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Abstract: Holistic and feature-based processing have both been shown to be involved differently in the analysis of 
facial expression by human observer. The current paper proposes a novel method based on the combination 
of both approaches for the segmentation of “emotional segments” and the dynamic recognition of the 
corresponding facial expressions.  The proposed model is a new advancement of a previously proposed 
feature-based model for static facial expression recognition (Hammal et al., 2007). First, a new spatial 
filtering method is introduced for the holistic processing of the face towards the automatic segmentation of 
“emotional segments”. Secondly, the new filtering-based method is applied as a feature-based processing 
for the automatic and precise segmentation of the transient facial features and estimation of their orientation. 
Third, a dynamic and progressive fusion process of the permanent and transient facial feature deformations 
is made inside each “emotional segment” for a temporal recognition of the corresponding facial expression. 
Experimental results show the robustness of the holistic and feature-based analysis, notably for the analysis 
of multi-expression sequences. Moreover compared to the static facial expression classification, the 
obtained performances increase by 12% and compare favorably to human observers’ performances. 

1 INTRODUCTION 

Significant efforts have been made during the past 
two decades to improve the automatic recognition of 
facial expressions in order to understand and 
appropriately respond to the users intentions. 
Applied in every day life situations (for example 
monitoring facial expression of Pain), such a system 
must be sensitive to the temporal behavior of the 
human face and able to analyze consecutive facial 
expressions without interruption. Yet, few efforts 
have been made so far for the dynamic recognition 
of multiple facial expressions in video sequences. 
Indeed, most of the past work on facial expressions 
recognition focused on static classification or at best 
assume that there is only one expression in the 
studied sequences. Recent studies have investigated 
the temporal information for the recognition of facial 
expressions (Pantic et al., 2009). For example Pantic 
et al., 2006; Valstar et al., 2007; Koelstra et al., 

2008 introduced the temporal information for the 
recognition of Action Units (AUs) activation into 4 
temporal segments (e.g. neutral, onset, apex, offset) 
in a predefined number of frames, while Tong et al., 
2007, introduced the temporal correlation between 
different AUs for their recognition. However, in our 
point in view these systems bypass the problem of 
facial expression recognition (which requires an 
additional processing step after detecting the AUs) 
and they do not allow to explicitly recognize more 
than one facial expression in a video sequence. 
Compared to these models, Zhang et al., 2005; 
Gralewski et al., 2006; Littlewort et al., 2006, 
introduced the temporal information for facial 
expression recognition. However, the temporal 
information was mainly introduced in order to 
improve the systems’ performances. None of the 
proposed methods take explicitly into account the 
temporal dynamic of the facial features and their 
asynchronous deformation from the beginning to the 
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end of the facial expressions. Moreover, all the 
proposed methods are either holistic (analysis of the 
whole texture of the face, Littlewort et al., 2006; 
Tong et al., 2007) or feature-based (analysis of 
facial features information such as eyes, eyebrows 
and mouth, Pantic et al., 2006; Valstar et al., 2007; 
Koelstra et al., 2008), or at best combine the 
permanent and transient facial features (i.e. wrinkles 
in a set of selected areas, Zhang et al., 2005) for the 
automatic recognition of facial expression. However, 
it has been established in psychology that holistic 
and feature-based processing are both engaged in 
facial expressions recognition (Kaiser et al., 2006). 
Compared to these methods, the current contribution 
proposed a new video based method for facial 
expressions recognition, which exploits both holistic 
and feature-based processing. The proposed holistic 
processing is employed for the automatic 
segmentation of consecutive “emotional segments” 
(i.e. a set of consecutive frames corresponding to a 
facial muscles activation compared to a Neutral 
state), and consists in the estimation of the global 
energy of the face by a multiscale spatial-filtering 
using log-Normal filters. The feature-based 
processing consists in the dynamic and progressive 
analysis of permanent and transient facial feature 
behavior inside each emotional segment for the 
recognition of the corresponding facial expression. 
The dynamic and progressive fusion process allows 
dealing with asynchronous facial feature 
deformations. The permanent facial features 
information is measured by a set of characteristic 
points around the eyes, the eyebrows and the mouth 
based on the work of Hammal et al., (Hammal et al., 
2006). A new filtering-based method is proposed for 
transient facial features segmentation. Compared to 
the commonly proposed canny based methods for 
wrinkles detection (Tian et al., 2001; Zhang et al., 
2005), the proposed spatial filtering method provides 
a precise detection of the transient features and an 
estimation of their orientation in a single pass. The 
fusion of all the facial features information is based 
on the Transferable Belief Model (TBM) (Smets et 
al. 1994). The TBM has already proved its 
suitability for facial expression classification 
(Hammal et al., 2007) and to explicitly model the 
doubt between expressions in the case of blends, 
combinations or uncertainty between two or several 
facial expressions. Given the critical factor of the 
temporal dynamics of facial features for facial 
expressions recognition, a dynamic and progressive 
fusion process of the permanent and of the transient 
facial features information (dealing with 
asynchronous behaviour) is made inside each 
emotional segment from the beginning to the end 

