EVALUATING UML SEQUENCE MODELS USING THE SPIN
MODEL CHECKER

Yoshiyuki Shinkawa
Ryukoku University, 1-5 Seta Oe-cho Yokotani, Otsu 520-2194, Japan

Keywords: UML, Model checking, Model consistency, Formal methods.

Abstract: UML sequence diagram is one of the most important diagrams for behavior modeling, however there are few
established criteria, methodologies and processes to evaluate the correctness of the models depicted by this
diagram. This paper proposes a formal approach to evaluating the correctness of UML sequence models using
the SPIN model checker. In order to deal with the models by the SPIN, they must be expressed in the form of
Promela codes and LTL formula. A set of definite rules is presented, which can extract the above codes and
formulae from given UML sequence models.

1 INTRODUCTION 2 ABASIC STRUCTURE OF A

. . . SEQUENCE MODEL
UML sequence diagram is one of the most important

diagrams to express the behavior of a system com- p sequence model, which is expressed in the form
posed of multiple objects (Ambler, 2004). In spite of of 3 UML sequence diagram, represents the behav-
superior modeling capability of UML sequence dia- o of a system by showing how the involved objects
gram, there are several difficulties when applying it jnteract. This interaction between the objects is de-
to software development at the implementation level. g¢riped as message passing between them. When a
Firstly, the models expressed in the form of sequence message is sent from an object, it means the associ-
diagrams only represent the sequence of messagegted method with the message is invoked in the re-
between the involved objects, and therefore we can ceiving object, or the message is sent through a mes-
not recognize the functionality of the systems through saging mechanism like JMS (Java Message Service)
these models. Secondly, we can draw arbitrary mMes- (Richards and Monson-Haefel, 2009). The above ob-
sage flow between any objects, therefore incorrect se-jgcts are depicted difelinesin a sequence model, and
quence diagrams might possibly be created, which g synchronous or an asynchronous message is passed
show the wrong behavior. between them.

As a result, it becomes a hard task to evaluate Regardless of the implementation of a sequence
the correctness of sequence modelSeveral efforts model, both messages types finally result in the ex-
have been made to formalize UML sequence models gcytion of the corresponding methods. Since the
for rigorous software design and verification (Shen method execution could possibly change the state of
et al., 2008) (Damm and Harel, 1998) (Knapp and the related objects, we can define the behavior of a
Wauttke, 2006). However no concise criterion or pro- sequence model based on state transition. In order
cess has been provided to verify the correctness of seq define the state transition of a sequence model, we
quence models. This paper proposes a formal process;rst define the state of each object formally.
to verify correctness on sequence models through a pp object is composed of the two parts, namely
model checking technique (Clarke et al., 1999). The the data definition part and the method definition part.
SPIN model checker (Holzmann, 2003) is used as aThe data definition part declares a list of variables as-
checking tool. sociated withdata typeswhich are eitheprimitive or

referencedata types. If a variable is associated with a
primitive data type, it has @alue whereas a variable

LIn this paper, the models that are depicted by the UML With a reference data type refers to another object, and
sequence diagram is referred to as “sequence models”. it can not have a value.

Shinkawa Y. (2010). 417
EVALUATING UML SEQUENCE MODELS USING THE SPIN MODEL CHECKER.

In Proceedings of the 12th International Conference on Enterprise Information Systems - Information Systems Analysis and Specification, pages

417-422

DOI: 10.5220/0002870304170422

Copyright © SciTePress

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

Such an object can be denotes as a tuple the post-condition of the method occurs at the point
where the message arrives. This point is called the
0 =(D,7) receiving event occurrence
where D is a set of variablegq,---,%m, of which The above state transition definesoaal object
data types ar®1,---,D, anda/ is a set of meth- state of a sequence model. The whole system state is
odsMa, --- ,Mp in the object. defined as a set of those local states at each moment.

