MODEL-DRIVEN SYSTEM TESTING OF SERVICE ORIENTED
SYSTEMS
A Standard-aligned Approach based on I ndependent System and Test Models

Michael Felderer, Joanna Chimiak-Opoka and Ruth Breu
Institute of Computer Science, University of Innsbruck, Technikerstr. 21a, Innsbruck, Austria

Keywords: Model-Driven Testing, Requirements Engineering, Service Oriented Architecture, SoaML.

Abstract: This paper presents a novel standard—aligned approach for model-driven system testing of service oriented
systems based on tightly integrated but separated platform—independent system and test models. Our testing
methodology is capable for test—driven development and guarantees high quality system and test models by
checking consistency resp. coverage. Our test models are executable and can be considered as part of the
system definition. We show that our approach is suited to handle important system testing aspects of service
oriented systems such as the integration of various service technologies or testing of service level agreements.
We also provide full traceability between functional resp. non—functional requirements, the system model,
the test model, and the executable services of the system which is crucial for efficient test evaluation. The
system model and test model are aligned with existing specifications SoaML and the UML Testing Profile via
a mapping of metamodel elements. The concepts are presented on an industrial case study.

1 INTRODUCTION of testing, and the importance of service level agree-
ments (SLA) (Canfora and Di Penta, 2008).
The number and complexity of service oriented sys- Model—driven testing approaches, i.e. the deriva-
tems for implementing flexible inter—organizational tion of executable test code from test models by anal-
IT-based business processes is steadily increasingogy to MDA, are particularly suitable for system test-
Basically aservice oriented systeoonsists of asetof ing of service oriented systems because they can be
independent peers offering services that provide andadapted easily to changing requirements, they support
require operations (Engels et al., 2008). Orchestra-the optimization of test suites without a running sys-
tion and choreography technologies allow the flexible tem, they provide an abstract technology and imple-
composition of services to workflows (OASIS Stan- mentation independent view on tests, and they allow
dard, 2007; W3C, 2005). Arising application scenar- the modeling and testing of service level agreements.
ios have demonstrated the power of service orientedThe latter allows for defining test models in a very
systems. These range from the exchange of healthearly phase of system development even before or si-
related data among stakeholders in health care, overmultaneous with system modeling. This raises the ag-
new business models like SAAS (Software as a Ser- ile practice of test—driven development to the model
vice) to the cross-linking of traffic participants. Elab- level.
orated standards, technologies and frameworks forre- In this paper we define a novel approach to model-
alizing service oriented systems have been developeddriven system testing of service oriented systems that
but system testing aspects have been neglected so fafis based on a separated system and test model. Be-
System testing methofisr service oriented sys- side the advantages of model-driven testing men-
tems, i.e. methods for evaluating the system’s compli- tioned above, our approach supports test—-driven de-
ance with its specified requirements, have to considervelopment on the model level, the definition and exe-
specific issues that limit their testability including the cution of tests in a tabular form as in the FIT frame-
integration of various component and communication work (Mugridge and Cunningham, 2005), guarantees
technologies, the dynamic adaptation and integration traceability between all types of modeling and sys-
of services, the lack of service control, the lack of tem artifacts, and is suitable for testing SLA which
observability of service code and structure, the cost we consider as non—functional properties. The test

Felderer M., Chimiak-Opoka J. and Breu R. (2010).

428 MODEL-DRIVEN SYSTEM TESTING OF SERVICE ORIENTED SYSTEMS - A Standard-aligned Approach based on Independent System and Test
Models.
In Proceedings of the 12th International Conference on Enterprise Information Systems - Information Systems Analysis and Specification, pages
428-435
DOI: 10.5220/0002873304280435
Copyright © SciTePress

MODEL-DRIVEN SYSTEM TESTING OF SERVICE ORIENTED SYSTEMS - A Standard-aligned Approach based on
Independent System and Test Models

models are executable and can be considered as par-
tial system definition. We align our approach with formal Recurements
SoaML (OMG, 2008), a standard for UML-based l g’} Formal Model

