
PERFORMANCE OVERHEAD OF PARAVIRTUALIZATION ON 
AN EXEMPLARY ERP SYSTEM 

André Bögelsack, Helmut Krcmar and Holger Wittges 
Technische Universitaet Muenchen, Boltzmannstraße 3, Garching, Germany 

Keywords: Performance, ERP System, Paravirtualization, Xen. 

Abstract: This paper addresses aspects of performance overhead when using paravirtualization techniques. To 
quantify the overhead the paper introduces and utilizes a new testing method, called the Zachmann test, to 
determine the performance overhead in a paravirtualized environment. The Zachmann test is used to 
perform CPU and memory intensive operations in a testing environment consisting of an exemplary 
Enterprise Resource Planning (ERP) system and a Xen hypervisor derivate. We focus on two issues: first, 
the performance overhead in general and second, the analysis of “overcommitment” situations. Our 
measurements show that the ERP system’s performance suffers up to 44% loss in virtualized environments 
compared to non-virtualized environments. Extreme overcommitment situations can lead to an overall 
performance loss up to 10%. This work shows the first results from a quantitative analysis. 

1 INTRODUCTION 

ERP systems are the backbone of today’s business 
process in large enterprises. A lot of ERP systems 
are running inside virtual machines to save hardware 
costs or to decrease administration costs. But beside 
such positive effects of virtualization, there is a 
negative effect: the performance decrease. A 
common sense in the area of virtualization is the 
performance decrease of any application running 
inside a virtual machine. To our knowledge there is 
no research available dealing with the performance 
of an ERP system in a virtual machine. Due the 
importance of ERP systems we focus on this 
research area and present first quantitative results. 

In the field of hardware virtualization two types 
of virtualization are distinguished: full virtualization 
and paravirtualization. For a detailed analysis of 
these types see (Jehle, 2008). In this paper we focus 
on paravirtualization as this is a popular research 
field see e.g. (Barham 2003, Cherkasova 2005, 
Matthews 2007, Mennon 2005, Ongaro 2008, 
Whitaker 2002, Youseff 2006 and Zhang 2008).  

According to (Huang, 2006), there are three main 
performance overhead aspects of virtualization:  
 Impact on CPU 

 Impact on memory 

 Impact on I/O 

We focus on (1) the performance aspects of CPU 
and memory overhead and (2) the scalability of the 
virtualization solution.  

Regarding the first aspect several research was 
done already. In (Barham 2003), (Matthews 2007) or 
(Cherkasova 2005) standard benchmarks from SPEC 
are used to determine the performance overhead. 
Here we will present a new performance test, called 
Zachmann test, which stresses the CPU and the 
memory of the underlying machine by utilizing the 
mechanisms of the ERP system. We use this test to 
estimate the performance overhead.  

The second aspect focuses on the scalability of 
the virtualization solution and answers questions e.g. 
what happens when the hardware is overstrained 
with a lot of virtual machines.  

The rest of the paper is organized as follows: 
section 2 describes the architecture of the ERP 
system and explains the Zachmann test and the 
testing configuration. Section 3 presents the main 
results whereas in section 4 we give an outlook on 
further research. 

2 ARCHITECTURE & TESTING 
CONFIGURATION 

This section describes the exemplary architecture of  

347Bögelsack A., Krcmar H. and Wittges H. (2010).
PERFORMANCE OVERHEAD OF PARAVIRTUALIZATION ON AN EXEMPLARY ERP SYSTEM.
In Proceedings of the 12th International Conference on Enterprise Information Systems - Databases and Information Systems Integration, pages
347-354
DOI: 10.5220/0002867803470354
Copyright c© SciTePress



 

the used ERP system. Knowing the architecture is 
important for understanding of the Zachmann test. 
The test configuration (hardware and software) will 
be explained in the last section. 

2.1 Architecture of an Exemplary ERP 
System 

In order to understand the behavior of the ERP 
system when running tests, it is essential to describe 
the architecture of the ERP system. Here we choose 
a SAP system as one exemplary ERP system. It 
contains an application server and a database server. 
The application server consists of the following 
processes:  
 dispatcher process, which is responsible to 

distribute request to other processes 
 work processes, which handle short time user 

requests 
 update process, which writes data changes into 

the database 
 enqueue process, which creates and deletes 

data locks inside the SAP system itself  
 batch process, which is responsible for 

handling time-consuming requests 
 message server, which coordinates the 

communication inside the SAP system and the 
communication coming from outside the SAP 
system 

 graphic process, which is responsible for 
graphical tasks 

 spool process, which coordinates printing 
jobs. 

