
MODEL–DRIVEN SYSTEM TESTING OF SERVICE ORIENTED
SYSTEMS

A Standard-aligned Approach based on Independent System and Test Models

Michael Felderer, Joanna Chimiak-Opoka and Ruth Breu
Institute of Computer Science, University of Innsbruck, Technikerstr. 21a, Innsbruck, Austria

Keywords: Model–Driven Testing, Requirements Engineering, Service Oriented Architecture, SoaML.

Abstract: This paper presents a novel standard–aligned approach for model–driven system testing of service oriented
systems based on tightly integrated but separated platform–independent system and test models. Our testing
methodology is capable for test–driven development and guarantees high quality system and test models by
checking consistency resp. coverage. Our test models are executable and can be considered as part of the
system definition. We show that our approach is suited to handle important system testing aspects of service
oriented systems such as the integration of various service technologies or testing of service level agreements.
We also provide full traceability between functional resp. non–functional requirements, the system model,
the test model, and the executable services of the system which is crucial for efficient test evaluation. The
system model and test model are aligned with existing specifications SoaML and the UML Testing Profile via
a mapping of metamodel elements. The concepts are presented on an industrial case study.

1 INTRODUCTION

The number and complexity of service oriented sys-
tems for implementing flexible inter–organizational
IT–based business processes is steadily increasing.
Basically aservice oriented systemconsists of a set of
independent peers offering services that provide and
require operations (Engels et al., 2008). Orchestra-
tion and choreography technologies allow the flexible
composition of services to workflows (OASIS Stan-
dard, 2007; W3C, 2005). Arising application scenar-
ios have demonstrated the power of service oriented
systems. These range from the exchange of health
related data among stakeholders in health care, over
new business models like SAAS (Software as a Ser-
vice) to the cross-linking of traffic participants. Elab-
orated standards, technologies and frameworks for re-
alizing service oriented systems have been developed,
but system testing aspects have been neglected so far.

System testing methodsfor service oriented sys-
tems, i.e. methods for evaluating the system’s compli-
ance with its specified requirements, have to consider
specific issues that limit their testability including the
integration of various component and communication
technologies, the dynamic adaptation and integration
of services, the lack of service control, the lack of
observability of service code and structure, the cost

of testing, and the importance of service level agree-
ments (SLA) (Canfora and Di Penta, 2008).

Model–driven testing approaches, i.e. the deriva-
tion of executable test code from test models by anal-
ogy to MDA, are particularly suitable for system test-
ing of service oriented systems because they can be
adapted easily to changing requirements, they support
the optimization of test suites without a running sys-
tem, they provide an abstract technology and imple-
mentation independent view on tests, and they allow
the modeling and testing of service level agreements.
The latter allows for defining test models in a very
early phase of system development even before or si-
multaneous with system modeling. This raises the ag-
ile practice of test–driven development to the model
level.

In this paper we define a novel approach to model–
driven system testing of service oriented systems that
is based on a separated system and test model. Be-
side the advantages of model–driven testing men-
tioned above, our approach supports test–driven de-
velopment on the model level, the definition and exe-
cution of tests in a tabular form as in the FIT frame-
work (Mugridge and Cunningham, 2005), guarantees
traceability between all types of modeling and sys-
tem artifacts, and is suitable for testing SLA which
we consider as non–functional properties. The test

428
Felderer M., Chimiak-Opoka J. and Breu R. (2010).
MODEL–DRIVEN SYSTEM TESTING OF SERVICE ORIENTED SYSTEMS - A Standard-aligned Approach based on Independent System and Test
Models.
In Proceedings of the 12th International Conference on Enterprise Information Systems - Information Systems Analysis and Specification, pages
428-435
DOI: 10.5220/0002873304280435
Copyright c© SciTePress

models are executable and can be considered as par-
tial system definition. We align our approach with
SoaML (OMG, 2008), a standard for UML–based
system modeling of service oriented systems, and the
UML Testing Profile (UTP) (OMG, 2005), a standard
for UML–based test modeling, by defining a mapping
to these specifications. We also show how our testing
approach supports traceability between requirements,
system and test models, and the system under test.

