
AGILITY BY VIRTUE OF ARCHITECTURE MATURITY

Gouri Prakash
Business Risk Infrastructure Department, HSBC, U.S.A.

Keywords: Agile Software Process Models, Architecture Maturity.

Abstract: This position paper is to demonstrate how architecture maturity combined with the degree of agility
observed in software projects, results in four different types of projects, namely Experimental, Conservative,
Ceremonious and Optimizing and what the characteristics of each of these project types are. The paper puts
forth the position that project managers, should endeavour to elicit characteristics of software projects and
match them with the characteristics of the four project types, discussed in this paper, before embarking on
the project. By pursuing this approach, managers would be able to ascertain the benefits realized in pursuing
a particular project type for a given project and the difference between how things are and how things
should be and what factors can get them to a should-be position.

1 INTRODUCTION

Proponents of conservative methods of software
development that requires the observance of each
phase of software development ceremoniously, in
accordance with phases prescribed by the software
process model have low levels of acceptance for
agile methods, because agile methods accept the
notion of changing requirements and adapt to the
change. Agile practitioners on the other hand, are
reverent of experiential knowledge and regard
collaboration to be the guiding principle for current
and future software development endeavours, being
open to the idea of continuously learning while
adapting as the software project progresses. They
focus on adaptive development activities which can
be reactive in nature, with little or no regard to the
overall long term impact on the overall structural
framework of the architecture as long as customer
needs are meted on time. Agile software
methodology hence facilitates the deployment of
lightweight but disciplined methods of developing
software in timescales shorter than those
accomplished by the more traditional, conservative
approaches. Is the traditional, conservative approach
towards developing software a school of thought
separate from that of agile software development or
is it that there exist separate areas in the software
development lifecycle (SDLC) process, that
practitioners deliberately choose to focus on
depending on the purpose and the context within

which the software is developed. The move from
traditional, conservative approach for software
development to the more agile methods should be
observed when there is sufficient evidence to
support that the underlying system architecture is
mature enough to facilitate agile software
development. This is the recommended practice and
the central theme of this poster. Agility, when
observed in context of architecture maturity,
becomes a metric that measures it. Mature
architectures exemplify readiness for rapid
deployment of software in a way that is useful for
consumers of the software product.

2 ARCHITECTURE MATURITY

What is architecture maturity and what role does it
play in enabling agile software development?
Architecture maturity can be defined as the extent to
which a given conceptual schema of software
components serves as the representational design
pattern for a software development endeavour, by
virtue of past usage and performance of the schema
in multiple endeavours of a similar nature.
Architecture patterns that have a history of
successfully realizing a software product, in multiple
instances of software development projects, over a
long period of time, are mature enough to be
candidate architectures for existing and future
projects and thereby facilitate and enable agile

343Prakash G. (2010).
AGILITY BY VIRTUE OF ARCHITECTURE MATURITY.
In Proceedings of the 12th International Conference on Enterprise Information Systems - Databases and Information Systems Integration, pages
343-346
DOI: 10.5220/0002863703430346
Copyright c© SciTePress

software development methods. The architecture
pattern has been used so often in a variety of
projects that there is not much to be gained by trying
to “reinvent the wheel” by focusing on the system
architecture - instead the focus is on development
and maintenance activities and being able to respond
to changing requirements that meet the needs of
business in an agile manner, because such a focus
can be afforded, if the underlying architecture
pattern is mature. For example, the N-tier
architecture for developing an interactive website,
that makes use of the J2EE framework for realizing
the website implementation and that can be used
repetitively in a software project with similar goals,
is a mature architecture pattern.

The reason why agility is a function of
architecture maturity is because a mature
architecture reduces the technical risk associated
with a given design pattern upfront, giving software
practitioners more leeway in focusing on
development and maintenance activities as opposed
to architectural rightness as long as the experienced
agile practitioners on the team are well-versed with
the “ability” of the design pattern that is in use in the
project, its application in the correct context and the
extent to which the pattern can be stretched in
existing and future software development
endeavours. Additionally, from the standpoint of
project management, mature architectures shorten
the lead times required in delivering projects,
thereby resulting in timely delivery of software
projects. In short, mature architectures are “tried-
and-tested” structural frameworks that facilitate
agile software development.

2.1 Architecture Maturity and Agility
Matrix

Presented next, in Fig 1, is the Architecture Maturity
and Agility Matrix which shows the type of project
that ensues based on the relationship between the
degree of agility observed and the degree of maturity
of the underlying architecture in a given software
project.