Q Informal Artifact

system modeling of service oriented systems, and the

UML Testing Profile (UTP) (OMG, 2005), a standard L] coe
for UML—based test modeling, by defining a mapping éib Rumning System
to these specifications. We also show how our testing
approach supports traceability between requirements, Regquirements Model
system and test models, and the system under test. / \

The paper is structured as follows. In the next sec-
tion we describe the system and testing artifacts, the - -
corresponding metamodel, and its mapping to SoaML &b Generation, Consistency,Coverage éi\,b
and UTP. In section 3 we provide an industrial case System Model Test Model
study that we have conducted based on our approach. E
In section 4 we provide related work and in section 5 !
we draw conclusions and discuss future work. i

¢
System [awF 7

2 SYSTEM AND TEST Test Controller

MODELING METHODOLOGY

Figure 1: Artifacts overview.

In this section we define our generic approach for
test—driven modeling of service oriented systems and
align it with standards for system and test modeling of
service oriented systems. We first give an overview of =~ The system and test model are independent and
all artifacts and then describe the metamodel and its typically not generated from each other. Therefore

suite. Tests contain calls of service operations and
assertions for computing test oracles.

mapping in more detail. our approach can be classified as optimal in model-
based testing according to (Pretschner and Philipps,
2.1 System and Testing Artifacts 2004). Our approach has the advantage that models

can already be checked for correctness, consistency

Figure 1 gives an overview of all used artifacts. Infor- 2nd coverage before they are actually implemented.
mal artifacts are depicted by clouds, formal models 1€ overhead of defining two models is compensated

by graphs, code by white blocks and running systems by higher efficiency and flexibility needed for service
by filled blocks. oriented systems resulting in a higher system quality.

))) The Test Implementation is generated by a
The Requirements Model contains the require- model-to-text transformation from the test model as
ments for system development and testing. Its struc- explained in (Felderer et al., 2009b). The generated

tured part consists of a requirements hierarchy. Thetest code is processed by a test execution engine.
requirements are based on informal requirements de-))
picted as cloud. Adapters are needed to access service operations

_ provided and required by the system under test. For
The System Modeldescribes the system struc- 3 service implemented as web service, an adapter can

ture and system behavior in a platform independent he generated from its WSDL description. Adapters
way. Its static structure is based on the notion of ser- for each service guarantee traceability.

vices which are assigned to requirements and provide
resp. require interfaces. Each service correspondstoy o Metamodel
an executable service in the running system to guaran-
tee traceability. Therefore the requirements, the ser-
vices with their operations and the executable services
are traceable.

In this section we describe the formal models men-

tioned before, namely the Requirements, System and

Test Model in more detail. Figure 2 contains three
The Test Model defines the test requirements, the corresponding packagd®qui r enent s, Syst emand

test behavior, the test data and test runs. The testsTest. Model elements that enable traceability have a

are defined in a hierarchical way representing single stronger color and traceability links are bold (see sec-

test cases, parametrized test cases or a complete tesion 3.4).

429

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

Requirements

‘ Requirement

[
[
|
System Test
h Status ‘ ‘Teslﬂequirement ‘
- :
calProcess Vi ctor TestEl
Lo IPK n - je oe1 - Act Test)._‘ ‘estl emm ’q_{ ParallelTask ‘
provides . requires - ! !
Ir:lerface
1
Constraint zl ;or:t : Operal'ioln | - Class | _ 1 Data H DataSelection).—(DataList ‘ Trigger ‘
[o-1 !
Figure 2: Metamodel foRequi r enent s, Syst emandTest .
The package Requi renent s de- Test has aSt at us such as new, retestable or obso-
fines Funct i onal Requi rement s and lete, someTest Requi rement elements that the test