The paper is structured as follows. In the next sec-
tion we describe the system and testing artifacts, the
corresponding metamodel, and its mapping to SoaML
and UTP. In section 3 we provide an industrial case
study that we have conducted based on our approach.
In section 4 we provide related work and in section 5
we draw conclusions and discuss future work.

2 SYSTEM AND TEST
MODELING METHODOLOGY

In this section we define our generic approach for
test–driven modeling of service oriented systems and
align it with standards for system and test modeling of
service oriented systems. We first give an overview of
all artifacts and then describe the metamodel and its
mapping in more detail.

2.1 System and Testing Artifacts

Figure 1 gives an overview of all used artifacts. Infor-
mal artifacts are depicted by clouds, formal models
by graphs, code by white blocks and running systems
by filled blocks.

The Requirements Model contains the require-
ments for system development and testing. Its struc-
tured part consists of a requirements hierarchy. The
requirements are based on informal requirements de-
picted as cloud.

The System Model describes the system struc-
ture and system behavior in a platform independent
way. Its static structure is based on the notion of ser-
vices which are assigned to requirements and provide
resp. require interfaces. Each service corresponds to
an executable service in the running system to guaran-
tee traceability. Therefore the requirements, the ser-
vices with their operations and the executable services
are traceable.

TheTest Modeldefines the test requirements, the
test behavior, the test data and test runs. The tests
are defined in a hierarchical way representing single
test cases, parametrized test cases or a complete test

Figure 1: Artifacts overview.

suite. Tests contain calls of service operations and
assertions for computing test oracles.

The system and test model are independent and
typically not generated from each other. Therefore
our approach can be classified as optimal in model–
based testing according to (Pretschner and Philipps,
2004). Our approach has the advantage that models
can already be checked for correctness, consistency
and coverage before they are actually implemented.
The overhead of defining two models is compensated
by higher efficiency and flexibility needed for service
oriented systems resulting in a higher system quality.

The Test Implementation is generated by a
model–to–text transformation from the test model as
explained in (Felderer et al., 2009b). The generated
test code is processed by a test execution engine.

Adapters are needed to access service operations
provided and required by the system under test. For
a service implemented as web service, an adapter can
be generated from its WSDL description. Adapters
for each service guarantee traceability.

2.2 Metamodel

In this section we describe the formal models men-
tioned before, namely the Requirements, System and
Test Model in more detail. Figure 2 contains three
corresponding packages,Requirements, System and
Test. Model elements that enable traceability have a
stronger color and traceability links are bold (see sec-
tion 3.4).

MODEL-DRIVEN SYSTEM TESTING OF SERVICE ORIENTED SYSTEMS - A Standard-aligned Approach based on
Independent System and Test Models

429

Requirements

Requirement

FunctionalRequirement NonFunctionalRequirement

Test

TestRequirement

Test TestElement

DataList

Assertion

Call

Data

Verdict

Status

TestRun

ServiceCall

TriggerDataSelection

System

GlobalProcess

ActorService

Class

Interface

Operation

LocalProcess

Constraint

Decision

ParallelTask

*

*

*

*
*

*

0..1

*

1

*

1 1

*

1 *

1

1

*

* *

1

*

*

*

*1

*

*

*

*

1*

pre 10..1

post 10..1
* *

*

*

requires
*

1
provides

1

1

Figure 2: Metamodel forRequirements, System andTest.

The package Requirements de-
fines FunctionalRequirements and
NonFunctionalRequirements such as security
or performance requirements in a hierarchical way.
The requirements themselves can be of an arbitrary
level of granularity ranging from abstract goals to
concrete performance requirements. Requirements
are traceable to tests and therefore test verdicts can
be assigned to them.