Architecture maturity is on the X axis – and has
two discrete states - either the underlying
architecture for the software project is a “tried and
tested” framework and hence exhibits high maturity
or the underlying design pattern has not been around
long enough to qualify as a mature architecture for
software development projects and hence is
categorized as one with low maturity. Agility, here
on the Y axis represents the observance of agile
software development methods in software projects
and as such either agile methods are observed or not

observed – hence “low” indicates lack of observance
of agile development methods and “high” indicates
that agile methods dominate the software
development practices observed for the subject
project. Based on the degree of agility observed in
the software development project and the maturity of
the underlying architecture pattern, the matrix in Fig
1, indicates the resulting project types followed by a
description of these project types.

Figure 1: Architecture maturity and agility matrix.

2.1.1 Experimental

Software projects wherein the architecture maturity
is low but usage of agile methods pervasive are
primarily experimental projects wherein the team
members are not afraid to try new techniques in
order to quickly deliver on customer requirements.
They are open to the idea of experimenting with a
little known architecture pattern and choose to focus
on developing workable software that can be
delivered in short periods of time. For example, a
company that wants to develop an intranet solution
for its employees to keep them informed of the latest
events happening in the organization can potentially
adopt the Experimental model for doing the software
project. The software team would develop the
intranet using continuous feedback from their
customers, in this case the employees, to further
ascertain what content should be coded on the
intranet and what features the customers find useful.

2.1.2 Conservative

Software projects that have low architecture
maturity and where agile development methods are
not observed, are primarily conservative solutions
which take into account the high risk associated with
a lesser known and little used architectural pattern
and hence traditional methods for software

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

344

development are pursued for facilitating the software
project. For example, a state government wants to
install imaging systems at government controlled
toll gates, that accurately capture graphic images of
license plates of cars that pass through toll gates
without paying the toll, which would then be used
for generating letters sent to the person under whose
name the car is registered with a statement of fines
that the person of the car must pay to the
government, in order to avoid charges of breaking
the law purposefully. It is important that such a
system have a near zero rate of false positives and
false negatives and would have to be engineered
using conservative approaches before being put in
production. The project team implementing such a
project should use conservative techniques given
that the risks associated with system not working per
the goal is unacceptable and that the architecture
supporting the implementation has not been in use
long enough to qualify as a mature design pattern.

2.1.3 Ceremonious

When the architecture maturity is high, i.e. the
architecture is known to be robust in multiple
instances of software development projects and
when agile methods are conscientiously not
employed and practitioners choose the traditional
methods for software development, then the project
observes a high degree of ceremony – a practice
which can be revisited and re-assessed in the face of
high architecture maturity to determine whether
wastage of time and resources is occurring.
Conservative projects can also be ceremonious and
certainly vice versa, but conservatism in the former
case is driven primarily by low risk tolerance
associated with a little used design pattern and in the
latter case can be more attitudinal and cultural
however this may not necessarily always be the case.
For example, with the Sarbanes Oxley Act of 2002,
which applies to all organizations publicly traded on
any one of the US stock exchanges, firms are
expected to enforce detailed processes and extensive
documentation for all software projects implemented
within the organization and hence a culture of
conducting software projects ceremoniously is the
norm for these organizations.

2.1.4 Optimizing

Software development projects that make use of
mature architectures and deploy agile software
development methods are optimizing projects. These
projects leverage architecture maturity to eliminate
associated technical risks and make use of agile

methodology to adapt to and respond to changing
customer requirements. Software is developed
incrementally on a sound architectural foundation
with focus on implementing on-demand solutions in
short periods of time. Optimizing projects are thus
the result of high architecture maturity and high
degree of agility observed during software
development. Consider the case of context-aware IT
solutions, such as PeopleSoft that are created to
implement business processes relevant to a specific
domain – that of payroll processing.

2.2 Characteristics of the Project Types

Having discussed the four quadrants of the
architecture maturity and agility matrix, the question
is - is one quadrant superior to others when it comes
to deploying a project type that teams ought to
engage in, given a software development endeavour?
The answer is, it depends. Mature architectures were
also once nascent structural frameworks which
emerged borne out of the creative endeavours of
practitioners and with use over a period of time
proved to be mature enough to gain widespread
adoption in endeavours of a similar nature. At the
same time, different industries are subject to
different government policies and often legal and
compliance risks play a factor in choosing the more
traditional, conservative and ceremonious approach
to software development over agile methods. On the
other hand, experimental projects can yield highly
creative solutions and should not be discouraged if
the team is aware of the risks they are taking when
engaging in experimental software projects and the
fact that there is a possibility that such projects can
turn out to be of the “hit-or-miss” variety over the
long term.