NonFuncti onal Requi rements such as security must satisfy or cover, and it consistsTeist El enent

or performance requirements in a hierarchical way. artifacts which may be\ssertion elements,Cal |
The requirements themselves can be of an arbitraryelements, i.eServi ceCall or Trigger elements,
level of granularity ranging from abstract goals to Paral | el Task elements, Deci si on elements, or
concrete performance requirements. RequirementsTest elements itself. A test element also has a
are traceable to tests and therefore test verdicts carDat aLi st containingbat a elements that may be gen-
be assigned to them. erated by @at aSel ect i on function. Atest has some

The packageSyst em definesSer vi ce elements Test Run elements assigninggr di ct values to asser-

which provide and requirent er f ace elements and ~ tONS.

are composed of basic services. Each interface con- The system model and the test model are created
sists ofQper ati on elements which refer to classes manually or are partially generated from each other.
and may have are andpost constraint. Each ser- If the system model and the test model are created
vice has a reference thct or elements. Therefore manually, we ensure that they are consistent with each
services somehow play the role of use cases. Service®ther and that the test model fulfills some coverage
may havelocal Process elements that have a cen- criteria with respect to the system model by OCL con-
tral control implemented by a workflow management straints (see (Felderer et al., 2009a) for consistency
system defining its internal behavior. Different ser- and coverage checks with OCL). Alternatively, if the
vices may be integrated intoGhobal Process with- system model is complete then test scenarios, test data
out central control. Orchestrations can be modeled and oracles can be generated, or otherwise if the test
as local processes, and choreographies as global promodel is complete, behavioral fragments of the sys-
cesses. In the context of this paper, we abstract fromtem model can be generated.

service deployment because we are mainly interested £aoch test is linked to a requirement and can

in the relationship to requirements and tests. Our CON-herefore be considered as executable requirement by
cise s_yste_m view of a service oriented system hasanalogy to FIT tests (Mugridge and Cunningham,
been inspired by SECTET (Hafner and Breu, 2008) »005). “Tests in our sense can also be used as testing
a framework for security-critical, inter-organizational ¢5cetg (Canfora and Di Penta, 2008) defining built-
workflows based on services. in test cases for a service that allows potential actors
The packageTlest defines all elements needed to evaluate the service. Together with appropriate re-
for system testing of service oriented systems. A quirements the tests may serve as executable SLAs.

430

MODEL-DRIVEN SYSTEM TESTING OF SERVICE ORIENTED SYSTEMS - A Standard-aligned Approach based on
Independent System and Test Models

Our approach emphasizes test—driven develop-Test Model Mapping. The UTP (OMG, 2005) con-
ment because from test models and adapters it is postains four concept groups, namelgst Architecture
sible to derive executable tests before the implemen-defining concepts like Test context and Test compo-
tation has been finished. It is even possible to apply nent, Test Behaviodefining concepts like Test case
test—driven modeling because the test model can beand Verdicts,Test Datadefining concepts like Data
defined before the behavioral artifacts of the system pool and Data selection, arfdme defining concepts
model whose design can then be supported by check-ike Timer and Time zone. More details on the infor-
ing consistency and coverage between the system andnal semantics of the concepts can be found in (OMG,
the test model. In (Felderer et al., 2009a) we therefore 2005). In (Baker et al., 2007) an operational seman-
have introduced the tertest storyfor our way how tics is defined via a mapping from the UTP to the
to define tests by analogy to the agile term user story. test execution languages JUnit and TTCN-3 (Will-

cock et al., 2005). Table 2 defines a mapping from

2.3 Mapping to SoaML and UTP our test metamodel to the UML Testing Profile.

A mapping of the system model to SoaML (OMG, Table 2: Mapping of model elements from the package
2008) and of the test model to UTP (OMG, 2005) is Test to UTP.

