
SOLUTIONS FOR SPEEDING-UP ON-LINE DYNAMIC
SIGNATURE AUTHENTICATION

Valentin Andrei, Sorin Mircea Rusu and Ştefan Diaconescu
Research & Development Department, SOFTWIN S.R.L., Sos. Pipera-Tunari, Bucharest, Romania

Keywords: On-line Authentication, Biometrics, Dynamic Signature, FPGA Processing, GPU Computing, Levenshtein
Algorithm, Distributed Computing.

Abstract: The article presents a study and its experimental results, over methods of speeding-up authentication of the
dynamic handwritten signature, in an on-line authentication system. We describe 3 solutions, which use
parallel computing by choosing a 16 processor server, a FPGA development board and a graphics card,
designed with nVidia CUDA technology. For each solution, we detail how can we integrate it into an
authentication provider system, and we specify its advantages and disadvantages.

1 INTRODUCTION

The evolution of biometry in the last few years was
predictable due to the increasing amount of sensible
data, like bank accounts information or new
technologies documentation, which needed to be
stored into databases, safe from any attack attempt.
The Internet held more and more valuable
information so the need for high security kept
increasing.

Biometry appeared relatively recently and used
unique characteristics of a person in order to secure
and authenticate his actions. Some of these
characteristics are: the iris, the fingerprint, the
signature, the voice, the face anatomy, etc. One of
the most non-intrusive methods of biometric
authentication is based on using the dynamic
handwritten signature. The term does not define only
the image drawn on a piece of paper, but it refers
mainly to the movement of the owner-s hand. The
image can be copied but the movement of the hand
is almost impossible to be reproduced. This
characteristic belongs to behavioural biometrics
because a person changes his way of signing over
the years. Due to this particularity, the offered
security level is very high.

In the last 2 years, we have focused our research
towards using dynamic signature in the purpose of
on-line authentication (Marcu, 2009). We have built
a web-service, capable of securing internet
applications, which need authentication. It can be

used in every web-application that provides
authentication services, as an extra-security layer.
The problem that appears is providing a short
response time when the server is being overloaded
with numerous requests. In this article we will
describe 3 solutions that can help us solve the
problem and to offer a short authentication time for a
reasonable number of clients, accessing the service
simultaneously.

2 AUTHENTICATION

In order to verify if a signature is genuine, some
processing needs to be done. First of all the user
needs to input 5 signatures, that will be considered
specimens and every new signature will be
compared to them.

An electronic device will be used to capture the
signature. This electronic device is an intelligent
pen, that contains 2 MEMS accelerometers and an
optical navigation system (ONS) having the ability
to extract the user-s hand movement and to transmit
it via USB port. The pen transmits at 1000 Hz
sampling rate, the hand acceleration values on 2 axes
and the data extracted by the ONS. Inside the PC,
the raw signals can be stored into CSV files for
analysis.

These files contain a fair amount of redundant
data therefore, in order to make the process more
efficient we need to apply a compression method.

121Andrei V., Rusu S. and Diaconescu Ş. (2010).
SOLUTIONS FOR SPEEDING-UP ON-LINE DYNAMIC SIGNATURE AUTHENTICATION.
In Proceedings of the 12th International Conference on Enterprise Information Systems - Databases and Information Systems Integration, pages
121-126
DOI: 10.5220/0002870901210126
Copyright c© SciTePress

For this reason we have developed a set of signature
recognition algorithms (SRA), which build a set of
invariants, from the raw signals. The following
picture represents the signature processing. The
electronic pen captures the hand movement,
transmitting the raw signals through the driver, to
the SRA block.

Figure 1: Signature processing steps.

In order to say if a signature is authentic, we
must compute a distance between the invariants
extracted from the given signature and the ones
extracted from the user-s specimens. The distance is
computed by using the Levenshtein algorithm.

After that, the resulted distance, is passed to a
classifier that will give the final answer over the
originality of the signature (Marcu, 2009). This
classifier can be a threshold based decision system, a
neural network, etc. The next picture shows the
dynamic signature authentication process.

Figure 2: Signature authentication process.

As we mentioned before, we have built a web-
service, capable of providing biometric
authentication based on the dynamic handwritten
signature. The acquired signature is being sent to the
web-service, where comparison with the stored
specimens is made. The service just sends the
response, telling if the given signature is original or
false. If the signature is genuine, the user receives
access to his account. Given this context, a
proportion of the authentication time belongs to the
transfer operation, between the client and the web-
service. However we are interested in accelerating
the most time consuming operation, of the whole
system.