The packageSystem definesService elements
which provide and requireInterface elements and
are composed of basic services. Each interface con-
sists ofOperation elements which refer to classes
and may have apre andpost constraint. Each ser-
vice has a reference toActor elements. Therefore
services somehow play the role of use cases. Services
may haveLocalProcess elements that have a cen-
tral control implemented by a workflow management
system defining its internal behavior. Different ser-
vices may be integrated into aGlobalProcess with-
out central control. Orchestrations can be modeled
as local processes, and choreographies as global pro-
cesses. In the context of this paper, we abstract from
service deployment because we are mainly interested
in the relationship to requirements and tests. Our con-
cise system view of a service oriented system has
been inspired by SECTET (Hafner and Breu, 2008)
a framework for security-critical, inter-organizational
workflows based on services.

The packageTest defines all elements needed
for system testing of service oriented systems. A

Test has aStatus such as new, retestable or obso-
lete, someTestRequirement elements that the test
must satisfy or cover, and it consists ofTestElement
artifacts which may beAssertion elements,Call
elements, i.e.ServiceCall or Trigger elements,
ParallelTask elements, Decision elements, or
Test elements itself. A test element also has a
DataList containingData elements that may be gen-
erated by aDataSelection function. A test has some
TestRun elements assigningVerdict values to asser-
tions.

The system model and the test model are created
manually or are partially generated from each other.
If the system model and the test model are created
manually, we ensure that they are consistent with each
other and that the test model fulfills some coverage
criteria with respect to the system model by OCL con-
straints (see (Felderer et al., 2009a) for consistency
and coverage checks with OCL). Alternatively, if the
system model is complete then test scenarios, test data
and oracles can be generated, or otherwise if the test
model is complete, behavioral fragments of the sys-
tem model can be generated.

Each test is linked to a requirement and can
therefore be considered as executable requirement by
analogy to FIT tests (Mugridge and Cunningham,
2005). Tests in our sense can also be used as testing
facets (Canfora and Di Penta, 2008) defining built-
in test cases for a service that allows potential actors
to evaluate the service. Together with appropriate re-
quirements the tests may serve as executable SLAs.

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

430

Our approach emphasizes test–driven develop-
ment because from test models and adapters it is pos-
sible to derive executable tests before the implemen-
tation has been finished. It is even possible to apply
test–driven modeling because the test model can be
defined before the behavioral artifacts of the system
model whose design can then be supported by check-
ing consistency and coverage between the system and
the test model. In (Felderer et al., 2009a) we therefore
have introduced the termtest storyfor our way how
to define tests by analogy to the agile term user story.

2.3 Mapping to SoaML and UTP

A mapping of the system model to SoaML (OMG,
2008) and of the test model to UTP (OMG, 2005) is
useful for several reasons. The mapping defines a se-
mantics for our approach by assigning the metamodel
concepts to other well-defined concepts, it allows us
to reuse tools that have been developed based on these
specifications, and it is one instantiation of our ab-
stract metamodel.

System Model Mapping. SoaML extends UML2
in four main areas: Participants, ServiceInterfaces,
ServiceContracts, and ServiceData.Participantsde-
fine the service providers and consumers in a sys-
tem. ServiceInterfacesenable the explicit modeling
of the provided and required operations. Each oper-
ation has a precondition, a postcondition, input and
output data and describes aServiceCapability. Ser-
viceContractsare used to describe interaction patterns
between participants.ServiceDatarepresent service
messages and attachments. Finally, the metamodel
provides elements to model service messages explic-
itly. In Table 1 a mapping from our metamodel ele-
ments to SoaML is defined.

Table 1: Mapping of model elements from the package
System to SoaML.

System SoaML

Actor Actor

Class MessageType

Constraint
precondition or postcondition

on an operation

GlobalProcess
Behavior attached to a Service

Architecture

Interface Interface

LocalProcess
Behavior attached to a Partici-

pant

Operation operation in ServiceInterface

Service
Participant, Agent, ServiceIn-

terface

System System Architecture

provides Interface Service

requires Interface Request

Test Model Mapping. The UTP (OMG, 2005) con-
tains four concept groups, namelyTest Architecture
defining concepts like Test context and Test compo-
nent,Test Behaviordefining concepts like Test case
and Verdicts,Test Datadefining concepts like Data
pool and Data selection, andTimedefining concepts
like Timer and Time zone. More details on the infor-
mal semantics of the concepts can be found in (OMG,
2005). In (Baker et al., 2007) an operational seman-
tics is defined via a mapping from the UTP to the
test execution languages JUnit and TTCN–3 (Will-
cock et al., 2005). Table 2 defines a mapping from
our test metamodel to the UML Testing Profile.