useful for several reasons. The mapping defines a se- | Test | utp |
mantics for our approach by assigning the metamodel | Assertion ValidationAction, Arbiter
concepts to other well-defined concepts, it allows us | Data Data
to reuse tools that have been developed based on these| DataList Class
specifications, and it is one instantiation of our ab- | DataSelection DataSelection
stract metamodel. Decision decision node
ParallelTask Coordination
System Model Mapping. SoaML extends UML2 Service TestComponent
in four main areas: Participants, Servicelnterfaces, [senicecal Stimulus
ServiceContracts, and ServiceDaRarticipantsde- Status attribute of TestContext
fine the service providers and consumers in a sys- | system SUT
tem. Servicelnterfacegnable the explicit modeling TestContext, TestControl
of the provided and required operations. Each oper- | Test Scheduler, TestCase, TestCop-
ation has a precondition, a postcondition, input and : figuration _
output data and describesServiceCapability Ser- Fogizequirement Scheduler, TestObjective
. . : . TestRun TestLog, LogAction
viceContractsare used to describe interaction patterns TTger Observation
between participantsServiceDatarepresent service Verdions Verdicts
messages and attachments. Finally, the metamodel
provides elements to model service messages explic-
itly. In Table 1 a mapping from our metamodel ele-
ménts to SoaML s defined. 3 TELEPHONY CONNECTOR
CASE STUDY

Table 1: Mapping of model elements from the package

Systemto SoaML. In this section we present an industrial case study that

| System | soamL | we have designed and tested with our testing method-
Actor Actor ology. The Telephony Connector is a service oriented
Class MessageType telematics system for the automotive industry consist-
Senstraint precondition or postcondition ing of a set of independent services. We restrict the
on an operation . case study description for space and understandability
GlobalProcess irechh"’i‘;’;‘;u"’:g“hed toa Servicp reasons to one specific scenario where an emergency
call from a car has to be routed to a call center by a
Interface Interface . P
Behavior attached o a Paric telephony connector. In this context car specific infor-
LocalProcess pant mation has to be transmitted to the call center answer-
Operation operation in Servicelnterface ing the phone call including the GPS data of the cur-
} Participant, Agent, Serviceln] rent car position or the number of fired airbags. After
Service . .
terface the data transmission the call center agent has the abil-
System System Architecture ity to speak with the people inside the crashed car. We
provides Interface Service first present the requirements, and then the system and
requires Interface Request test model. We use UML with stereotyped elements

431

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

to represent the requirements, the system model anc [s venideRequest - Calenterequest CaCaniersanice
the test model. g I
CallEvent
.) CallCommand szespunse"“ ;
TelephonyConnectorService el . [] BackendsService
3.1 Requirements = il o1

CallResponse, CallEvent CallCommand

The requirements model provides a hierarchical rep- _ _ _ _ o
resentation of the functional and non—functional re- Figure 5: Services with their provided and required inter-
quirements to the system. In Figure 3 the require- aces.

ments for routing a call are depicted.

CallEvent o
<<requirement>> o +incomingCall(callerNumber : String, calledNumber : String, callld : String, encodedMessage : ByteArray
+transferCall(requestld : String, callld : String)
i all(callld : String, i 1Code)
Id="1" +incomingData(callld : String, binaryMessage : ByteArray)
Text = "A call has to be routed"
~
- ~
- | ~ CallCommand @)
- ~
. +createCall(requestld : String, targetNumber : String)
R e [e e = +hangupCall(requestld : String, callld : String)
. +routeCall(requestld : String, callld : String, targetNumber : String)
Id="1.1" Id="1.2" Id="1.3" +reRouteCall(requestld : String, callld : String, targetNumber : String)
Text = "A telephone call has Text = "Incoming calls from a Text = "A call has to be +startTransfer(requestld : String, callld : String, target : String, eventld : String)
to be hung up after the vehicle have to be serveld received by the telephony +connectCalls(requestld : String, primaryCallld : String, secondaryCallld : String)
connection to the vehicle is system” +sendData(requestld : String, callld : String, data : ByteArray)
lost"
A~ ™
| | CallResponse [}
i +createCallResult(requestld : String, callld : String, success : Boolean, errorCode : ErrorTypes)
111 1.24 +hangupCallResult(requestld : String, success : Boolean, errorCode : ErrorTypes)
e = v = +routeCallResult(requestld : String, success : Boolean, errorCode : ErrorTypes, callld : String)
Id= 1>"1'1 ld= 1-"2-1 +reRouteCallResult(requestld : String, success : Boolean, errorCode : ErrorTypes, callld : String)
Text = "The hangup signal Text = "The route signal has +startTransferlResult(requestld : String, success : Boolean, errorCode : ErrorTypes)
has to be sent within 500ms" to be sent within 1000ms" +connectCallsResult(requestld : String, success : Boolean, errorCode : ErrorTypes)
+sendDataResult(requestld : String, success : Boolean, errorCode : ErrorTypes)
Figure 3: Requirements for routing a call. CallCenterRequest @) VehicleRequest @)
+callReceived(numberOfReceivedCall : String) +initiateCall(numberToCall : String)
+hangupCall() +hangupCall()