The following diagram shows the main
operations being made, in order to offer the client
access to his account data based on his dynamic
signature.

Figure 3: On-line signature authentication operations.

We have measured the time consumed by each
operation, in order to find the component whose
function needs to be optimized. The following table
shows percentages of the authentication time,
consumed by every system block.

Table 1: Time consumed by each operation of the
authentication process.

Operation Time (% of total)
Signature acquisition < 1%

Transfer time < 2%
Invariants computation < 5%
Distances computation > 92%

As we can see from the previous table, distance

computation’s time has the greatest proportion.
Therefore we need to find a solution in order to
compute the distances as fast as we can, to provide
the client a reasonable authentication time.

The Levenshtein algorithm is based on the
following formula:

D[i, j] = Minimum (D[i-1, j] + Deletion
Cost, D[i, j+1] + Insertion Cost, D[i-1, j-1]

+ Substitution Cost)
(1)

It involves the usage of a matrix of N x M size
where N and M are the lengths of the strings being
compared. The distance between the 2 strings is at
D[N, M] cell inside the matrix.

The parallelizing possibilities of a single
algorithm instance are poor. However parallelizing
is possible by using systolic arrays (Hoang, 1993)
but at increased difficulty cost. If the length of the
strings is large, then the parallelization of the
algorithm is worth being implemented. If it-s small,
having more distances computed in parallel by se-

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

122

veral processing units, has more advantages.
We have chosen to distribute distance computing

tasks into several processing units. We have studied
the possibility of using the following:
 16 processor powerful server;
 FPGA development board;
 Video card using nVidia CUDA technology.

3 ACCELERATING

As said before, we need to start several instances of
the Levenshtein algorithm in multiple processing
units. We focused our work just to study how we can
speed-up the distance computing block, so this is the
reason we have built a block that generates strings of
symbols, to be passed as input data to the processing
units. We have measured the time it took for the
whole block of data to be processed and we
compared the 3 solutions. The following figure gives
an overview upon the evaluating procedure.

Figure 4: Time evaluation procedure.

The strings generator builds a queue of string
pairs. Each pair will serve as input for an instance of
Levenshtein algorithm. This queue will be a symbol
matrix of (2 x N) x M cells where N represents the
number of distances that need to be computed, and
M represents the length of the strings being
compared. In the real system we provide a
mechanism of queuing for the authentication
requests. The request queue is very similar to the
matrix generated by the strings generator so the
estimations we will make based on the results of the
3 solutions give, will be close to truth.

3.1 Speeding-up the Authentication
Process using a 16 Processor Server

The goal is to use the server hardware capabilities at
full power, in order to achieve the best time. We

have done this by starting a number of threads in our
main program and by assigning them a high priority
among the tasks of the operating system.

First of all we needed to discover the optimum
thread number in order to minimize the overhead.
For that we have computed 2048 distances between
strings of 750 symbols on 32 bits each. We have
distributed these tasks to a variable number of
threads and measured the computing time. If the
number of threads is too small, then the computing
power of the server is not used at maximum, which
will result in a time increase. If the number of
threads is too high, then the generated overhead will
lead to a significant time increase. The average
computing time for a variable number of threads is
centralized in the following table.

Table 2: Choosing the optimum thread number.

Number of threads Duration (milliseconds)
8 2281
14 1328
16 1412
32 1515

This behaviour was predictable because the

server has 16 processors and the optimum thread
number should be near 16. The resulted number of
threads that would give best results is 14. In this case
14 of the system-s processors will be used at full
power and the rest of 2 processors will be used for
the vital tasks of the operating system.

In order to obtain a short response time, the
processor and memory frequency, should be as high
as possible. If the memory frequency is too low, then
the reading and writing from and into it, will require
a high amount of time, seriously slowing down the
process. However, caching mechanism should be
also available on each processor but all the
generated data can’t fit into the cache memory so
that is why the RAM frequency is an important
element. The on-line authentication system, using
the first solution, is drawn in the following image:

Figure 5: Authentication system using a 16 processor
server.

SOLUTIONS FOR SPEEDING-UP ON-LINE DYNAMIC SIGNATURE AUTHENTICATION

123

The system will host a web-service that receives
all the client-s requests, and all the distance
computations are done inside the server. The web-
service can be hosted on a different station. The
disadvantage of such a system is that a powerful
server is very expensive and it-s purpose is for
general usage, rather than to be used exclusively for
authentication purposes.

Therefore we need a cheaper solution than this
one, and designed specifically to accelerate the
authentication process.