Table 2: Mapping of model elements from the package
Test to UTP.

Test UTP

Assertion ValidationAction, Arbiter

Data Data

DataList Class

DataSelection DataSelection

Decision decision node

ParallelTask Coordination

Service TestComponent

ServiceCall Stimulus

Status attribute of TestContext

System SUT

Test

TestContext, TestControl,

Scheduler, TestCase, TestCon-

figuration

TestRequirement Scheduler, TestObjective

TestRun TestLog, LogAction

Trigger Observation

Verdicts Verdicts

3 TELEPHONY CONNECTOR
CASE STUDY

In this section we present an industrial case study that
we have designed and tested with our testing method-
ology. The Telephony Connector is a service oriented
telematics system for the automotive industry consist-
ing of a set of independent services. We restrict the
case study description for space and understandability
reasons to one specific scenario where an emergency
call from a car has to be routed to a call center by a
telephony connector. In this context car specific infor-
mation has to be transmitted to the call center answer-
ing the phone call including the GPS data of the cur-
rent car position or the number of fired airbags. After
the data transmission the call center agent has the abil-
ity to speak with the people inside the crashed car. We
first present the requirements, and then the system and
test model. We use UML with stereotyped elements

MODEL-DRIVEN SYSTEM TESTING OF SERVICE ORIENTED SYSTEMS - A Standard-aligned Approach based on
Independent System and Test Models

431

to represent the requirements, the system model and
the test model.

3.1 Requirements

The requirements model provides a hierarchical rep-
resentation of the functional and non–functional re-
quirements to the system. In Figure 3 the require-
ments for routing a call are depicted.

Id = "1"

Text = "A call has to be routed"

<<requirement>>

1

Id = "1.1.1"

Text = "The hangup signal

has to be sent within 500ms"

<<performanceRequirement>>

1.1.1

Id = "1.2.1"

Text = "The route signal has

to be sent within 1000ms"

<<performanceRequirement>>

1.2.1

Id = "1.1"

Text = "A telephone call has

to be hung up after the

connection to the vehicle is

lost"

<<requirement>>

1.1

Id = "1.3"

Text = "A call has to be

received by the telephony

system"

<<requirement>>

1.3

Id = "1.2"

Text = "Incoming calls from a

vehicle have to be served "

<<requirement>>

1.2

Figure 3: Requirements for routing a call.

The functional requirements (1, 1.1, 1.2, 1.3)
have the stereotyperequirement and the non–
functional performance requirements (1.1.1, 1.2.1)
have the stereotypeperformanceRequirement
which is a subtype of the meta model element
NonFunctionalRequirement.

3.2 System

In this section we define a system model for our tele-
phony connector example. The services have concrete
interfaces. These interfaces use Java standard types
(primitive types, type String), maps and the user de-
fined typesErrorTypes andByteArray depicted in
Figure 4.

ALTERNATIVELINEEXISTS

NORMALCALLCLEARING

FIRSTLINEEXISTS

WRONGNUMBER

NOOTHERLINES

INNERERROR

NOREPLY

REFUSED

NOLINE

USED

JAM

<<enumeration>>

ErrorTypes -array : byte [*]

ByteArray

Figure 4: User defined types.

The system consists of four services providing and
requiring interfaces. The services are depicted in Fig-
ure 5 and the interfaces in Figure 6.

TheVehicleService represents the car that has
an integrated telephone to initialize a call or to hang it

TelephonyConnectorService

CallResponse, CallEvent

CallCommand

CallCenterService
CallCenterRequest

BackendService

CallEvent

CallCommand

CallResponse

VehicleService
VehicleRequest

Figure 5: Services with their provided and required inter-
faces.