The functional requirementd (1.1, 1.2, 1.3)
have the stereotypeequirement and the non—
functional performance requirements {. 1, 1. 2. 1)

Figure 6: Interfaces of all services.

have the stereotypeperfor manceRequi renent up. TheC:_iI | Cent er Servi ce represents a cal! center
which is a subtype of the meta model element that receives routed calls from the vehicle wgatele-
NonFunct i onal Requi r ement . phony system. Théel ephonyConnect or Servi ce

is the service under test. Technically the Telephony-
3.2 System Connector is a standalone server application bridg-

ing the actual telephone system on the car ven-
dor’s side based on private branch exchange. The
BackendServi ce models the remaining infrastruc-

Sure of the car vendor (Backend) like database sys-

intz_erfq_ces. These interfa_\ces Hse Jogbstanfgard type?ems holding car specific data. Hereby the Telephony
(primitive types, typeXQiigll, maggfnd e user de- Connector provides several operations to the Back-

fined typesEr ronTypes td ByLSGr aysfiepicted in end. This includes routing the call from the car to

In this section we define a system model for our tele-

Figure 4. another destination, like the locally responsible po-
e — ByteArray lice station (out eCal |) or the termination of a call

WRON;’:“'ALVE*:S -array : byte ['] from a car fiangupCal), e.g. if 'Fhe car accidentally _
= = calls the call center and there is no emergency or if
4D all necessary actions were initiated. The Telephony-
o Connector application bridges the TelephonySystem
oD e with the remaining Backend of the car vendor, includ-
NORMALCALLGLEARING ing the actual call center in order to fully control the

handling of the call. The Backend is the only service
without an underlying telephony infrastructure.
Each operation may have a precondition
The system consists of four services providingand and a postcondition denoted in OCL. The op-
requiring interfaces. The services are depicted in Fig- eration initiateCall for instance has the
ure 5 and the interfaces in Figure 6. precondition cal I er Nunber. size>=0 and
The Vehi cl eServi ce represents the car that has cal | edNunber. si ze>=0 and cal | I d. si ze>=0
an integrated telephone to initialize a call or to hangit and cal | er Nunber <> cal | edNunber .

Figure 4: User defined types.

432

MODEL-DRIVEN SYSTEM TESTING OF SERVICE ORIENTED SYSTEMS - A Standard-aligned Approach based on
Independent System and Test Models