If Dj is a primitive data type, it has e value, which Since time flows along the lifelines, each moment can
is denoted as vét) in this paper. The state of an be mapped to a specific point on the lifelines.
object is determined by the values of these variables, = While the above definitions can determine the
however a variable with a reference data type can notstate transitions of a sequence model, we need other
have a value. criteria to define the correctness of the model. The
In order to define the state of an object with refer- state invariantelement of the sequence diagram can
ence data types, we introduce the state function for andefine a constraint that the model must satisfy, there-

objecto and a variable; as fore it can be regarded as a criteria for the correctness
of the model.
$(0)=(Skxa), -+, S(xm)) Both pre- and post-conditions of a method, and
whereS(x) is defined as follows. state invariants, can be expressed in the form of pred-
icate logic formulae.
L Jval(x) (if x is a primitive data typg Using the above method specifications and state
Sxi) = s(x) (if x is a reference data type invariants, the correctness of a sequence model can

be defined as follows.
If is areference data type and the referencgddic,

that is,x either 1. LetP andQ be state invariants, wheRebecomes

o o effective earlier thaf®, that is,P is marked at the
1. refers to the original object itself, or upper position tha®.
2. refersto an object that refersdodirectly or indi- 2
rectly.

In such case,s(0) occurs during the reduction of
$5(x), and we have to remove th&0) in order to
avoid the infinite loop.

Using this state function, the state of a sequence
model composed of the objeats, - - - ,0p can be de-
fined as the tuple of object states

. Letmy,--- ,my be a series of messages that occur
between the points wheReandQ are marked.

3. If pre(m) = P A pos{mg) - Q holds, where
pre(my) and postmy) represent the pre- and post-
conditions ofmy and my respectively, the con-
straint composed oP and Q is satisfied by the
series of the messages, - - - , M.

4. If for all the possible combination of arbitrary two

(s(01),~,5(0p)) state invariants in a sequence model satisfy the
The state of each object is updated only by method ~ @bove 3 for all the possible sequences of meth-
executions within the object, if the object is fully en- ods, the sequence model can be considered to be

capsulated. In order to simplify the discussion, we correct.

assume all the objects are fully encapsulated. How- The correctness of a sequence model can be examined
ever, the discussion can be extended to more generiGyhether it follows the above definition, however a
cases. _ large scale sequence model might include many com-
As discussed above, message passing, whethegjicated control structures, e.g. combined fragments
synchronous or asynchronous, causes a method exyike parallel, loop, or alternative gates, and found
ecution. A message in a sequence model is denotednessages, and therefore it seems impossible to ex-

as aline with an arrow, along with an operation name gmine all the possible message sequences within the
and parameters on it. The operation name representsnodel.

the method name to be executed, and the parameters

are the arguments of the method. model, model checkings one of the most practical

. Since a method is invoked when the correspond- o hroaches. There are several model checking tools

ing message arrives to Fhe lifeline associated v_vl_th the available, which include SPIN, SMV, or LTSA. The

method, the state transition from the pre-condition to paper uses the SPIN model checker to evaluate the
2When a variableg is a reference data type, it refers to COTTECtness of a sequence model.

an objecto;, and therefore we can define the statexcdis The SPIN model checker examines a state tran-

s(%) =90j). sition system expressed by a proprietary language

In order to examine such a complicated sequence

418

EVALUATING UML SEQUENCE MODELS USING THE SPIN MODEL CHECKER

calledPromela in order to determine whether it sat- sent from one process to another or the same process

isfies the given constraints in the form of LTL (Linear defined by the “proctype” statement. For example, a

Temporal Logic) formulae. Therfore, we first have to messagen from “Object 1" to “Object 2 with the re-

transform a sequence model into a Promela code. turn message which is denoted as=m(xy, - -, Xm),

Inthe next section, we discuss how sequence mod-can be expressed as shown in Figure 1 (a). In this

els are transformed into Promela codes. figure, X andR represents the data types»@fandr
respectively. On the other hand, “chM” and “chR”
represent the channels farandr respectively.

3 TRANSFORMATION INTO II-2. Asynchronous MessageUnlike a synchronous
PROMELA CODES message, a sender lifeline of an asynchronous mes-
sage does not wait for the return message. Such mes-

A UML sequence model consists of various graphical S29€ can b? Implemente_d In_PromeIa as a simple mes-
model elements, which include lifelines, messages, S29€ sending as.shown in Figure 1 (b).

combined fragments, execution occurrences, state in-||-3. Creation Message. A creation message cre-
variants, and so on. Therefore, in order to transform a ates instantiates an object. The operation name on
sequence model to a Promela code, we have to definghe message represents the constructor of the object.
the transformation rules for each model element. The Since an object is represented as a process designated
following shows these transformation rules. by a “proctype” statement, this message can be im-
plemented as a “run” statement for the process that
represents the object to be created. In this process,
the message is received through the channel for it in
the same way as a synchronous or an asynchronous
message.