The optimizing solution does tend to leverage
mature architectures – making use of agility in a
calculated manner, thereby being able to deliver
software in short cycles of time – a strong value
proposition for the customer or end users of the
software. It also leverages the maturity of the
underlying architecture which plays a fundamental
role in delivering reliable solutions. In fact, if the
underlying architecture is known to exhibit a high
degree of maturity, then agile methods should be
considered the best practice for software
development, unless there are other pressures or
forces in play that leave the team with no choice but
to adopt the ceremonious way of doing software
projects. It is also worthwhile noting, that as the
architecture maturity increases over a period of time,
development teams potentially first engage in

AGILITY BY VIRTUE OF ARCHITECTURE MATURITY

345

conservative projects, then potentially shift to
working on ceremonious projects and when the
architecture is mature enough, opt to engage in
optimizing projects. In the matrix, the move from
conservative to experimental to optimizing is less
likely than the move from conservative to
ceremonious to optimizing.

Table 1: Project Types and their characteristics.

C
h

ar
ac

te
ri

st
ic

E
xp

er
im

en
ta

l

C
on

se
rv

at
iv

e

C
er

em
on

io
us

O
p

ti
m

iz
in

g
Project Pace Fast Slow Slow Fast

Resilience to
change

High Low Low High

Risk Appetite
of Stakeholders

High Low Low Moderate

Customer
involvement

High
Low to

Moderate
Low to

Moderate
High

Dominant
Solution type

Workable Facilitative Formal
Improvi-
sational

Technical Risk High High Moderate Low

Examples
SCRUM,

XP
RUP,

Waterfall
RUP,

Waterfall
SCRUM,

XP

The table above demonstrates the typical
characteristics of project types given the degree of
agility observed in performing the software project
and the maturity of the architecture chosen for
constructing the system.

3 CONCLUSIONS

Architectures that facilitate agility have the ability to
satisfy customer needs and requirements more
quickly and efficiently, but such architectures lie at
the end of a spectrum of proven technological
patterns. Emerging technologies and the consequent
architectural patterns that implement these
technologies as well as their widespread use and
adoption contribute to making the architecture
pattern mature which in turn creates a generation of
“experienced” practitioners who advocate agility.
There is scope for deploying agile methods for little
known architectural patterns as well and this choice
reflects the risks that the software development team
and the stakeholders of the project are tolerant of
when embarking on the software development
projects. The objective of this poster is to facilitate

conscientious decision-making when determining
whether to adopt a conservative or ceremonious
approach or an experimental or optimizing approach
given the maturity of underlying architecture
supporting the system under development.

The recommendation of this paper is for the
project management team to initially make an
evaluation related to the maturity of the architecture
pattern utilized for the software solution, and an
assessment of the level of risks involved and the
amount of governance required to perform the
project. Based on the evaluation and assessment a
conscientious decision can be made on whether to
use agile processes to implement the solution or
traditional process models and in doing so
implement a project type that is one of experimental,
conservative, ceremonious or optimizing.

ACKNOWLEDGEMENTS

I would like to thank the sponsors of ICEIS 2010,
for providing the opportunity to address and discuss
issues and solutions related to software engineering.

REFERENCES

H. Erdogmus, "Architecture Meets Agility," IEEE
Software, vol. 26, no. 5, pp. 2-4, Sep./Oct. 2009

K. Schwaber and M. Beedle, “Agile Software
Development with Scrum”, Prentice Hall, 2001

N. Rozanski and E. Woods, “Software Systems
Architecture: Working with stakeholders Using
Viewpoints and Perspectives”, Addison-Wesley, 2005

Sidky, A. and Smith, G., Becoming Agile in an imperfect
World , Manning Publications Co., Greenwich CT
2009

S. W. Ambler, “Agile Architecture: Strategies for scaling
Agile Development”, 2001-2008, http://www.
agilemodeling.com

W. Cunningham, “Manifesto for Agile Software
Development”, http://www.agilemanifesto.com

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

346