3.2 Accelerating the Authentication
Process using a FPGA Development
Board

FPGA development boards have became more and
more used lately, especially where computation
power is needed, in systems with an increased
computational complexity. Devices composed of
several FPGA boards are used for example in
biotechnology, performing sequence alignments
(Hoang, 1993), proteins matching, docking,
networking devices (Mohd, 2008) etc.

The FPGA acronynm, stands for Field
Programmable Gate Array, which is a chip, which
contains a matrix of elementary electronic circuits,
which can be combined to build a complex function.
A digital circuit systems designer can implement
inside a FPGA board, a processing unit that can
perform one specific algorithm. He designs the
system’s blocks and describes them in a hardware
description language. After that a synthesizer like
XilinX for example, is used to implement the new
system, inside the FPGA chip.

One key element for a system working on a
FPGA is the achieved frequency. If it-s high, then
the system will be efficient. To increase the
frequency, the delay from a combinational circuit-s
input to it-s output should be as small as possible. A
combinational circuit is one that does not work by
using a clock input and it performs it-s function
asynchronously.

One feature the FPGA board should have is the
presence of block-RAM or if possible external RAM
blocks. The block-RAM are the RAM cells located
inside the FPGA chip, and it-s access frequency is
the same with the system-s working frequency. To
use external memory chips, frequency adapters are
needed and not always these blocks can be used at
full speed.

The number of elementary circuits inside the
FPGA is also crucial. If the chip has a large number
of gates, which we can implement several

processing units inside a single chip, that perform in
parallel. The following picture describes the general
arhitecture of a system composed of several
Levenshtein processing units, implemented on a
FPGA chip.

Figure 6: General architecture of a system performing
multiple Levenshtein comparisons on a FPGA board.

The system can compute multiple Levenshtein
distances in parallel, on a single chip. If we need
more speed, we can build a custom hardware device
composed of several FPGA boards that work
independently, controlled by a processor. However
this solution raises high implementing problems so
it-s preferable to use just FPGA-s connected to a
single computer that will distribute processing tasks
to them.

The following table presents the time needed for
a number of comparisons, depending on the system-
s frequency. We assumed that our FPGA board will
host 10 processing units. We calculated the time
needed to compute 2050 distances between strings
of 750 symbols, 32 bits each. We intend to make a
comparison between the 3 proposed solutions so the
number of comparisons should be the same for all
systems. Of course we can approximate 2050 with
2048.

Table 3: Computing duration using a FPGA board.

System-s
Frequency

Used BUS Duration (ms)

50 MHz USB 2.0 22700
100 MHz USB 2.0 11448
150 MHz USB 2.0 7700
200 MHz USB 2.0 5800
300 MHz USB 2.0 4500
300 MHz PCI Express 4200

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

124

A frequency of 200 MHz is achievable even by
using a low cost FPGA, such as a Spartan 3. More
performant boards such as Virtex 5 can achieve even
a higher frequency. However to reach this goal,
many optimizations need to be done, like adding
pipeline stages in combinational circuits that reduce
frequency.

We can also see that the used BUS does not
influence considerably the response time. An on-line
authentication system using FPGA boards to
perform the distances is described in the following
figure. Besides the Levenshtein processors, a BUS
controller must be implemented inside the FPGA, in
order to synchronize the system with the computer’s
BUS and to realize the data transfer.

Figure 7: Authentication system using multiple FPGA
boards.

3.3 Accelerating the Authentication
Process using CUDA Enabled
Video Cards

A solution proposed in the last few years for high
computing processes is using graphics cards. nVidia
producer launched the CUDA architecture and also a
software development kit, which allows
programmers to use the graphic card-s capabilities at
full power (nVidia 2008). For example, a developer
familiarized with the C language, can easily write C
code for CUDA, respecting a number of conventions
and that code will be computed by the graphics card.
CUDA is very suitable for algorithms that can be
parallelized, matrix multiplications, etc. In the
proposed solution we will use the graphics card by
launching multiple Levenshtein algorithms instances
that compute in parallel.

The CUDA architecture is described in the
following image (nVidia 2008). Each graphics card
chip is composed of a number of multiprocessors
each containing a number of 8 streaming processors.
Fast shared on-chip memory is available to use and
also the board offers a high amount of RAM
connected externally, called device memory.

Figure 8: nVidia CUDA architecture.

The device memory is the slowest RAM
available. The streaming processors can read and
write to it, but at great time cost. The shared
memory is the best solution to use when time is
critical. Each streaming processor has a number of
fast registers that can also be used for optimisations.