In this example the operations are asynchronouselements are invoked by the test execution engine,
calls without return values. Therefore there are no Tri gger elements are invoked on the test execution
postconditions defining a relationship between input engine andAssertion elements define checks for
and output parameters. In general from failing pre- computing verdicts.
conditions one can guess an irregularity in the en- Table 3 defines two test cases. It also uses a data
vironment and from failing postconditions one can selection functiorgenl nt to generate an integer be-
guess irregularities in the operation under test (Meyer tween 1 and 100 which serves as request identifier.
et al., 2009). We do not need the full capabilities of

pre- and postconditions in our example but we just Table 3: Testdata for Test RouteCall.
automate the application of oracles by evaluating as- [Parameter [[Testt [Testz |
Sertions_ initiateCall.numberToCall SIP:1234 SIP:1234
. . . routeCall.requestld genint(1,100) genlint(1,100)
Alocal process for th&ehi cl eServi ce is repre- routeCall.callld incomingCall.callld incomingCall.callld
sented as state machine in Flgure 7 routeCall.targetNumber SIP:transfer SIP:invalid
' Assertionl.success true false
initiateCall(numberToCall : String) hangupCall.requestld routeCallResult.requestid|
hangupCall.callld routeCallResult.callld
{ Assertion2.success true
Ready Calling
i] 3.4 Traceability
hangupCall()
Figure 7: Vehicle states. Traceability between requirements and other artifacts

generated during the system development and testing

A global process for routing a call can be repre- Process is essential for systems evolution and testing
sented by a UML activity diagram. We do not con- because in both cases all affected artifacts have to be
sider a global workflow here but in other scenarios checked or even changed. Our approach comprises
global workflows can be the basis for the generation raceability between the requirements model, the sys-

of tests or for checking the consistency of tests. tem model, the test model and the running system.
Each test element is assigned to a requirement, and
3.3 Test implicitly to its super—artifacts. Tests can therefore be

considered as executable requirements because they
assign an executable model to requirements. If the
execution of a test story fails, then the requirements
é’tself and all its super-artifacts fail. In Table 4 we
define the mapping of the test elements to the require-
ments, i.e. the traces between the packages Test and
Requirements in Figure 2.

In this section we define a test model for our tele-
phony connector example referring to the require-
ments and system model defined before. The tests ar
represented as UML activity diagrams and the cor-
responding data in tables. Figure 8(a) depicts one
parametrized tes®out eCal | that is referred in the

testTest Sui t e depicted in Figure 8(b) and fed with

data which is represented in Table 3. Table 4: Traceability between test elements and require-
In the test RouteCall, a call is initiated ™MeNtS:

(initiateCall), and a trigger in the backend ser- [TestElement | Type | related Requirements |

vice receives the call 6coni ngCal |). Then the tele- RouteCall Test 1

phone call is routed via the service cadut eCal | initiateCall ServiceCall | 1.3

and the triggerout eCal | Resul t, and finally the incomingCall Trigger 1.3

telephone call is terminated via the service call routeCall ServiceCall | 1.2

hangupCal | and the triggehangupCal | Resul t . As- routeCallResult | Trigger 12,121

sertions check whether the routing and hangup re- ﬁ:i::g’g:” Q:Vei:'eoga" ii 121

turn the expected values and react within time. hangupCaliResul] Trigger 1:1’ 111

The testTest Suite calls the parameterized tests Assertion? Assertion | LI 111

RouteCal | and Connect Cal | with the data tables

Rout eCal | Test Data and Connect Cal | Test Dat a. Due to this mapping, if the execution of a service

The assertions check the percentage of pass whichcall via its adapter fails, the failure can be propagated
has to be 100% foRout eCal |, more than 90% for Via the test element to specific requirements.

Connect Cal | , and an average time for passed test Technically we have implemented traceability be-
cases below 100 milliseconds. Basically the tests de-tween the requirements and the system resp. test
fine activity flows of the system. The attached stereo- model via tagged values storing the referenced test el-
types define its operational semanti€sr vi cecal | ements resp. requirements.

433

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

TelephonyConnectorService

ConneciCallTesiData.

©°
requestld hangupCall — foute CallResut success
(CallCommand:)

RerouteCallTestData

<<Trigger>>
sssssss hangupCallResult
requestid | (CallResponse:)

1

(a) Test RouteCall (b) Test TestSuite

Figure 8: Tests RouteCall and TestSuite.

