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Abstract. Three-dimensional motion analysis is a powerful tool fa &#ssess-
ment of human movements during different rehabilitatiopliations. An adap-
tive virtual reality rehabilitation environment which isfed on modern motion
and biosignal analysis techniques is described.

1 Introduction

Noninvasive brain computer interface (BCI) has in the régears become a highly ac-
tive research topic in neuroscience, engineering and lgigoeessing. BCls utilize neu-
rophysiological signals to interact with external deviaad computers. Despite diverse
applications that BCI technologies promise, the generahaunlogy may open new
opportunities for clinical rehabilitation, for exampley braining patients with move-
ment disabilities to control abnormal activity in selechrdin regions.

Stroke can affect physical, mental and social functionsability or paralysis is of-
ten affected only to one hemisphere, e.g. movements of amkdwn be impaired while
the other hand remains intact. Some stroke survivors exilair control of movement
smoothness [1], and movements seem to grow more smootheativery [2]. In mon-
itoring of rehabilitation of stroke patients, objectiveatvation methods are required.
Furthermore, evaluation of the effectiveness of rehalitin is also crucial. However,
at present monitoring can only be based on qualitative nteasgsuch as visual inter-
preting of movements during specific tasks.

Three-dimensional motion analysis techniques can be anjovemd objective tool
for the assessment of human movements and it can be used itonrehabilitation
progress. With an adaptive task setting customized to iddal patient's needs and
performances, motion analysis can give valuable quanttatformation. Additionally,
combining 3D motion analysis techniques with neurophysjmal signals could pro-
vide feedback for adaptive rehabilitation tasks, thushieirimproving the effectiveness
of the whole process. In this paper, a virtual, adaptive amdrollable rehabilitation
environment which uses modern motion and biosignal aretgshniques in parallel is
described.
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2 Multimodal Platform

Human motion, and thereby, performance in a specific reitetinin task can be tracked
by using motion analysis methods. The physiological or ophysiological status of
the patient, on the other hand, can be estimated from différiesignals acquired dur-
ing the rehabilitation task. By combining these modaljteesnultimodal platform for

monitoring of rehabilitation can be constructed.

2.1 Motion and Performance Tracking

Motion analysis methods have been widely used to measurenadél human move-
ments. Biomechanics can be considered as the base of modéomranalysis, which
aims for modeling of human body as a mechanical compositfgpints and rigid
segments [3]. Motion analysis can be considered to confibt@e components: kine-
matics, kinesiological electromyography (EMG) and kicgtKinematics examines the
motion of body segments from geometric point of view withpaling attention to
forces producing the movements, whereas kinetics intelforces and movements
produced by the forces [4, 5].

In human body modeling, the body is modeled as joints and $cened in more
sophisticated models, also muscles and ligaments aradietlin the model. The kine-
matic 3D human body model describes the translational matiw orientation of dif-
ferent body parts. By using the model various parametets aswelocities and accel-
erations of body segments or joint angles can be derivedifthiér analysis.

The most advanced methods in motion analysis, which candxkfos modeling of
movements of the whole human body, are based on photograiromethods [6]. The
camera technology has advanced during last years. CantédiziagiFireWire or Eth-
ernetinterface are nowadays available at a reasonabée ptiotogrammetry can be de-
fined as measurement of three-dimensional objects geothetygh two-dimensional
images. In motion analysis the photogrammetric methodsidized for determining
the temporal positions and orientations of body segmeritsivelp of markers attached
on the body. When the three-dimensional point of interegt, @ marker, is observed
simultaneously with at least two calibrated cameras, thee@@rdinates of the point
can be solved.

We have developed and built a flexible mobile motion analisi®ratory which
consists of multiple high speed cameras, image procesgsigrs, biosignal and in-
ertial sensor measurement system and pressure insolesefigeis suited for various
research projects as well as development of methods appliadtion analysis. As an
example, marker placements and marker trajectories fokitrg of hand in rehabilita-
tion task is shown in Fig. 1[7].

In many applications, motion tracking is performed in réalel This opens new
possibilities for adaptive and interactive task settimgpecially in virtual or augmented
reality (VR or AR) applications.