In addition to the application server the SAP 
system contains a database server. The architecture 
of the database server depends on the database 
managements system (DBMS) used. Here the 
architecture of the DBMS is neglected as our 
performance test stresses the application server in 
particular.  

Besides the database server, the SAP system uses 
the network to communicate with the database as 
well as with other SAP systems. As the tests take 
place on one physical server only, the network can 
be ignored.   

2.2 Zachmann Test 

This section describes the Zachmann test, which was 
originally developed by Günther Zachmann from 
SAP and is named after him. In this section we 
describe the test and explain how the metric of the 
test can be understood. Moreover we characterize 
the test. 

2.2.1 General Description 

There are no ERP related SPEC benchmarks 
available. We found SPEC benchmarks related to 10 
categories, like CPU or Java applications (SPEC, 
2008). But SPEC does not provide any standardized 
ERP benchmark. Therefore the Zachmann test was 
chosen to evaluate the performance overhead. The 
test is a SAP developed test for testing CPU and 
memory capabilities of a server running a SAP 
system. Currently it is implemented into the SAP 
Linux Certification Suite (SLCS) (see (Kühnemund, 
2007)). The Zachmann test is based on a SAP 
system and uses the special architecture and the 
internal mechanisms of the SAP system: internal 
communication between several processes, closely 
interaction with the operating system and internal 
data processing mechanisms of the SAP system e.g. 
locks. In this it differs from synthetic SPEC or web 
server benchmark tests.  

The first action in the Zachmann test is the 
creation of an internal table. Starting e.g. two work 
processes will result in the creation of two internal 
tables. These internal tables are about 300MB big 
and contain random data, such as a lot of return 
codes. An internal table is equivalent to a database 
table (two-dimensional structure) but is held in the 
internal buffer of the SAP system, which means in 
the buffer of the work processes. The buffer of a 
work process is realized as a shared memory section 
in the operating systems. In the end the memory 
consumption of one work process is about 1GB 
RAM. After the creation of the internal table the 
program randomly loops over the table content by 
selecting one record, reading the selected record 
before going on to the next record. The next record 
is determined randomly again. This pattern is 
repeated for 900 seconds (clock time of the 
machine).  

2.2.2 Calculating throughput 

After 900 seconds each work process stops 
executing the Zachmann test automatically and 
reports the accessed data records into a file. These 
files are then used to calculate the average 
throughput per CPU. It is calculated as follows:  

1

C

C
C

T
P

T

T
N



 
(1)

The average throughput TT is the result of 
summing up the throughput of each configured work 

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

348



 

process TC and dividing it through the numbers of 
CPU NP. This results in the throughput per CPU.  
The number of work processes is expressed by C. 
An example may illustrate this: Assume a 4 CPU 
machine with 4 configured work processes per CPU. 
Therefore we need to sum up 16 results from the 
work processes and divide this result through 4 CPU 
as we are interested in the result per CPU. 

2.2.3 Test Characteristics 

The characteristic of the Zachmann test is a high 
CPU and memory load. The work processes access 
the RAM of the machine very often as the internal 
tables of the Zachmann test are held in the buffers of 
the SAP system. Because of the random access onto 
the internal tables, the CPU is utilized with a high 
load. Configuring too much work processes without 
having enough memory results in a high swapping 
activity. We used the Zachmann test to measure the 
CPU activity overhead of a virtualization solution 
and the scalability of a SAP system. 

It is important to avoid swapping activities 
monitoring the relation between user time and 
system time. Running the test with insufficient 
memory will lead to a high system time as the 
swapping activity is very time-consuming. A system 
time less than 5% (own experiences) shows 
sufficient memory. Too much swapping activity 
falsifies the gained results and does not show the 
correct performance. 

