results can be classified in
different success and failure categories, based on
correctness and completeness of the extracted data.
A perfect result indicates that the extraction results
are correct and complete. In other words, all
available attributes were extracted and no false
positives were in the result set. The second category
includes attribute sets which are complete but
contain additional incorrect attributes. Finally, if
some of the attributes were not extracted, the data
set is filed as incomplete.

Figure 8: Correctness and completeness of extraction
results.

The failures can be categorized into cases where
no attributes were extracted at all and those where
bogus attributes were mined. The former is less

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

20

hazardous because it requires no guidance to mark
these cases as failures. In the latter cases, however,
the extracted data must be rejected manually.

Using automatic extraction with existing domain
knowledge, 85% of the extracted product attributes
were correct and 10% bogus data. On average, 23 of
27 available product attributes were correctly
extracted and one false positive was mined.

Overall, the information extraction component
showed feasible results. Assuming that the
algorithms are included in an information platform
used by consumers, it is expected that users provide
extraction hints to the system in a wiki-like form.
After some running time and the intensive collection
of domain knowledge, the extraction success should
even increase, thus only making the employment of
information extraction by crawling inevitable in very
few cases.

6 CONCLUSIONS

In this paper we presented algorithms for locating
and extracting product information from websites
while only being supplied with a product name and
its producer’s name. While the retrieval algorithm
was developed from scratch, the extraction
algorithm extends previous works presented in
Section 2 especially leveraging the special
characteristics of product detail pages. The
evaluation showed the feasibility of the approaches.
Both the retrieval and extraction component
generated better results when being supplied with
domain knowledge used for bootstrapping. Thus,
future research will focus on improving the system’s
learning component to automatically create
extensive domain knowledge at runtime.

Currently, additional algorithms are being
developed for mapping the extracted specification
keys to a central terminology and converting the
corresponding values to standard formats. Thus,
product comparisons would be enabled at runtime.
Evaluations will examine the success of these
algorithms. Another direction of future research
includes the automatic extension of the used product
specification terminology being represented by an
ontology. Thus, the mapping algorithm’s evaluation
results would be improved significantly.

The consolidated integration of this paper’s
algorithms as well as described future extensions in
a federated consumer product information system
would enable users to create an all-embracing view
on products of interest and compare those products
effectively while only requiring a fraction of today’s

effort for gathering product information from the
information provider. In the same manner it may be
integrated in enterprise product information systems
as well as online shopping systems easing and
accelerating the process of implementing product
specifications.

REFERENCES

Arasu, A. and Garcia-Molina, H. (2003). Extracting
Structured Data from Web Pages. In SIGMOD
International Conference on Management of Data.
San Diego, CA, USA 10-12 June 2003. ACM Press:
New York.

Banko, M., Cafarella, M. J. Soderland, S., Broadhead, M.
and Etzioni, O. (2007). Open Information Extraction
from the Web. In IJCAI 20th International Joint
Conference on Artificial Intelligence. Hyderabad,
India 9-12 January 2007. Morgan Kaufmann
Publishers Inc.: San Francisco.

Califf, M. E. and Mooney, R. J. (1997). Relational
Learning of Pattern-Match Rules for Information
Extraction. In ACL SIGNLL Meeting of the ACL
Special Interest Group in Natural Language Learning.
Madrid, Spain July 1997. T. M. Ellison: Madrid.

Chang, C.-H. and Lui, S.-C. (2001). IEPAD: Information
Extraction based on Pattern Discovery. In IW3C2 10th
International Conference on the World Wide Web.
Hong Kong, China 1-5 May 2001. ACM Press: New
York.

Crescenzi, V., Mecca, G. and Merialdo, P. (2001).
Roadrunner: Towards Automatic Data Extraction from
Large Web Sites. In VLDB Endowment 27th
International Conference on Very Large Data Bases.
Rome, Italy 11-14 September 2001. Morgan
Kaufmann Publishers Inc.: San Francisco.

Freitag, D. (1998). Information Extraction from HTML:
Application of a General Machine Learning Approach.
In AAAI 15th National Conference on Artificial
Intelligence. Madison, WI, USA 26-30 July 1998.
AAAI Press: Menlo Park.

Hsu, C.-N. and Dung, M.-T. (1998). Generating Finite-
State Transducers for Semi-Structured Data Extraction
from the Web. Journal of Information Systems, 23(8),
pp.521-538.

Kushmerick, N., Weld, D. S. and Doorenbos, R. (1997).
Wrapper Induction for Information Extraction. In
IJCAI 15th International Joint Conference on Artificial
Intelligence. Nagoya, Japan 23-29 August 1997.
Morgan Kaufmann Publishers Inc.: San Francisco.

Laender, A. H. F., Ribeiro-Neto, B. and da Silva, A. S.
(2002). DEByE - Data Extraction by Example. Data
and Knowledge Engineering, 40(2), pp.121–154.

Liu, B. (2007). Web Data Mining: Exploring Hyperlinks,
Contents, and Usage Data. Springer: Heidelberg.

LOCATING AND EXTRACTING PRODUCT SPECIFICATIONS FROM PRODUCER WEBSITES

21

Liu, B., Grossman, R. and Zhai, Y. (2003). Mining Data
Records in Web Pages. In SIGKDD International
Conference on Knowledge Discovery and Data
Mining. Washington, DC, USA 24-27 August 2003.
ACM Press: New York.

Liu, B. and Zhai, Y. (2005). NET - A System for
Extracting Web Data from Flat and Nested Data
Records. In WISE Society 6th International
Conference on Web Information Systems Engineering.
New York, NY, USA 20-22 November 2005.
Springer: Heidelberg.

Muslea, I., Minton, S. and Knoblock, C. (1999). A
Hierarchical Approach to Wrapper Induction. In
IFAAMAS 3rd International Conference on
Autonomous Agents. Seattle, WA, USA 1-5 May 1999.
ACM Press: New York.

Scaffidi, C., Bierhoff, K., Chang, E., Felker, M., Ng, H.
and Jin, C. (2007). Red Opal: Product-Feature Scoring
from Reviews. In SIGECOM 8th ACM Conference on
Electronic Commerce. San Diego, CA, USA 11-15
June 2007. ACM Press: New York.

Walther, M., Schuster, D. and Schill, A. (2009a).
Federated Product Search with Information
Enrichment Using Heterogeneous Sources. In Poznan
University of Economics 12th International
Conference on Business Information Systems. Poznan,
Poland 27-29 April 2009. Springer: Heidelberg.

Walther, M., Schuster, D., Juchheim, T. and Schill, A.
(2009b). Category-Based Ranking of Federated
Product Offers. In IADIS 8th International Conference
on WWW and Internet. Rome, Italy 19-22 November
2009. IADIS Press: Lisbon.

Wong, T.-L. and Lam, W. (2009). An Unsupervised
Method for Joint Information Extraction and Feature
Mining Across Different Web Sites. Data and
Knowledge Engineering, 68(1), pp.107-125.

Zhai, Y. and Liu, B. (2005). Web Data Extraction Based
on Partial Tree Alignment. In IW3C2 14th
International Conference on the World Wide Web.
Chiba, Japan 10-14 May 2005. ACM Press: New
York.

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

22