2.2 Biosignal Analysis Platform for BCIl Applications

Modeling brain’s activity following environmental stiriwdr in the context of dynam-
ically changing tasks is crucial for better understandimg tentral nervous system
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Fig. 1. The placement of retroreflective markers attached to haddtrajectories of markers
reconstructed from a grabbing task. A reconstructed 3Deahaoftthe hand [7].

(CNS). Ideally, methods for assessing brain’s ability teeiact with the environment
should be computationally feasible, adaptive, and semsiti cognitive changes. The
ultimate goal is to make joint inference about the CNS dyrarhased on complemen-
tary information from multimodal data sets [8], by condagtexperiments focusing on
adaptively changing cognitive tasks, such as time-varyiakload and task difficulty.
Furthermore, various autonomic nervous system signals asibeart rate (HR), blood
pressure (BP) and galvanic skin response (GSR) are alsatampdor phychophysio-
logical modeling and monitoring.

Electroencephalogram (EEG) provides information aboutalelynamics on a mil-
lisecond scale. EEG’s ability to characterize certain dbgnstates and to reveal patho-
logical conditions is well documented. A significant adway# of single-trial EEG anal-
ysis is that cortical reactivity and function can be asssgigh high-temporal reso-
lution. However, the limited signal-to-noise ratio (SNR)moninvasive brain signals,
makes the detection of single-trial events a difficult eation task. Traditional way
of analyzing event related potentials (ERPs), or any othenterelated biosignals, has
been to use heavy averaging, and thereby loosing significtarttrial variability. Re-
cently, several methods for single-trial estimation ofrevelated EEG have been pro-
posed [9-13].

Functional magnetic resonance imaging (fMRI) is anotherimasive method for
studying cognitive function by measuring the hemodynaragponse related to neu-
ral activity in the brain. The blood oxygenation level degent (BOLD) effect is used
for determining where activity occurs in the brain. The tielaship between stimula-
tion, neural activation, and BOLD response has been stuslie® fMRI was intro-
duced. However, it is still not yet thoroughly understoddhas been found that the
shape of the BOLD response varies across subjects and dtsa wiubject depending
on the type of the stimulus and active brain area. Recen@ysBased on single-trial
metabolic activity of the brain have been introduced, defjmew opportunities in neu-
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roscience research, for instance, for studying brainiglysaind functional reorganiza-
tion following sustained training [14]. Furthermore, sitanmeous acquisition of EEG
and fMRI combined with single-trial analysis provides ami@idnal monitoring tool
for the investigation of brain state fluctuations [15].
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Fig. 2. A closed-loop biosignal analysis system for BCl based optastimulation.

An illustration of a biosignal acquisition and analysistsys for BCI applications
is given in Fig. 2. The system is operating in two phases, hathe signal acquisition
and parameter estimation phase, and the feedback andwedegtitrol phase. During
the first phase, all relevant signals are simultaneouslgrdszi and synchronized in
relation to various tasks. Individual signals are prepssed simultaneously or sepa-
rately, depending on the type of the signal and task, forrateunoise reduction. Then,
features of interest are extracted for visualization,aatralysis, or classification. This
procedure is performed by combining all information extieaidrom multimodal mea-
surements with all available prior information in a Bayesimathematical framework.
In the second phase, event-related information is usedftoedend differentiate psy-
chophysiological states of the subject and subject’s pevdoce. Finally, the extracted
parameters are used as a feedback to the subject, for irstarecvisual feedback pro-
viding a reward mechanism or within a virtual reality envinoent. Furthermore, the
parameters can be directly used to adaptively change raiys$iaracteristics of the sen-
sory stimulation, for instance, type, intensity and dunatf the next stimulus, or even
to control task difficulty for optimal subject’'s performathus providing an adaptive
control mechanism.