2.3 Testing Configuration 

2.3.1 Hardware and Software Configuration 

The hardware test configuration consists of a Sun 
Fire X4200 server from Sun Microsystems with two 
2.4GHz AMD Dual core Opteron 280 CPU. It is 
equipped with 16GB RAM (DDR2-667) and four 
internal 73GB 10000 RPM SAS disks. Three disks 
operated as a RAID-0 compound, containing the 
databases of the SAP systems and one disk operated 
as the root disk, containing the operating system and 
the application servers of the SAP systems.  

The operating system does not distinguish 
between CPUs and cores. A dual core CPU is 
counted as two CPUs in the operating system. For 
simplicity we use the term CPU in the rest of the 
paper. 

As operating system Sun Solaris Express 
Developer Edition 1/08 is used. In this version the 
XEN hypervisor of Sun Microsystems is integrated. 
The installed hypervisor has the version 3.0.4-1. The 

Express Edition comes with two kernels: one 
includes the hypervisor, the other one does not. This 
makes it easy to switch between a virtualized and 
non-virtualized operation. 

We use SLCS version 2.3 operates on basis of a 
7.0 SAP kernel (patch number 126). The underlying 
DBMS is MaxDB version 7.6.03.07. The database 
instance is configured with 3224.06MB Data Cache.  

2.3.2 Overcommitment Situations 

In the test scenarios several virtual machines were 
configured. For each virtual machine it is possible to 
configure vCPU. These are virtual CPUs, which are 
assigned to the virtual machine. This assignment can 
be fix or variable.  

A fix assignment means that a physical CPU is 
dedicated as a vCPU to a VM. As a result, the VM 
can only use this physical CPU as a resource and no 
other VM has access to the CPU. This is a typical 
1:1 relationship between physical and virtual CPU. 

A variable assignment is made upon a group of 
physical CPUs, so that several physical CPUs are 
assigned but not dedicated explicitly to several VMs. 
As a result all VMs have access to all assigned 
physical CPU and the physical resource must be 
shared fairly. This is a n:m relationship between 
physical CPU and vCPU. In the situations of 
variable assignments the upper bound for the 
number of assigned vCPU is the number of physical 
CPU. You may assign up to 4 vCPU to a VM in a 4 
CPU machine. 

When assigning several vCPU as a variable 
assignment it may come to a situation with more 
vCPUs assigned to the VMs than physical CPUs are 
existing. As an example:  on a machine with 4 
physical CPU you want to run 4 virtual machines. 
You configure each of them with 4 vCPU. Summing 
up the numbers of vCPU you will get 16 vCPUs 
whereas the underlying machine only runs 4 
physical CPUs. We call this situation an 
“overcommitment” situation (or oversubscription 
situation) as there are more physical resources 
assigned to the virtual machines than actually exist. 
The term overcommitment or oversubscription 
situation is not established in any research work. It 
was mentioned in (Apparao, 2008) for the first time. 

When facing an overcommitment situation you 
will have to quantify the overcommitment. 
Therefore, we use the theoretical computing power 
and set NP (as the number of physical CPU) as 
100%. 

Overcommitment O is calculated by using the 
sum of all assigned vCPU NV from all VMs V and 

PERFORMANCE OVERHEAD OF PARAVIRTUALIZATION ON AN EXEMPLARY ERP SYSTEM

349



 

dividing the result by the number of physical CPU 
NP. This leads us to an overcommitment of 400% 
when configuring 4 vCPUs (NV) in 4 VMs (V) on a 
4 CPU machine (NP).  

 

1 *100

V

V

V

P

N

O
N




 

(2) 

Such overcommitment situations are not well 
known so far although it seems to be a standard 
scenario when using virtualization. But we are not 
aware of any research paper focusing on these 
situations. Questions for the fairly resource sharing 
during these situations arise. We will focus on these 
questions in our third test scenario. 

2.3.3 Test Scenarios 

We install three parallel SLCS instances and run 
several Zachmann tests in three different scenarios 
to gain several results. For each scenario, we ran one 
test as a kind of “attack time”. After the run the 
buffers of the ERP systems are filled with all 
necessary data. We repeated the test runs three 
times.  

In the first test run, we installed three VMs on 
the host. Each VM contained an instance of Sun 
Solaris Developer Edition. Inside the VM we booted 
the native Sun Solaris’s kernel. Then we installed 
one instance of SLCS in each VM and run several 
Zachmanntests in parallel. The gained performance 
in this setting is referred as virtualized performance. 