based on the temporal modelling of the TBM. 

2 HOLISTIC AND FEATURE 
BASED PROCESSING  

Facial expression results from the contraction of the 
permanent facial feature (such as eyes, eyebrows 
and mouth) and the skin texture deformations 
leading to the appearance of transient features (such 
as nasolabial furrows and nasal root wrinkles) (Tian 
et al., 2005). Based on these considerations, a 
holistic (whole face analysis) and feature based 
(individual analysis of each facial feature) 
processing are proposed for measuring expressive 
deformation, transient feature segmentation and 
facial expression recognition. 

2.1 Holistic Face Processing for 
Emotional Segment Detection  

An emotional segment corresponds to all the frames 
between each pair of beginning and end of each 
facial expression. Facial muscle activation during 
facial expressions induces local changes in spatial 
frequencies and orientations of the face compared to 
the relaxation state (i.e. Neutral). These global 
changes can be measured by the energy response of 
a bank of filters at different frequencies and 
orientations. The current paper presents a holistic 
face processing technique based on a Log-Normal 
filtering process for dynamic detection of pairs of 
beginning and end of multiple emotional segments 
in video sequences.  

Log-Normal Filtering. The studied face is first 
automatically detected in video streams using the 
method proposed by (Fasel et al., 2005) and tracked 
in the remaining of the sequence (Hammal et al., 
2006). To cope with the problem of illumination 
variation, a preprocessing stage based on a model of 
the human retina (Beaudot, 1994) is applied to each 
detected face (see Figure 1.b). This processing 
enhances the contours and realizes a local correction 
of the illumination variation. To take away the frame 
border information and to only measure the facial 
deformations, a Hamming circular window is 
applied to the filtered face (Figure 1.b). The power 
spectra of the obtained face area is then passed 
through a bank of Log-Normal filters (15 
orientations and 2 central frequencies), leading to a 
collection of features measuring the amount of 
energy displayed by the face at different frequency 
bands and across all orientations (Figure 1.c). The 
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Log-Normal filters are chosen because of their 
advantage of being easily tuned and separable in 
frequency and orientation (Massot et al., 2008) 
which make them well suited for detecting features 
at different scales and orientations (see section 
2.2.2). They are defined as follow: 
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Where Gi, j
 is the transfer function of the filter, Gi( f )  

and G j (θ) , respectively, represents the frequency and              
the orientation components of the filter; fi is the 
central frequency, θ j , the central orientation, σ r, the 
frequency bandwidth, σθ , the orientation bandwidth 
and A, a normalization factor.  

Emotional Segments: Detection. Facial muscle 
activity is measured by the energy of the obtained 
filters’ responses. The amount of energy displayed 
by the face at two high frequencies ( f1 = 0.25 and 
f2 = 0.17) and across all orientations are summed 

and called global energy as follow: 

Eglobal =
i=1..2
∑ ||Sframe( f ,θ)*Gi, j( f ,θ)

j=1..15
∑ ||2 (2)

Where E global  is the global energy of the face and 
S frame ( f ,θ) , the power spectra of the current frame. 
The obtained results (Figure 1.d) show high-energy 
response (white areas) around the permanent facial 
features (such as eyes, eyebrows and mouth) and 
transient facial features (such as nasolabial furrows 
and nasal root wrinkles). These examples show that 
facial feature behaviors effectively induce a change 
of the measured global energy. 