Example 1: Dynamic Estimation of Event Related Potentials. An example of single-
trial estimation of evoked potentials is given in Fig. 3. histexample, measurements
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were obtained from an experiment with visual stimulatiomuinber of fixed intensity,
fixed duration flash stimuli were predefined and sequentdgljvered to the subject
through a monitor. A decrease in amplitude of the dominasitive peak is clearly
observed, suggesting possible habituation to the stgumogyimuli. For this particular
example, amplitude information can provide an indicatottti@ degree of habituation,
and thereafter used to adaptively change the stimuli chexistics in real time with

goal of forcing stable responses.

Visual stimulation (channel Oz)

Measurements W Kalman filter

Trial [{

-0.05 0 0.050.10.150.20.250.30.35 -0.05 0 0.050.10.150.2 0.25 0.3 0.35

Time [s] Measurements Time [s]
KE Averages
5
KS
Kalman smoother W z
s g
3 op
P
6 <

-0.05 0 0.050.10.150.20.25 0.3 0.35
4 Time [s]

Trial [q

2 Positive peak
0

‘ \ %
-4
-0.05 0 0.050.10.150.20.250.3 0.35 W
Time [s]

0.15
50 100 150 200 250 300
Trial [t]

o Amplitude [pV]
)

s
I

Latency [s]
o
o
&

Fig. 3. Tracking single-trial characteristics (amplitude anctety) of evoked potentials during
visual stimulation with a Kalman filter based approach.

Example 2: Single-trial Estimation of Multimodal Brain Responses. In simultane-
ous fMRI/EEG studies, the necessity of single-trial apphes is recognized. Single-
trial EEG estimates are usually used as predictors for tikelwwise activity. However,
most of the approaches do not take into account variatiomaratency or shape of the
BOLD response. In Fig. 4, an example of single trial fMRI/EB@alysis is illustrated.
A set of simultaneous fMRI and ERP measurements was acqaineldn the approach
a joint model is defined and parameter estimates are obt#inedgh subspace regu-
larization [16].
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Fig. 4. Typical BOLD response estimates when reaction time locke® Eesponses are used in
the regularization. (a) Concatenated data of the 62 BOLpamrses and ERPs from channel Cz
(bottom) and mean of the data (top). The amplitudes of the de¢ arbitrary and x-scale is in

points. (b) Correlation matrix of the concatenated data.

Example 3: Dynamic Estimation of Heart Rate Variability (HRV). HRV is a re-
liable quantitative marker of ANS activity. HRV is typicglassessed with a group of
time and frequency-domain methods. By using these methielactivities of the sym-
pathetic and parasympathetic branches of ANS can be eedluatd thus, useful in-
formation of the (neuro)physiological state of the subant be extracted. In Fig. 5,
dynamic HRV analysis corresponding to a sudden change isiplogy caused by an
orthostatic test is shown. This example demonstrates haertthe changes in heart
rate and also in HRV characteristics can be in case of a chiamig/siology.

3 Virtual Rehabilitation Environment

Three-dimensional motion analysis techniques can be a noand objective tool
for the assessment of human movements and it can be used ftorrehabilitation
progress. With an adaptive task setting customized to iddal patient's needs and
performances, motion analysis can give valuable quanttatformation. Combining
3D motion analysis techniques with neurophysiologicatalg could provide feedback
for adaptive rehabilitation tasks, thus further improvihg effectiveness of the whole
process. In order to be practically applicable, such a syki&s to be highly automatized
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Fig. 5. Tracking changes in HRV spectrum during an orthostatic(standup test). Screen-shot
from Kubios HRV software [http://kubios.uku.fi].

and robust. Furthermore, a virtual reality environment BYyRvhich can be applied to
various rehabilitation tasks will extend the applicaliind performance of the system.
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Fig. 6. Schematic diagram of virtual rehabilitation environment.

The main components of VRE are real time motion trackergtienensional VR
goggles and visualization engine, EEG and other biosigredsurement system and
adaptive signal feedback driven task control system. Armgia of such a VRE is
illustrated in Fig. 6. Such approaches, when utilized fbatglitation or clinical appli-
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cations, will enable more realistic and motivating tasksdatients. Finally, VR envi-
ronments are easily controlled and patient safe, e.g. walksimulation.
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