In the second test, run we booted the native Sun 
Solaris’s kernel on the host directly and installed 
three parallel SLCS instances in the native 
environment. All virtual machines were deactivated. 
We ran several Zachmanntests in this environment, 
too. This is referred as our native performance. We 
expected to see a little difference between 
virtualized and native performance. 

In the third test run, we booted the kernel with 
integrated Xen again. We configured up to 4 vCPUs 
per VM and ran several Zachmann tests. We varied 
the number of vCPU per VM and tested several 
different configurations to gain an overview about 
the overcommitment situations. 

3 RESULTS 

3.1 Native Performance Compared to 
Virtual Performance 

We ran  several  different  performance  tests to esti- 

mate the performance overhead of virtualization. We 
used two different scenarios: in a first scenario we 
compared only one SLCS instance, first running in a 
native and later in a virtual environment. In a second 
scenario we compared 3 parallel running SLCS 
instances in a virtual environment and a native 
environment. 

3.1.1 One SLCS Instance 

To estimate the performance overhead caused by 
paravirtualization we used several test run results 
from scenario 1 and scenario 2 (as described in 
section 2.3.4.). We installed one SLCS instance in 
each scenario (each configured with no limits to 
RAM and CPU) and compared the results in Table 
1. It shows the overall throughput of one native 
SLCS instance compared to one virtual SLCS 
instance, scaling the number of work processes from 
1 to 12. Starting with a performance loss of 21% 
when running 1 work process the tests show face a 
performance loss of 38% when running 12 work 
processes. 

CPU Load

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1 3 6 9 12

Number Work Processes

O
v

e
ra

ll 
T

h
ro

u
g

h
p

u
t 

p
e

r 
s

e
c

1 native SLCS

1 virtual SLCS

 

Figure 1: Overall throughput of 1 native SLCS and 1 
virtual SLCS. 

The visualization of the results can found in 
Figure 1. Both lines show the overall throughput of 
the SLCS instances. The gradients of both curves are 
surprising. It seems that the native environment is 
able to use the computing power more efficiently 
than the virtual environment. While changing from 3 
to 6 work processes the SLCS instance in the native 
environment is able to change the overall throughput 
by factor 1.89 whereas the virtual SLCS only gains 
by factor 1.67. It seems that the virtualization 
overhead prevents the virtual SLCS instance from 
gaining a better performance gradient. After 
increasing the number of work processes to 9 the 
virtual SLCS did not show any performance 

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

350



 

improvement – we think this is because of a high 
swapping activity which was monitored during the 
test run. 

What about the individual performance of a work 
process in a native and a virtual environment? Is the 
decreased overall throughput a result of a decreased 
individual throughput of the work processes? Table 
1 shows the individual throughput per work process 
in the virtual and the native environment. It can be 
seen that the individual throughput per work process 
is decreased in the same way as the overall 
throughput. We assume that the scalability of the 
hypervisor is very good and that it treats every work 
process equally and with the same amount of 
computing resources.  

Table 1: Individual throughput per work process (1 SLCS 
instance). 

Work 
processes 

Native 
Performance 

Virtual 
Performance 

Loss 
native/virtual 

1 
10442.84 8199.26 21.48% 

3 
10313.55 7811.96 24.25% 

6 
9747.7 6517.44 33.13% 

9 
7995.15 5541.42 36.17% 

12 
6842.32 4216.01 38.39% 

3.1.2 Three SLCS Instances 

Given the results when running one SLCS instance, 
we expected to see a higher overall loss when 
running three parallel SLCS instances. Three parallel 
VMs with the no limits of RAM were installed. Each 
VM contained one SLCS instance and for each VM 
4 vCPU were configured to gain the maximum 
performance for every VM. To compare the results 
from three native SLCS instances against three 
virtual SLCS instances, the average result from the 
native SLCS instances were used and compared to 
the average virtual SLCS instance. Unfortunately, 
the number of work processes had to be limited to 6 
per SLCS instances as the machine ran into a 
memory problem. As mentioned in section 2.2.3 
configuring too much memory should be avoided. 
The test results are shown in Figure 2. 
 

It is not surprising, that the overall throughput 
differs. However, the loss between the virtual SLCS 
instances and the native SLCS instances is bigger. 