l. Lifeline. A lifeline represents an object which
includes the associated methods. An object, and
consequently a lifeline, can be expressed g
cessin terms of Promela, which is designated by a
Promela statement “proctypeh. On the other hand,
each method within the object can be implemented II-4. Lost Message and Found MessageA lost
as aninline macro designated by a “inlineh statement. message is a message that is sent outside the model
The code within the inline macro firstly checks the boundary, and therefore only the sender lifeline exists.
pre-condition of the method, then set the related vari- Such message is expressed in Promela as a sender
ables to the values that satisfy the post-condition. channel without the corresponding receiver channel.
The sender process sends the message using “chM !
ll. Messages.Messages in a UML sequence dia- x1, ¢, xm”, however no corresponding “chR ? x1, ¢

gram are classified intsynchronous messagesyn- Xn" occurs in the Promela code.
chronous messageseturn messagesreation mes- On the other hand, a found message is a mes-
sageslost messagesndfound messages sage that is received from the outside of the model

I-1. Synchronous Message and Return Message. boundary. Theore;ically, such message is expressed in
A synchronous message represents bi-directionalPromela as areceiver channel without the correspond-
communication between lifelines. Promela provides INg Sender channel. However, in this implementation,
communication capability between two processes by N0 Process in the Promala code puts the message in
message channelefinitions. Since a lifeline is im- ~ the channel. Therefore a dummy process is needed,
plemented by a process in Promela as stated above'Vhich putthe message into the above channel.

a synchronous message and its return message can The basic control structure of a sequence model

be implemented using message channels. A messagé® that all the messages are processed along lifelines
channel is defined as from top to bottom. A combined fragment defines

chan name[buffer size] of{data type(s} a_special region _in a sequence model, which can pro-
The above “[buffer size]" represents the maximum vide more comphcated controlst.ructu.res suck@s-
number of messages that the channel can stores. How€urrency conditional branchesor iterations The se-
ever, since a sequence diagram does not provides ugnantics of a combined fragment is designated by a
with a queuing facility, this value is always set to zero, 1&g 0n the fragment, e.gar, alt, orloop. According
which is known as theendez-vousommunication. to these tags, combined fragments can be expressed

Since each channel is associated with a specific Py Promela as follows.

datatype or a list of data types, and so is each messagei|-1. Alternative Fragment. An alternative frag-
in a sequence model, we have to define at least onement representi-then-else control structure, which

channel for each data type or a list of data types usedis designated by thelt tag. This control structure is
in the model. Through these channels, messages are

419

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

(a). Synchronous Message

Object 1 Object 2
I I
i i proctype Objectl()
! m(x1,xn) | X1 x1;--; Xn xn
| | Rr;
i i chm ! x1;--,xn;
: r : chrl ? x;
S —— | {
: ! proctype Object2()
! ! X1 x1,-:-, Xn xn;
R,
chanchM1 [0] of {X1;-",Xn}|| chml ? x%;-xn;
chan chR [0] of {R} inlineM();
inline inlineM(x1,-+,xn) { chR1!rl;
code for message m {
{

(b). Asynchronous Message

Object 1 Object 2
: 1
[} .
b mKL, ... xn) proctype Object1()
! _» X1 x1;++; Xn xn
Rr;
chm ! x1;--,xn;

{

proctype Object2()

Rr;

hm1 ? xZ;-,xn;
chan chM [0] of {XL;-,Xn} ;l{:eM(; P
inline inlineM(x1;--,xn) { {

code for message m1l

{

Figure 1: Sequence Model and Promela Code — 1.

expressed by a Promdfa fi block with elseclause.

[lI-2. Option Fragment. An option fragment rep-

resents a simpld-then, which is designated by the
opttag, and can be regarded as a special casalif a
fragment.

[1I-3. Loop Fragment. A loop fragment represents
an iterative process, which is designated by ltap

tag. This control structure is expressed in Promela by

do - odblock.

[lI-4. Parallel Fragment. A parallel fragment con-
sists of multiple regions each of which represents

a message passing operation concurrently performedz-

with other regions. This fragment is designated by
thepar tag. For expressing concurrency, each region
in the fragment must be transformed into a Promela
code independently. As a result, for each region, a
process is defined per lifeline involved in the region .