 
Figure 1: (a) input image, (b) after retinal filtering and 
with a hamming window, (c) bank of Log-Normal filters, 
(d) global energy response of Log-Normal filter during 
three facial expressions. 

Figure 2 shows examples of the temporal evolution 
of the global energy of different subjects and for 
different facial expressions going from Neutral to 
the apex of the expression and coming back to 
Neutral. Similar evolutions can be observed for all 
the subjects independently of individual 

morphological differences and facial expressions. 
The global energy is then used to detect each 
emotional segment as the set of frames between each 
pair of beginning and end. The beginning of each 
facial expression is characterized by the increase of 
the global energy of the face and the end as the 
coming-back of this energy to its value at the 
beginning taken as a reference value. 

 
Figure 2: Time course of the global energy (normalized in 
amplitude and length) for 3 facial expressions and for 9 
subjects from the Hammal–Caplier database. Black curves 
correspond to the mean curve of all the subjects. 

The detection of the beginning Fb

 

of each emotional 
segment is computed based on the derivative of the 
global energy signal d

dt
(Eglobal ) . Indeed, a positive 

peak of the corresponding derivative function 
directly traduces an increase of the global energy. 
The temporal average Mt  of the derivative function 
of the global energy and its standard deviation St

 from the beginning of the sequence (or from the end 
of a previous segment) are computed progressively. 
The beginning Fb

 

corresponds to the first frame 
verifying:  

d
dt (Eglobal(Fb))>(Mt + St) (3)

                                

 

The detection of the end of each emotional segment 
Fe is made after each beginning frame. The end of 
each segment is considered as the coming back of 
the global energy to a reference value. To do so, the 
detection process begins 12 frames after the 
beginning of the segment (i.e. the minimum time 
necessary for a complete muscle activity 
(contraction and relaxation), see (Ekman et al., 
1978) and section 2.1.3). A temporal sliding window 
of 6 frames (time for muscle contraction, see section 
2.1.3) is then used to measure the local average of 
the global energy signal. The first frame verifying 
equation 4 is considered as the end of the current 
emotional segment. 

(Mt −St) <=Eglobal(Fe) <=(Mt + St) (4)

It is important to notice that the proposed method 
allows the detection of each pair ( Fb , Fe) on-line, 
without any post-processing step, and makes it 
independent of the absolute level of global energy 
that can be dependent of the expression intensity or 
face morphology. Figure 3 shows examples of 
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detection of expressive segments from the Hammal-
Caplier and the MMI databases (the MMI-Facial 
Expression Database collected by M. Pantic and her 
group (www.mmifacedb.com), Pantic et al. 2005). 
The automatic segmentation appears very 
comparable to a manual segmentation and robust to 
variable duration of the expressive segments.  

 
Figure 3: Example of detection of the beginning and the 
end on Hammal-Caplier (top) and MMI (bottom) 
databases. Dashed lined correspond to the automatic 
results and plain lines to expert manual segmentation.  

The detection of the beginning and the end of facial 
expressions can also be applied several times during 
a multi-expression sequence. Figure 4 shows the 
evolution of the global energy during a sequence 
where the subject expressed 4 different facial 
expressions sequentially. Each beginning is detected 
(using equation 3) starting either at the first frame of 
the sequence or at the frame following immediately 
the last detected end (using equation 4).  

 
Figure 4: Example of automatic segmentation result of one 
sequence containing 4 expression segments. Dashed lines 
correspond to each detected pair of beginning and end. 

The obtained result shows how the proposed method 
successfully detects the different emotional 
segments. At best of our knowledge, this is the first 
time where several facial expression segments are 
automatically detected in a video sequence. After the 
segmentation process each expressive segment is 
automatically and independently analyzed to  
recognize the corresponding facial expression based 
on a feature-based processing. 