CPU Load

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1 2 3 4 5 6

Number Work Processes

O
v

e
ra

ll 
T

h
ro

u
g

h
p

u
t 

p
e

r 
s

e
c

3 native SLCS

3 virtual SLCS

 

Figure 2: Overall throughput of 3 native and 3 virtual 
SLCS instances. 

The most interesting part of the test run is a 
saturation at the level of ~47,000 throughputs/sec for 
the virtual SLCS instances. It does not matter if we 
increase the number of work processes, the overall 
throughput remains the same. We see a higher 
gradient for the results of the native SLCS instances 
compared to the virtual SLCS instances. The overall 
throughput data is shown in Table 2: 

Table 2: Overall throughput (3 SLCS instances). 

Work 
Processes 

Native 
Performance 

Virtual 
Performance 

Loss 
native/virtual 

1 30973.47 23790.89 23.19% 

2 58252.27 42072.89 27.77% 

3 71343.41 47924.14 32.83% 

4 81590.34 47244.79 42.10% 

5 83850.9 47290.7 43.60% 

6 85438.08 47731.08 44.13% 

It is interesting to see that jumping from 3 to 4 
configured work processes per virtual SLCS 
instance results in an overall throughput decrease. 
To identify the cause of the jump, the individual 
work process throughput was analyzed again and it 
was found that the individual throughput decreases 
in the same way as the overall throughput. 

3.1.3 Analysis and Implications 

After the performance loss was discovered, the work 
focused on the reason why the performance was 
decreased. The performance loss is caused by a high 
swapping activity of the server. As the test hardware 

PERFORMANCE OVERHEAD OF PARAVIRTUALIZATION ON AN EXEMPLARY ERP SYSTEM

351



 

is equipped with 16 GB RAM and every work 
process consumed approximately 1 GB RAM the 
machine faced a total RAM consumption of 20 GB 
RAM (3 virtual machines * 6 work processes * 1 
GB RAM per work process + 2 GB RAM for Xen). 
The high swapping activity explains the 
performance degradation when using a high work 
process number in the end of our scenario. But at the 
beginning of our tests (with a smaller number of 
work processes) there was no swapping activity at 
all and therefore we assume that the hypervisor 
causes the performance loss. The hypervisor is not 
able to handle a lot of memory activity very well. 
This assumption can be sustained by the current 
development of new virtualization features for 
CPU’s, like nested paging. We discovered a big 
difference between virtual and native SLCS 
instances. The performance of the virtual SLCS 
instances decreased dramatically up to 44%. For the 
individual ERP user in the real world there is one 
assumption: virtualization may cost significant 
performance. This should be kept in mind before 
starting virtualization projects where complex 
software systems e.g. ERP systems are to be 
migrated to virtualized environments. In high load 
situations this can lead to a massive performance 
bottleneck. 

3.2 Overcommitment Situations 

In this scenario the focus lies on overcommitment 
situations. Here the capability of the hypervisor to 
fairly share computing power to all VMs is of 
interest. The idea is to gain knowledge about these 
situations and get a first impression on high overload 
situations. 

3.2.1 Single Load Situation 

To investigate the overcommitment question, we ran 
several tests. In these tests, the number of work 
processes and the number of vCPU were varied. The 
first test run was done to see how the hypervisor 
scales the increasing load inside of one virtual 
machine with a rising amount of computing power. 
We configured one VM and increased the number of 
work processes and the number of configured 
vCPUs (see Figure 3). 

The lines in the diagram describe the average 
throughput for one SLCS instance with the changed 
number of assigned vCPUs. The first line shows the 
non-linear decreasing throughput when increasing 
the number of work processes. As the number of 
configured vCPUs is increased, a higher average 

throughput can be seen. With 4 vCPU this is not an 
overcommitment situation as the underlying 
machine has 4 CPU. But this test shows the native 
performance of one SLCS instances in a non-
overcommitment situation. 
 

CPU Load

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 2 3 4 5 6 7 8 9 10 11  12 
Number Work Processes

In
d

iv
id

u
a

l T
h

ro
u

g
h

p
u

t 
p

er
 s

e
c
 

1 Core
2 Core
3 Core
4 Core

 

Figure 3: Individual Throughput one virtual SLCS 
instance. 