+createCallResult(requestId : String, callId : String, success : Boolean, errorCode : ErrorTypes)
+hangupCallResult(requestId : String, success : Boolean, errorCode : ErrorTypes)
+routeCallResult(requestId : String, success : Boolean, errorCode : ErrorTypes, callId : String)
+reRouteCallResult(requestId : String, success : Boolean, errorCode : ErrorTypes, callId : String)
+startTransferlResult(requestId : String, success : Boolean, errorCode : ErrorTypes)
+connectCallsResult(requestId : String, success : Boolean, errorCode : ErrorTypes)
+sendDataResult(requestId : String, success : Boolean, errorCode : ErrorTypes)

CallResponse

+incomingCall(callerNumber : String, calledNumber : String, callId : String, encodedMessage : ByteArray)
+transferCall(requestId : String, callId : String)
+terminatedCall(callId : String, terminationCode)
+incomingData(callId : String, binaryMessage : ByteArray)

CallEvent

+createCall(requestId : String, targetNumber : String)
+hangupCall(requestId : String, callId : String)
+routeCall(requestId : String, callId : String, targetNumber : String)
+reRouteCall(requestId : String, callId : String, targetNumber : String)
+startTransfer(requestId : String, callId : String, target : String, eventId : String)
+connectCalls(requestId : String, primaryCallId : String, secondaryCallId : String)
+sendData(requestId : String, callId : String, data : ByteArray)

CallCommand

+callReceived(numberOfReceivedCall : String)
+hangupCall()

CallCenterRequest

+initiateCall(numberToCall : String)
+hangupCall()

VehicleRequest

Figure 6: Interfaces of all services.

up. TheCallCenterService represents a call center
that receives routed calls from the vehicle via a tele-
phony system. TheTelephonyConnectorService
is the service under test. Technically the Telephony-
Connector is a standalone server application bridg-
ing the actual telephone system on the car ven-
dor’s side based on private branch exchange. The
BackendService models the remaining infrastruc-
ture of the car vendor (Backend) like database sys-
tems holding car specific data. Hereby the Telephony
Connector provides several operations to the Back-
end. This includes routing the call from the car to
another destination, like the locally responsible po-
lice station (routeCall) or the termination of a call
from a car (hangupCall), e.g. if the car accidentally
calls the call center and there is no emergency or if
all necessary actions were initiated. The Telephony-
Connector application bridges the TelephonySystem
with the remaining Backend of the car vendor, includ-
ing the actual call center in order to fully control the
handling of the call. The Backend is the only service
without an underlying telephony infrastructure.

Each operation may have a precondition
and a postcondition denoted in OCL. The op-
eration initiateCall for instance has the
precondition callerNumber.size>=0 and
calledNumber.size>=0 and callId.size>=0
and callerNumber <> calledNumber.

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

432

In this example the operations are asynchronous
calls without return values. Therefore there are no
postconditions defining a relationship between input
and output parameters. In general from failing pre-
conditions one can guess an irregularity in the en-
vironment and from failing postconditions one can
guess irregularities in the operation under test (Meyer
et al., 2009). We do not need the full capabilities of
pre- and postconditions in our example but we just
automate the application of oracles by evaluating as-
sertions.

A local process for theVehicleService is repre-
sented as state machine in Figure 7.

Ready Calling

hangupCall()

initiateCall(numberToCall : String)

Figure 7: Vehicle states.

A global process for routing a call can be repre-
sented by a UML activity diagram. We do not con-
sider a global workflow here but in other scenarios
global workflows can be the basis for the generation
of tests or for checking the consistency of tests.

3.3 Test

In this section we define a test model for our tele-
phony connector example referring to the require-
ments and system model defined before. The tests are
represented as UML activity diagrams and the cor-
responding data in tables. Figure 8(a) depicts one
parametrized testRouteCall that is referred in the
testTestSuite depicted in Figure 8(b) and fed with
data which is represented in Table 3.