[lI-5. Break Fragment. A break fragment, which

is designated bipreaktag, terminates the process de-
fined in its outer fragment. This fragment is invoked
only when the associated guard function is satisfied.
The fragment is implemented using a boolean vari-
able, e.g. “bch, which represents the break condition.
The variable “bch is initially set tfalse, and is set to
true in the break fragment. Theo statement of the
outer fragment examines whether “bcHasse

[lI-6. Critical Fragment. A critical fragment repre-
sents that the fragment must be performedas#iaal
section that is, no interruption is allowed when it is
active. This fragmentis usually used as a part pa
fragment, and is designated by tbetical tag. The
fragment can be implemented using a boolean vari-

420

able, e.g., “lock;”, for a locking mechanism. At the

first statement in the critical fragment, the lock is set
to true, while at the last statement, the lock is set to
false On the other hand, the variable “lockh is exam-
ined in the outer fragments tha conflict with the criti-

cal fragment.

IlI-7. Weak Sequencing Fragment. In a weak se-
quencing fragment, which is designated $Bqtag,
defines the ordering of messages as follows.

1. The ordering of OccurrenceSpecifications within
each of the operands are maintained in the result.

OccurrenceSpecifications on different lifelines
from different operands may come in any order.

OccurrenceSpecifications on the same lifeline
from different operands are ordered such that
an OccurrenceSpecification of the first operand
comes before that of the second operand.

3.

In this fragment, the order of any two messages reside
in the different segments on the different lifelines may
not be maintained. In order to implement this con-
siderably complicated combined fragment type, we
introduce an indicator variabldih for each lifeline,

and ‘sjh for each segment. Théjh represents the
number of received messages by itidifeline, while

“sjh represents that of thgh segment. In addition,
the ordering constraints are appended to each mes-
sage sending statement.

IV. Execution Occurrence. An execution oc-
currence represents that a lifeline or the correspond-
ing object is performing some functionality. This
model element also represents the method execution
within the object, and is expressed in a Promela code

EVALUATING UML SEQUENCE MODELS USING THE SPIN MODEL CHECKER

as an inline macro that reflects the method specifica-

tion.

V. State Invariant. This model element can be
put at an arbitrary point on a lifeline in order to spec-
ify the constraints to be satisfied at the point it is
placed. This element is used to create the LTL for-
mula against which the transformed Promela code
from the sequence model is to be evaluated.

By means of the above transformation rules, we

can obtain a Promela code that reflects the semantics

of a given UML sequence model. This Promela code

Similarly, if a state invarian@ is located below
thealt fragment, the derived LTL formula would be

O((St— 0Q V-V (S — 0Q))

B. opt Fragment. An opt fragment can be regarded
as a special case aft fragment, which includes only
one regiorR with a guardG and an invariang. For
the abové® andQ, the following LTL formulae would
be derived.

OP—0(G—9)
0(S— 0Q)

can be examined by the SPIN model checker whetherC. loop Fragment. A loop fragment iterates a pro-
it satisfies the necessary constraints if they are givencess while the associated guard is true. Assuming

correctly in the form of LTL formulae. In the next sec-
tion, we discuss how these LTL formulae are derived
from the sequence model.

4 EXTRACTING THE LTL
FORMULAE

state invariant$ and Q are located above and bel-
low the fragment respectively, and a gu&dand a
state invarianB are associated with the fragment, the
following LTL formula

D(P—> O((G— 0 A (-G — <>Q)))

D. break Fragment. A break fragment terminates
the outer fragment to which it belongs, when the as-

As discussed above, state invariants represent the conSociated guard is satisfied. AssumirgndQ are the -
straints on a sequence model, and therefore they coulcState invariants above and below the fragment with

be the criteria of the correctness for the model. In

the guard conditiorG and the state invariarg, the

order to use the state invariants as the criteria of the derived LTL formula would be

correctness in the SPIN model checker, they must be

expressed in the form of LTL formulae.

Since time flows along the lifelines from top to
bottom, if state invariantBy,--- ,P, are located out-
side combined fragments from top to bottom, the LTL
formulae0IP, — OP; for all i < j must be satisfied.

On the other hand, if state invariants are placed
within a combined fragment, the vertical order of the

O((P—0(G—09) A (G 09— 0Q))

E. par Fragment. A par fragment represents a con-
current execution of multiple processes, and there-
fore there could be multiple states within the frag-
ment. AssumingP and Q are the state invariants
located above and below it respectively, and there
are n concurrent regions including the state invari-

state invariants do not represents the temporal order.antsS;, ..., S, respectively, the derived LTL formulae

The LTL formulae derived from those invariants de-

pend on the fragment types to which they belong.
Generalized rules for each fragment type are as fol-
lows.