3.2.2 Multiple Load Situation 

To establish a multiple load situation three parallel 
virtual machines with three working SLCS instances 
were ran. We changed the number of vCPUs in the 
virtual machines from 1 vCPU to 4 vCPU. Once 
again, the number of work processes per SLCS 
instance had to be limited to 6 because of memory 
limits. We focus on the hypervisors ability to share 
the available physical CPUs equally when more than 
one virtual machine try to get access to a physical 
CPU.  

Figure 4 shows the average throughput of three 
VMs with a varying number of vCPUs. To estimate 
the throughput of all VMs as one value, we use the 
average of all three throughput values. The fist line 
describes the average throughput of 3 VMs with 1 
vCPU per VM. This is currently not an 
overcommitment situation as the overcommitment 
factor is at 75%. This first test run showed an 
increasing average throughput for three VMs. It 
seems the saturation lies at ~40,900 throughputs per 
second. 

After the first test the number of vCPU were 
increased step-by-step. The highest average 
throughput is gained when only configuring two 
vCPUs per VM. The dotted line shows the average 
throughput of the 3 VMs, each configured with 2 
vCPUs. The overcommitment factor lies at 150% 
and the overall throughput with 6 configured work 
processes is ~52,500 throughputs per second. This 
configuration leads to the highest average 

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

352



 

throughput for 3 VMs. The diagram also shows the 
average throughput of 3 VMs, each configured with 
4 vCPUs. The overcommitment factor lies at 300% 
and the overall throughput with 6 configured work 
processes is ~47,700 throughputs per second. 

 

CPU Load for 3 VM

0

10000

20000

30000

40000

50000

60000

1 2 3 4 5 6

Number Work Processes

O
ve

ra
ll 

T
h

ro
u

g
h

pu
t 

pe
r s

ec

1 Core

2 Core
3 Core
4 Core

 

Figure 4: 3 VM with increased vCPUs per VM. 

3.2.3 Analysis and Implications 

The hypervisor is able to fairly share the physical 
CPU resource when only a limited number of 
vCPUs are assigned to VMs. Configuring an 
extreme overcommitment situation can lead to 
massive performance losses (as shown with 
4vCPU/VM). As the hypervisor is just an integrated 
part of a Sun Solaris operating system, the internal 
so called Fair Share Scheduler (FSS) of Solaris is 
responsible for sharing CPU and memory resources. 
As it is possible to configure the FSS we will focus 
on this feature in future research. 

Our assumption is that the hypervisor is not able 
to handle “overcommitment” situations very well. 
The more vCPUs we configured in the virtual 
machines, the less overall throughput was achieved. 
Especially when configuring an extreme situation, it 
seems that the hypervisor has to handle a lot of 
tasks/requests from the virtual machines and, 
therefore, the overall throughput decreases. 
Overcommitment is part of the reason why 
virtualization is of interest and we showed that 
extreme overcommitment can lead to massive  
performance losses. 

As overcommitment is one the most important 
reasons for introducing virtualization the 
virtualization should be aware of the extreme 
overcommitment situations which may lead to 
extreme performance degradations. Installing too 
many virtual machines without configuring them 
quite properly can lead to massive performance 
losses. It is important to dedicate the computing 

power to the virtual machines, which are under 
heavy user load and need that computing power. 

4 CONCLUSIONS AND 
FURTHER RESEARCH 

The performance overhead when using a 
paravirtualization solution was investigated in a 
testing environment. The test results showed a 
performance loss between 23% and 44%. Beside we 
showed that high swapping activity can become a 
very big performance degradation factor. Compared 
to other published performance tests e.g. Barham our 
gained loss is higher (see table 4). Barham 
determined up to 16.3% performance loss when 
utilizing a SPEC WEB99 benchmark. Performance 
tests from Cherkasova or Mennon using the httperf 
benchmark showed a bigger loss of up to 50% and 
33%.  

A comparison of our results to the results of web 
server benchmarks is not adequate because of the 
differing subjects and methods. To our knowledge 
there are no published research results regarding the 
performance of an ERP system that may be used for 
a comparison. since this is the case, we provide 
Table 3 as a comparison of available results.  

Table 3: Comparison of performance loss. 