In the test RouteCall, a call is initiated
(initiateCall), and a trigger in the backend ser-
vice receives the call (incomingCall). Then the tele-
phone call is routed via the service callrouteCall
and the triggerrouteCallResult, and finally the
telephone call is terminated via the service call
hangupCall and the triggerhangupCallResult. As-
sertions check whether the routing and hangup re-
turn the expected values and react within time.
The test TestSuite calls the parameterized tests
RouteCall and ConnectCall with the data tables
RouteCallTestData and ConnectCallTestData.
The assertions check the percentage of pass which
has to be 100% forRouteCall, more than 90% for
ConnectCall, and an average time for passed test
cases below 100 milliseconds. Basically the tests de-
fine activity flows of the system. The attached stereo-
types define its operational semantics:Servicecall

elements are invoked by the test execution engine,
Trigger elements are invoked on the test execution
engine andAssertion elements define checks for
computing verdicts.

Table 3 defines two test cases. It also uses a data
selection functiongenInt to generate an integer be-
tween 1 and 100 which serves as request identifier.

Table 3: Testdata for Test RouteCall.
Parameter Test1 Test2

initiateCall.numberToCall SIP:1234 SIP:1234
routeCall.requestId genInt(1,100) genInt(1,100)
routeCall.callId incomingCall.callId incomingCall.callId
routeCall.targetNumber SIP:transfer SIP:invalid
Assertion1.success true false
hangupCall.requestId routeCallResult.requestId
hangupCall.callId routeCallResult.callId
Assertion2.success true

3.4 Traceability

Traceability between requirements and other artifacts
generated during the system development and testing
process is essential for systems evolution and testing
because in both cases all affected artifacts have to be
checked or even changed. Our approach comprises
traceability between the requirements model, the sys-
tem model, the test model and the running system.
Each test element is assigned to a requirement, and
implicitly to its super–artifacts. Tests can therefore be
considered as executable requirements because they
assign an executable model to requirements. If the
execution of a test story fails, then the requirements
itself and all its super–artifacts fail. In Table 4 we
define the mapping of the test elements to the require-
ments, i.e. the traces between the packages Test and
Requirements in Figure 2.

Table 4: Traceability between test elements and require-
ments.

TestElement Type related Requirements

RouteCall Test 1

initiateCall ServiceCall 1.3

incomingCall Trigger 1.3

routeCall ServiceCall 1.2

routeCallResult Trigger 1.2, 1.2.1

Assertion1 Assertion 1.2, 1.2.1

hangupCall ServiceCall 1.1

hangupCallResult Trigger 1.1, 1.1.1

Assertion2 Assertion 1.1, 1.1.1

Due to this mapping, if the execution of a service
call via its adapter fails, the failure can be propagated
via the test element to specific requirements.

Technically we have implemented traceability be-
tween the requirements and the system resp. test
model via tagged values storing the referenced test el-
ements resp. requirements.

MODEL-DRIVEN SYSTEM TESTING OF SERVICE ORIENTED SYSTEMS - A Standard-aligned Approach based on
Independent System and Test Models

433

<<Servicecall>>

initiateCall

(VehicleRequest::)

numberToCall

<<Servicecall>>

routeCall

(CallCommand::)

callId

requestId

targetNumber

<<Servicecall>>

hangupCall

(CallCommand::)

callId

requestId

<<Assertion>>

Assertion2

{fail = "not pass",

pass = "hangupCallResult.success=Assertion2.success and

hangupCall.requestId = hangupCallResult.requestId " }

<<Assertion>>

Assertion1

{fail = "not pass",

pass = "routeCallResult.success = Assertion1.success and

routeCall.requestId = routeCallResult.requestId and

routeCallResult.timeout<1000ms" }

<<Trigger>>

routeCallResult

(CallResponse::)callId

errorCode

requestId

success

<<Trigger>>

hangupCallResult

(CallResponse::)

errorCode

requestId

success

<<Trigger>>

incomingCall

(CallEvent::)

calledNumber

callerNumber

callId

encodedMessage

BackendServiceTelephonyConnectorServiceVehicleService

routeCallResult.success

not routeCallResult.success

(a) Test RouteCall

<<Test>>

 : RouteCall
RouteCallTestData

<<Assertion>>

AssertRerouteCall

{pass = "RerouteCall.avgTimePass<=100ms" }

<<Assertion>>

AssertRouteCall

{pass = "RouteCall.pass%=100%" }

<<Test>>

 : RerouteCall
RerouteCallTestData

<<Assertion>>

AssertConnectCall

{pass = "ConnectCall.pass%>90%" }

<<Test>>

 : ConnectCall
ConnectCallTestData

(b) Test TestSuite

Figure 8: Tests RouteCall and TestSuite.