Emotional Segments: Performances. Intensive 
tests on dynamic facial expression sequences (single 
facial expression sequences such as Hammal-Caplier 
and MMI databases) and multi-expressions 
sequences (4 facial expression sequences acquired in 

our laboratory) show the robustness of the proposed 
method to different acquisition conditions, 
individual differences and displayed facial 
expressions. Table 1 summarizes the mean frame 
differences between the automatic detection of the 
beginning and the end compared to a manual 
detection (which may also vary for different 
experts). Over all the used sequences (96 in total) 
the mean frame difference for the beginning and end 
detection is 8.1. This result can be related to findings 
that suggested that temporal changes in 
neuromuscular facial activity are from 0.25s to 
several minutes (Ekman et al., 1978). The obtained 
error based on a minimum video frame rate of 24 
frames/s is comparable to the shortest facial muscle 
activity duration (i.e. 6 frames).  

Table 1: Detection errors of the beginning and the end of 
emotional segments and number of tested sequences. 

 beginning end errors # seq. 
Hammal_Caplier 9.24 frames 12.6 frames 63 
MMI 3.42 frames 7.5 frames 29 
Multi-expression 5.6 frames 10 frames 4 

Considering that each result with an error less then 6  
frames as a good detection, the performances of the 
emotional segments detection reach 89%. It is 
difficult to compare the obtained results to the few 
proposed works for the automatic recognition of 
multiple expressions because they either classify 
segments of AUs of did not report a quantitative 
evaluation of an expressive segment detection.  

2.2 Feature-based Processing of 
Emotional Segments  

Feature-based processing consists in the 
combination of the information resulting from the 
permanent and the transient facial feature 
deformations for the recognition of facial 
expressions    during   each     emotional     segment. 

2.2.1 Permanent Facial Feature Information 

The permanent facial feature behavior is measured 
based on the work of Hammal et al., 2007. First, 
face and permanent facial features (eyes, eyebrows 
and mouth) are automatically segmented (see 
Hammal et al., 2006 and Figure 5.a). Secondly, five 
characteristic distances Di  1 ≤ i ≤ 5  coding the 
displacement of a set of selected facial feature points 
according to the Neutral state are measured (Figure 
5.b, see Hammal et al., 2007 for detailed explanation 
of this choice). Facial expressions are then 
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Areas Regions description 
1 Y11=a(y)-0.7*W;X11= b(x)+2 

Y12=a(y)+0.4*W;X12= d(x)-2 
2 Y21=Y12; X21=c(x)+R 

Y22=Y12+1.5*W;X22=X11 
3 Y31=Y12; X31=f(x)+R 

Y32=Y12+1.5*W; X32=X12 

characterized by the behavior of the measured 
characteristic distances.  

 
(a)                                                  (b) 

Figure 5: (a) Example of facial features segmentation 
(Hammal et al., 2006); (b) associated characteristic 
distances (Hammal et al., 2007).  

2.2.2 Transient Facial Feature Information 

In addition to the permanent facial features (Hammal 
et al., 2007) and in order to provide additional 
information to support the recognition of facial 
expressions, the analysis of the transient facial 
features such as nasal root wrinkles (Figure 6 Areas 
1) and the nasolabial furrows (Figure 6 Areas 2,3) 
(being part of the most important visual cues used by 
human observer for facial expression recognition 
(Smith et al., 2005)) is introduced. Transient facial 
feature areas are first located based on the 
permanent facial features segmentation (Figure 6). 
The filtering based-method proposed in section 2.1 
is then applied inside each selected area for the 
estimation their appearance and the corresponding 
orientation when necessary. Figure 7 shows the 
different processing steps.  

After the selection process (Figure 7.b), a Hamming 
window is applied to each area (Figure 7.c).  

 
 
 
 

             (a)                                      (b) 

Figure 6: (a) detected wrinkles regions, (b) transient 
feature areas, R: eyes radius, W the distance between eyes 
corners. 

 
Figure 7: Transient features detection and orientation 
estimation. 

The response of orientation bands B j,t  that 
corresponds to the sum of the responses of all filters 
sharing   the   same  central  orientation  at  different 
spatial frequencies (Figure 7.d grey) is measured as:  

Bj,t = ||St( f ,θ).Gi, j( f ,θ)
i=1..7
∑ ||2 (5)

      

 

This allows analyzing an oriented transient feature 
independently of its spatial frequency making the 
detection more robust to individual morphological 
differences. 