Source Loss Testing method 

Zhang 2008 Up to 15% Kernel Build 

Barham 
2003 

Up to 16.3% SPEC WEB99 

Huang 2006 Up to 17% NAS Parallel Benchmarks 
Youseff 

2006 
Up to 30% MPI microbenchmark 

Mennon 
2005 

Up to 33% Httperf 

This paper Up to 44% SLCS 
Cherkasova 

2005 
Up to 50% Httperf 

A performance loss of 44% in the ERP system 
environment when stressing CPU and memory 
requires effort to better understand the reasons and 
improve the situation. We are aware of several 
initiatives to improve hardware architectures, I/O 
techniques and software architectures for a better 
support of virtualization. Therefore we need to 
investigate and evaluate new techniques for a better 
understanding of virtualization and the performance 
impact. 

Beside CPU and memory there is also I/O 
virtualization. Our research focuses on the 

PERFORMANCE OVERHEAD OF PARAVIRTUALIZATION ON AN EXEMPLARY ERP SYSTEM

353



 

performance impact when using different method of 
I/O binding. We want to focus on the underlying 
storage of VMs (different file systems and different 
types of storage) and different I/O binding types of 
storage inside the VMs. 

REFERENCES 

Apparao, P., Iyer, R., Zhang, X., Newell, D., Adelmeyer, 
T., Characterization & Analysis of a Server 
Consolidation Benchmark. In: Proceedings of the 
fourth ACM SIGPLAN/SIGOPS international 
conference on Virtual execution environments, Pages 
21-29 (2008) 

Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., 
Ho, A., Neugebauer, R., Pratt, I., Warfield, A., Xen 
and the Art of Virtualization. In: SOSP ’03 - 
Proceeding of the nineteenth ACM symposium on 
Operating systems principles, Pages 164-177, (2003) 

Cherkasova, L., Gardner, R., Measuring CPU Overhead 
for I/O Processing in the Xen Virtual Machine 
Monitor. In: Proceeding of the annual conference on 
USENIX Annual Technical Conference, Pages: 387-
390 (2005) 

Huang, W., Jiuxing, L., Abali, B., Dhabaleswar, K. P., A 
Case for High Performance Computing with Virtual 
Machines. In: ICS ’06: Proceedings of the 20th annual 
international conference on Supercomputting, Pages 
125-134 (2006) 

Jehle, H., Wittges, H., Bögelsack, A., Krcmar, H.: 
Virtualisierungsarchitekturen für den Betrieb von Very 
Large Business Applications. In: Proceedings of 
Multikonferenz Wirtschaftsinformatik, Pages 1901-
1912 (2008) 

Matthews, J. N., Hu, W., Hapuarachi, M., Deshane, T., 
Dimatos, D., Hamilton, G., McCabe, M., Quantifying 
the performance isolation properties of virtualization 
systems. In: ExpCS’07: Experimental computer 
science on Experimental computer science (2007) 

Kühnemund, H., Documentation for SLCS v2.3. SAP AG 
Walldorf (2007)  

Mennon, A., Santos, J. R., turner, Y., Janakiraman, G. J., 
Zwaenepoel, W, Diagnosing performance overheads 
in the xen virtual machine environment. In: 
Proceedings of the 1st ACM/USENIX international 
conference on Virtual execution environments, Pages 
13-23 (2005) 

Ongaro, D.,  Cox,  A. L.,  Rixner, S.,  Scheduling  I/O  in 
virtual machine monitors. In: Proceedings of the 
fourth ACM SIGPLAN/SIGOPS international 
conference on Virtual execution environments, Pages 
1-10 (2008) 

SPEC – Standard Performance Evaluation Corporation. 
http://spec.org/, accessed on 08/29/08 

Whitaker, A., Shaw, M., Gribble, S. D., Scale and 
performance in the Denali isolation kernel. In: 
Proceedings of the 5th symposium on Operating 

system design and implementation, Pages 195-209 
(2002) 

Youseff L., Wolski R., Gorda B., Krintz C., Evaluating the 
Performance Impact of Xen on MPI and Process 
Execution For HPC Systems. In: Proceedings of 
Second International Workshop on Virtualization 
Technology in Distributed Computing (2006) 

Zhang, X., Dong, Y., Optimizing Xen VMM Based on 
Intel® Virtualization Technology. In: Proceedings of 
the 2008 International Conference on Internet 
Computing in Science and Engineering, Pages 267-
274 (2008) 

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

354