3.5 Test Execution and Evaluation

We have implemented a tool for our methodology1

that has been used for test modeling, test code gen-
eration, test execution and test evaluation. Based on
the result of the test execution the test data is colored
green (if the test passed) or red (if the test failed). Ad-
ditionally due to the traceability we can trace from test
elements to requirements to localize failures. We can
also narrow the source of the failure. Compared to
the testing process applied before, our framework al-
lowed to detect faults earlier and more frequent, and
to fully automate the testing process.

4 RELATED WORK

System testing based on SoaML (OMG, 2008) spec-
ifications has not been considered so far. We address
this problem indirectly by defining a generic system
model that can be mapped to SoaML and relating the
system model to a test model. This guarantees that our
approach can be integrated with other modeling ap-
proaches for service oriented systems such as Quasar
Enterprise (Engels et al., 2008) or the OASIS SOA
Reference Model (OASIS Standard, 2006) which are
compatible to SoaML.

(Abbors et al., 2009) defines a requirements model
and a system model similar to our approach based on
domains models, used and required interfaces, and

1The Telling TestStories tool is available
at http://teststories.info/

state machines. But in that approach only the map-
ping to Qtronic (Conformiq, 2009), a tool for auto-
mated test design, and not traceability or the rela-
tionship between the system and an independent test
model are considered.

A model–driven approach to testing SOA with
the UML Testing Profile (OMG, 2005) is defined
in (Baker et al., 2007). It focuses on web services
technology and uses the whole set of UTP concepts.
Our approach can be mapped to that approach but ad-
ditionally it is designed for arbitrary service technolo-
gies, provides a service–centric view on tests, sup-
ports the tabular definition of tests and guarantees
traceability between all involved artifacts.

In (Zander et al., 2005) model–driven testing is
defined and implemented by mapping test models in
UTP to test code in TTCN–3. The focus of the paper
is on the transformation of test models to executable
code whereas we focus on the relationship between
requirements, test models and system models.

In (Margaria and Steffen, 2004) a system testing
method whose test model is based on test graphs sim-
ilar to our test stories is presented. Therein consis-
tency and correctness is validated via model checking
but the relationship to system models and traceability
such as in our approach are not considered.

In (Atkinson et al., 2008) test sheets, an extension
of FIT, are used for specifying high quality services.
The approach is compatible to our approach but it is
based on a pure tabular representation and it does not
consider abstract requirements, system and test mod-
els as we do.

In (Canfora and Di Penta, 2008) unit testing, inte-

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

434

gration testing, regression testing and non–functional
testing of service oriented systems are discussed but
in contrast to our approach system testing is not con-
sidered explicitly.

5 CONCLUSIONS AND FUTURE
WORK

We have presented a novel approach to model–driven
system testing for service oriented systems based on
a separated system and test model. The approach
has been aligned with SoaML and the UML Testing
Profile. Our methodology integrates system and test
modeling for service oriented systems in a concise
way and addresses main system testing issues of ser-
vice oriented systems such as the integration of vari-
ous service technologies, the evolution of services, or
the validation of service level agreements. Addition-
ally, our approach is fully traceable by defining links
between the requirements model, the system model,
the test model and the executable system. We suc-
cessfully applied our approach on an industrial case
study from the telecommunication domain.

As next step we will consider the evolution of
models which is very important in a service–oriented
context and which emphasizes model–based regres-
sion testing. Additionally we also consider oracle
computation based on OCL verification (Cabot et al.,
2009) or semantic web technologies to fully elabo-
rate test generation. A mapping from our model–
driven approach to the table–driven test sheets ap-
proach (Atkinson et al., 2008) provides an additional
tabular and textual representation of tests and the ca-
pability of usability testing.