3.5 Test Execution and Evaluation state machines. But in that approach only the map-

ping to Qtronic (Conformiqg, 2009), a tool for auto-
We have implemented a tool for our methodolbgy mated test design, and not traceability or the rela-
that has been used for test modeling, test code gen-ionship between the system and an independent test
eration, test execution and test evaluation. Based onmodel are considered.
the result of the test execution the test data is colored A model-driven approach to testing SOA with
green (if the test passed) or red (if the test failed). Ad- the UML Testing Profile (OMG, 2005) is defined
ditionally due to the traceability we can trace fromtest in (Baker et al., 2007). It focuses on web services
elements to requirements to localize failures. We can technology and uses the whole set of UTP concepts.
also narrow the source of the failure. Compared to Our approach can be mapped to that approach but ad-
the testing process applied before, our framework al- ditionally it is designed for arbitrary service technolo-
lowed to detect faults earlier and more frequent, and gies, provides a service—centric view on tests, sup-
to fully automate the testing process. ports the tabular definition of tests and guarantees

traceability between all involved artifacts.

In (Zander et al., 2005) model-driven testing is

defined and implemented by mapping test models in

4 RELAIED WORK UTP to test code in TTCN-3. The focus of the paper

. is on the transformation of test models to executable
System testingPhased on SEAMESEMG, 2008) spec- code whereas we focus on the relationship between

ifications has not been considered so far. We addressre Lirements. test models and svstem models
this problem indirectly by defining a generic system ql M " d Steff 202)/4 " t .
model that can be mapped to SoaML and relating the tﬂ (d aLganat ar][; Ie'n’b d) a ?ystem is Ing
system modelto a test model. Thisguaranteesthatouﬂlne od whose test modet 1S based on ﬁs grapns sim-
approach can be integrated with other modeling ap- llar to our test stories Is prc_esented: Therein consis-
proaches for service oriented systems such as Quasa%enCy and correctness is validated via model checlg_ng
Enterprise (Engels et al., 2008) or the OASIS SOA ut the relationship to system models and traceability

. such as in our approach are not considered.
Reference Model (OASIS Standard, 2006) which are . .
compatible to SoaML. In (Atkinson et al., 2008) test sheets, an extension

(Abbors et al., 2009) defines a requirements model of FIT, are used for specifying high quality services.

and a system model similar to our approach based Onggge?jpglfno; CTJrI: &%Tlg?trlglerg;:nutgggr? Z)r?(;: ?t gggg Lsot
domains models, used and required interfaces, and : P rrep
consider abstract requirements, system and test mod-

1The Telling TestStories tool is available €ls as we do.
at http://teststories.info/ In (Canfora and Di Penta, 2008) unit testing, inte-

434

MODEL-DRIVEN SYSTEM TESTING OF SERVICE ORIENTED SYSTEMS - A Standard-aligned Approach based on
Independent System and Test Models

gration testing, regression testing and non—functional Baker, P., Ru Dai, P., Grabowski, J., Haugen, O., Schiefer-

testing of service oriented systems are discussed but decker, 1., and Williams, C. E. (2007Model-Driven

in contrast to our approach system testing is notcon- 1esting - Using the UML Testing Profil&pringer.

sidered explicitly. Cabot, J., Clarisd, R., and Riera, D. (2009). Verifying
UML/OCL Operation Contracts. IiFM 2009, pages
40-55, Berlin, Heidelberg. Springer-Verlag.

Canfora, G. and Di Penta, M. (2008). Service-oriented ar-

5 CONCLUSIONS AND FUTURE chitectures testing: A survey. In Lucia, A. D. and
WORK Ferrucci, F., editorslSSSE volume 5413 ofLecture

Notes in Computer Scienggages 78—105. Springer.