A. alt Fragment. An alternative fragment includes
multiple regions each of which is associated with a
guard Assuming there is a state invarightibove an
alt fragment, and within the fragment, there aree-
gionsRy, ..., R, which are associated with the guards
Gy,...,G, and the state invarian, ..., S,, the de-
rived LTL formula would be

D(PHO((Gle<>Sl)\/~~~(Gn%<>Sn)))

If no invariant is associated with the regiBn the cor-
responding tern®; — (S is removed from the above
formula.

30, and ¢ meangenerallyandfinally of the temporal
logic respectively

would be
O((P—= 0S)A---A(P—=0))
O((St = 0Q) A=A (S — 0Q))

F. critical Fragment. A critical fragment halts all
other regions within thear fragment to which the
critical fragment belongs. Since this fragment repre-
sents a microscopic control flow in a sequence model,
and LTL formula deals with more macroscopic state
transitions, LTL is not suitable to this fragment type.
In order to discriminate this fragment type, we need
to n boolean flagsy, . .. ,a, for concurrenh regions
within the par fragment, which are to be turned on/off
every time the regions perform something. Assuming
a1 is the flag for the critical region, arfélis a state in-
variant above th@ar fragment, the derived LTL for-
mula would be

(P ~0(anA (a0 --van))

421

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

wherea; meansy == true. Promela codes are examined by the SPIN. The trans-
formation rules for these LTL formulae were also pre-
sented based on which location the state invariants or
the pre- or post-conditions were marked.

G. seq Fragment.This fragment type also expresses
a microscopic control structure similarly to the above
critical fragment. As discussed in the previous sec-
tion, some messages may be processed in reverse or-

der. In order to express the order of messages in LTL

formula, we introduce boolean flags for each messageREFERENCES

that might be processed in reverse order. For example,

assumingm, andm are the boolean flags, aftis a Amble_r, S. (2004) The Object PrimerCambridge Univer-
state invariant located above the fragment, the derived Sy Press, New York, 3rd edition.

LTL formula would be Clarke, E., Grumberg, O., and Peled, D. (199%lodel

Checking The MIT Press, Cambridge, MA.
O (P — (Mg — Omp) A (mp — <>m1))) Damm, W. and Harel, D. (1998). Lscs: Breathing life into
message sequence charts.Fammal Methods in Sys-
While the above discussed transformation rules tem Designpages 293-312.

can derive LTL formulae from the state invariants Holzmann, G. (2003).The SPIN Model Checker: Primer

within UML sequence models, there is another set and Reference Manuahddison-Wesley Professional.

of constraints, that is, pre- and post-conditions of the Knapp, A. and Wuttke, J. (2006). Model checking of uml

methods which are implicitly referred to every time a 2.0 interactions. IWorkshops and Symposia at MoD-

message is sent to a lifeline. A method within an ob- ELS 2006 pages 45-51.

jectis invoked when a message reaches a lifeline, andrichards, M. and Monson-Haefel, R. (20094va Message
terminates when a return message is sent back, in the Service O'Reilly Media, Inc.
case of a synchronous message. Since the pre- anghen, H., Virani, A., and Niu, J. (2008). Formalize uml 2
post-conditions are the constraints that must be satis- sequence diagrams. Irith High Assurance Systems
fied before and after the method execution, they can Engineering Symposiumages 213-219.
be regarded as state invariants at the above two points
on a lifeline.
Once the pre- and post-conditions are placed as
state invariants at the appropriate points on lifelines,
we can derive the LTL formulae using the above trans-
formation rules.

5 CONCLUSIONS

We have presented a formal approach to evaluating
the correctness of UML sequence models using the
SPIN model checker. In this approach, we first re-
veal the basic structure of a sequence model based
on a state transition viewpoint, since the SPIN can
only treat state based systems expressed in the form
of Promela codes.

In order to make a sequence model possible to be
examined by the SPIN, a set of transformation rules
was introduced, which could derive Promela codes
from a given sequence model. These rules were de-
fined for each model element of a sequence diagram.

In addition, the criteria of the correctness of a se-
guence model have been presented. These criteria
were extracted from the state invariants that occur in
the model, or from the pre- and post-conditions of
the methods that corresponded to the messages flow-
ing through the model. The criteria have to be trans-
formed into LTL formulae against which the above

422