Wrinkles detection: for each frame t, nasal root 
wrinkles and nasolabial furrows are detected based 
on the sum of total energy Et  over all the 
orientation bands j inside each selected area as: 

E t = B j,t

j=1..15
∑  (6)

Wrinkles are “present” if Et  is higher than a 
predefined threshold and “absent” otherwise. 
Threshold values on the energy measure are 
obtained after learning process over three 
benchmark databases (Cohn-Kanade, Dailey-Cottrel 
and STOIC databases) and generalized on the 
Hammal-Caplier database. Table 2 shows the 
detection  performances.  The  obtained   results  are 
more than sufficient to reinforce the permanent 
facial features information. 
Indeed as explained in section 3.1.2, if they are 
present the corresponding information will  be  taken 
into account as a refinement of the classification 
process otherwise the doubt resulting from the 
permanent facial feature analysis is kept rather than 
making a wrong decision.  

Table 2: Detection performances of the transient features; 
the threshold value has been chosen equal to 0.12 in order 
to minimize false alarms’ rate. 

 Recall % Precision % F-measure 
Nasal Roots 73 71 72 
Nasolabial  
Furrows 

86 85 86 

Nasolabial furrows orientation: once the nasolabial 
furrows detected, their orientation (the angle 
between their edge line and the horizontal plan of 
the corresponding area) is measured by linear 
combination of the orientation bands responses as:  

θt = B j ,t

j=1..15
∑ .θ j  (7)

Figure 8 shows examples of dynamic detection of 
nasolabial furrows and nasal roots wrinkles during 
sequences  of  Happiness   and Disgust  expressions.  
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(a)  (b)  

Figure 8: Example of nasolabial furrows and nasal roots detection during Happiness (a) and Disgust (b) sequences; gray 
temporal windows (second rows) indicate the temporal presence of the transient features based on the energy threshold 
(0.11, validated on three databases); third rows display the measured angles of the nasolabial furrows (around 60° for 
Happiness and 45° for Disgust). 

One can see that nasal roots appear for Disgust but 
not for Happiness and that nasolabial orientations 
are different according of the expression. These 
examples show the usefulness of these wrinkles to 
characterize the corresponding facial expressions.  

2.3 Numerical to Symbolic 
Conversion of Facial Features 
Behavior 

A numerical to symbolic conversion translates the 
measured distances, transient features and the 
corresponding angles into symbolic states 
reflecting their behavior. First, the value of each 
characteristic distance Di  is coded with five 
symbolic states (based on the work of Hammal et 
al., 2007) reflecting the magnitude of the 
corresponding deformations: Si  if Di  is roughly 
equal to its value in the Neutral expression, Ci

+ (vs. 
Ci

−) if Di  is significantly higher (vs. lower) than its 
value in the Neutral expression, and Si ∪ Ci

+  (vs. 
Si ∪ Ci

−) if the Di  is neither sufficiently higher (vs. 
lower) to be in Ci

+ (vs. Ci
−), nor sufficiently stable 

to be in Si . Following this symbolic association, 
two states are introduced for Nasal root and 
nasolabial furrows behaviors: “present” Pj  or 
“absent” A j  1≤ j ≤ 2 according to the 
corresponding energy measure as described in 
section 2.2.2. The explicit doubt of their state 
Pj ∪ Aj  ( Pj or A j ) is introduced and allows 
modeling the uncertainty of their detection (see 
section 3.1). Finally, two symbolic states are also 
introduced for nasolabial furrows angles: “opened” 
Op and “closed” Cl. If the angle is higher (resp. 
lower) than a predefined value the state Op  (resp. 
Cl) is chosen. As for the wrinkles detection a 
doubt state Op ∪ Cl  is also introduced to model 

the uncertainty of the measured angles (see section 
3.1). 
Table 3 summarizes the characteristic distances, 
the transient feature and the nasolabial furrow 
angle states for each facial expression. However, a 
logic-based system is not sufficient to model the 
facial expressions. Indeed, an automatic facial 
expression system should explicitly model the 
doubt and uncertainty of the sensors (such as 
Pj ∪ A j  states) generating its conclusion with 
confidence that reflects uncertainty of the sensors 
detection and tracking. For this reason, the 
Transferable Belief Model (TBM) is used. 