ACKNOWLEDGEMENTS

This work was partially supported by the Telling Test-
Stories project funded by the trans-it and the MATE
project funded by the FWF.

REFERENCES

Abbors, F., Pääjärvi, T., Teittinen, R., Truscan, D., and Lil-
ius, J. (2009). Transformational support for model-
based testing – from UML to QML. In2nd Workshop
on Model-based Testing in Practice.

Atkinson, C., Brenner, D., Falcone, G., and Juhasz, M.
(2008). Specifying High-Assurance Services.Com-
puter, 41:64–71.

Baker, P., Ru Dai, P., Grabowski, J., Haugen, O., Schiefer-
decker, I., and Williams, C. E. (2007).Model-Driven
Testing - Using the UML Testing Profile. Springer.

Cabot, J., Clarisó, R., and Riera, D. (2009). Verifying
UML/OCL Operation Contracts. InIFM 2009, pages
40–55, Berlin, Heidelberg. Springer-Verlag.

Canfora, G. and Di Penta, M. (2008). Service-oriented ar-
chitectures testing: A survey. In Lucia, A. D. and
Ferrucci, F., editors,ISSSE, volume 5413 ofLecture
Notes in Computer Science, pages 78–105. Springer.

Conformiq (2009). Qtronic. http://www.conformiq.com/.

Engels, G., Hess, A., Humm, B., Juwig, O., Lohmann, M.,
Richter, J.-P., Voß, M., and Willkomm, J. (2008). A
Method for Engineering a True Service-Oriented Ar-
chitecture. InICEIS 2008.

Felderer, M., Breu, R., Chimiak-Opoka, J., Breu, M.,
and Schupp, F. (2009a). Concepts for Model–Based
Requirements Testing of Service Oriented Systems.
IASTED SE’2009.

Felderer, M., Fiedler, F., Zech, P., and Breu, R. (2009b).
Flexible Test Code Generation for Service Oriented
Systems. QSIC’2009.

Hafner, M. and Breu, R. (2008).Security Engineering
for Service–Oriented Architectures. Springer-Verlag,
Berlin Heidelberg.

Margaria, T. and Steffen, B. (2004). Lightweight coarse-
grained coordination: a scalable system-level ap-
proach.STTT, 5(2-3).

Meyer, B., Fiva, A., Ciupa, I., Leitner, A., Wei, Y., and
Stapf, E. (2009). Programs that test themselves.Com-
puter, 42:46–55.

Mugridge, R. and Cunningham, W. (2005).Fit for Develop-
ing Software: Framework for Integrated Tests. Pren-
tice Hall.

OASIS Standard (2006). OASIS SOA Reference
Model TC. http://www.oasis-open.org/committees/
tc home.php?wgabbrev=soa-rm.

OASIS Standard (2007). Web Services Business Process
Execution Language Version 2.0 - OASIS Standard.
http://docs.oasis-open.org/wsbpel/2.0/.

OMG (2005). UML Testing Profile, Version 1.0.
http://www.omg.org/docs/formal/05-07-07.pdf.

OMG (2008).Service Oriented Architecture Modeling Lan-
guage (SoaML) - Specificiation for the UML Pro-
file and Metamodel for Services (UPMS). Object
Modeling Group. http://www.omg.org/docs/ad/08-08-
04.pdf.

Pretschner, A. and Philipps, J. (2004). Methodological is-
sues in model-based testing. InModel-Based Testing
of Reactive Systems, pages 281–291.

W3C (2005). Web Services Choreography Description Lan-
guage Version 1.0. http://www.w3.org/TR/ws-cdl-10/.

Willcock, C., Deiss, T., Tobies, S., Keil, S., Engler, F., and
Schulz, S. (2005).An Introduction to TTCN–3. John
Wiley and Sons.

Zander, J., Dai, Z. R., Schieferdecker, I., and Din, G.
(2005). From U2TP Models to Executable Tests with
TTCN-3 - An Approach to Model Driven Testing. In
TestCom.

MODEL-DRIVEN SYSTEM TESTING OF SERVICE ORIENTED SYSTEMS - A Standard-aligned Approach based on
Independent System and Test Models

435