Conformiq (2009). Qtronic. http://www.conformiqg.com/.
We have presented a novel approach to model-drivengpgels, G., Hess, A., Humm, B., Juwig, O., Lohmann, M.,
system testing for service oriented systems based on Richter, J.-P., VoR, M., and Willkomm, J. (2008). A
a separated system and test model. The approach Method for Engineering a True Service-Oriented Ar-

has been aligned with SoaML and the UML Testing chitecture. INCEIS 2008
Profile. Our methodology integrates system and test Felderer, M., Breu, R., Chimiak-Opoka, J., Breu, M.,
modeling for service oriented systems in a concise and Schupp, F. (2009a). Concepts for Model-Based

way and addresses main system testing issues of ser- &?#Eg"é?tzsoggesmg giaSswicefOnenica Systems.

vice oriented systems such as the integration of vari- Felderer, M., Fiedler, F., Zech, P, and Breu, R. (2009b).

ous service technologies, the evolution of services, or Flexibli®T8st Cod® GenerationarService Oriented
the validation of service level agreements. Addition- Systems. QSIC'2009.

ally, our approach is fully traceable by defining links Hafner, M. and Breu, R. (2008).Security Engineering
between the requirements model, the system model, for Service—Oriented ArchitecturesSpringer-Verlag,
the test model and the executable system. We suc- Berlin Heidelberg.

cessfully applied our approach on an industrial case Margaria, T. and Steffen, B. (2004). Lightweight coarse-
study from the telecommunication domain. grained coordination: a scalable system-level ap-

As next step we will consider the evolution of proach.STTT 5(2-3).
models which is very important in a service—oriented Meyer, B., Fiva, A, Ciupa, I., Leitner, A., Wei, Y., and
context and which emphasizes model-based regres- ~ St@pf, E. (2009). Programs that test themse|Gzm-
sion testing. Additionally we also consider oracle PUEREE46-55.

; P Mugridge, R. and Cunningham, W. (2005)t for Develop-
computation based on OCL verification (Cabot et al., ing Software: Framework for Integrated Tes®ren-

2009) or semantic web technologies to fully elabo- tice Hall.

rate test generation. A mapping from our model- g5 Standard (2006). OASIS SOA Reference
driven approach to the table—driven test sheets ap- Model TC. http://www.oasis-open.org/committees/
proach (Atkinson et al., 2008) provides an additional tc_home.php?wgbbrev=soa-rm.

tabular and textual representation of tests and the ca-0ASIS Standard (2007). Web Services Business Process
pability of usability testing. Execution Language Version 2.0 - OASIS Standard.

http://docs.oasis-open.org/wsbpel/2.0/.

OMG (2005). UML Testing Profile, Version 1.0
http://www.omg.org/docs/formal/05-07-07.pdf.

ACKNOWLEDGEMENTS OMG (2008).Service Oriented Architecture Modeling Lan-
guage (SoaML) - Specificiation for the UML Pro-

This work was partially supported by the Telling Test- file and Metamodel for Services (UPMS)Object

Stories project funded by the trans-it and the MATE Modeling Group. http:/www.omg.org/docs/ad/08-08-

04.pdf.

Pretschner, A. and Philipps, J. (2004). Methodological is-
sues in model-based testing. Model-Based Testing
of Reactive Systemgages 281-291.

project funded by the FWF.

REFERENCES W3C (2005). Web Services Choreography Description Lan-
guage Version 1.0. http://www.w3.0rg/TR/ws-cdI-10/.
Abbors, F., Paajarvi, T., Teittinen, R., Truscan, Dd &sl- Willcock, C., Deiss, T., Tobies, S., Keil, S., Engler, F.dan
ius, J. (2009). Transformational support for model- Schulz, S. (2005)An Introduction to TTCN-3John
based testing — from UML to QML. l@nd Workshop Wiley and Sons.
on Model-based Testing in Practice Zander, J., Dai, Z. R., Schieferdecker, I., and Din, G.

Atkinson. C.. Brenner. D.. Falcone. G.. and Juhasz. M. (2005). From U2TP Models to Executable Tests with

(2008). Specifying High-Assurance Service8om- TTCN-3 - An Approach to Model Driven Testing. In
puter, 41:64—71. TestCom

435