We used the same evaluating method as for the
dedicated server solution, by generating a matrix of
input strings. We have copied the matrix into the
device memory and then launched threads on each
streaming processor of each multiprocessor. The
operations needed to perform the comparisons are
mentioned below:
 Start Timer
 Copy strings matrix into device memory
 Fill the shared memory of each processor
 Launch Levenshtein algorithm on several
threads
 Copy distances into device memory
 Copy distances from the device memory into
the system’s RAM
 Stop Timer
The results we have obtained by using this

solution are presented in the following table. We
have used 3 CUDA enabled graphics cards of
different computing capabilities. We initiated the
comparison of 2048 pairs of strings, 750 symbols of
32 bits each. This amount of data is generated by a
number of around 40 clients, accessing the system
simultaneously. We can see that the last client will
receive a response to his request in less than 2
seconds. If the number of available boards increases,
the incoming data will be processed proportionally
faster.

SOLUTIONS FOR SPEEDING-UP ON-LINE DYNAMIC SIGNATURE AUTHENTICATION

125

Table 4: Computing duration using nVidia CUDA enabled
video cards.

Video Card Capabilities Duration (ms)
nVidia Quadro

NV 135 M
2 Multiprocessors 23625

nVidia
GeForce 9500

GT
4 Multiprocessors 7266

nVidia
GeForce
GTX275

30 Multiprocessors 1390

An on-line authentication system, using several

graphics cards to process distances between
invariants strings, will have the architecture
presented below.

Figure 9: Authentication system using multiple nVidia
CUDA enabled video cards.

The communication through the PCI Express
BUS is transparent to the developer because it is
realised by the provided CUDA driver (nVidia
2008). The implementing problems are similar to
ones that appear when implementing the server
solution. The main advantage of this solution is that
the video cards are relatively cheap and their
applicability area is rather large. The system is also
scalable, because adding extra graphic cards is
relatively easy, without major code modifications.

4 CONCLUSIONS

We have presented 3 solutions of accelerating on-
line authentication, by using dynamic handwritten
signature. We have presented the signature
processing which is made, and we have shown 3
methods of speeding-up the most computational
blocks. The following table synthesizes the results
we have obtained.

We have considered a system using a 16
processor powerful server, one using 3 USB 2.0
FPGA boards with 10 Levenshtein processors each,
working at 300 MHz and also a system using a

single nVidia GeForce GTX275 video card.

Table 5: Comparison between the proposed acceleration
solutions.

Solution Price Duration (ms)
16 Processor Server ~8000 USD 1328

3 FPGA Boards on a PC ~2000 USD 1400
1 nVidia GeForce GTX275

video card
~300 USD 1390

As we can see from the table above, the solution

that should be used is obvious. Motherboards built
using nVidia SLI technology allow up to 3 video
cards on one single system so the speed achieved
can be highly improved with minimal costs.

Given this context, an on-line system of
authenticating users by their dynamic signature, can
respond to a number of around 100 requests per
second, when using 3 video cards, which makes it a
high security feature needed to be considered. Using
the proposed architectures, the system is very
scalable and if the number of requests increases,
more computing power can be added at a small
price.

REFERENCES

Marcu, E., 2009. Method of combining the degrees of
similarity in handwritten signature authentication,
using neural networks. In AI-2009, The Twenty-ninth
SGAI International Conference Cambridge, UK.
Springer

Marcu, E., 2009. Self-built grid. In IDC’2009, 3rd
International Symposium on Intelligent Distributed
Computing. Springer

Hoang, D. T., Lopresti, D., 1993. FPGA Implementation
of Systolic Sequence Alignment. In International
Workshop on Field Programmable Logic and
Applications. Springer Berlin

Mohd, E. T., Mohd, Y. I. I., Tee., H. H., Madhihah, S.,
2008. Hardware based SPAM/UCE Filter Design with
Levenshtein Distance Algorithm: A Framework. In
Proceedings of Internet Convergence Conference, 11-
13 March 2008, Kuala Lumpur. Non-Scopus Cited
Publication.

Manavski, A. S., Valle. G., 2008. CUDA compatible GPU
cards as efficient hardware accelerators for Smith-
Waterman sequence alignment. In BMC
Bioinformatics 2008. BMC Bioinformatics.

nVidia CUDA Zone Examples of GPU Processing,
http://www.nvidia.co.uk/object/cuda_home_uk.html

nVidia CUDA Programming Guide, 2008. http://
developer.download.nvidia.com/compute/cuda/2_3/to
olkit/docs/NVIDIA_CUDA_Programming_Guide_2.3
.pdf

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

126