3 TBM BELIEF MODELING  

The TBM (Smets et al., 1994) considers the 
definition of the frame of discernment of N 
exclusive and exhaustive hypotheses 
characterizing 
the six basic facial expressions and Neutral Ω = 
{Happiness ( E1), Surprise ( E 2), Disgust ( E 3), 
Fear ( E4 ), Anger ( E 5), Sadness ( E 6), Neutral 
( E 7)}. The TBM requires the definition of the 
Basic Belief Assignment (BBA) associated to each 
independent source of information.  

(a)       

(b)   (c)  

Figure 9: (a): model of BBAs for the characteristic 
distances (Hammal et al., 2007); (b): model of BBAs for 
the transient features detection; (c): model of BBAs of 
the Nasolabial furrow angles.  
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Table 3: Rules table defining the visual cues states corresponding to each facial expression. 

                    
 D1 D2  D3  D4  D5  TF1 TF2 An  

Happiness C1
−  S2 ∪ C2

−  C3
+  C4

+  C5
−  A1 P2  Op  

Surprise C1
+ C2

+ C3
−  C4

+  C5
+  A1 A2 - 

Disgust C1
−  C2

−  S3 ∪ C3
+  C4

+  S5  P1 P2  Cl  

Anger C1
−  C2

−  S3  S 4∪C4
−  S5  P1 P2  Op ∪ Cl  

Sadness C1
−  C2

+ S3  C4
+  S5  A1 A2 - 

Fear C1
+ S2 ∪ C2

+  S3 ∪ C3
−  S4 ∪ C4

+  S5 ∪ C5
+  A1 A2 - 

Neutral S1 S2  S3 S4  S5  A1 A2 - 
 
3.1 Belief Modeling  

The belief definition means the definition of the 
BBAs of each visual cue and is equivalent to the 
probabilities definition in the Bayesian model.  

3.1.1 Beliefs of the Permanent Facial 
Features  

The BBA of the permanent facial features 
(characteristic distances) is based on the work of 
Hammal et al., 2007. The BBA mDi

ΩDi  of each 
characteristic distance state Di  is defined as: 

mDi
ΩDi 2ΩDi → 0, 1[ ] 

AΩ Di → mDi
Ω Di (A), mDi

ΩDi

A ∈2ΩDi

∑ =1       1 ≤ i ≤ 5  (8)

Where ΩDi = {Ci
+,Ci

−,Si} is the power set,  
2Ω Di = {{Ci

+},{Ci
−},{Si},{Si,Ci

+},{Si,Ci
−},{Si,Ci

+,Ci
−}} 

the frame of discernment, {Si,Ci
+}(vs. {Si,Ci

−}) the 
doubt state between Ci

+ (vs. Ci
−) and Si , mDi

ΩDi (A) , 
the belief in the proposition A ∈ 2ΩDi  without 
favoring any proposition of A in case of doubt 
proposition. This is the main difference with the 
Bayesian model, which implies equiprobability of 
the propositions of A. The piece of evidence 
mDi

ΩDi associated with each symbolic state given the 
value of the characteristic distance Di  is defined by 
the model depicted in Figure 9.a.  

3.1.2 Beliefs of the Transient Facial Features  

Presence: The BBA mTFj

Ω TF j  of the states of each 
transient feature TFi  is defined as:  
 
 

mTFj

ΩTF j 2ΩTF j → 0, 1[ ] 
BΩ TF j → mTF j

Ω TF j (B), mTFj

ΩTF j

B ∈2ΩTF j

∑ =11 ≤ j ≤ 2
(9)

Where TF1 means the nasal root wrinkles, TF2, the 
nasolabial furrow, ΩTF j = {Pj , A j} , 
2Ω TF j = {{Pj },{ A j },{Pj , A j}} . From the frame of 
discernment 2Ω TF j only the states Pj  (the wrinkles 
are present without any doubt) and the state {Pj , A j} 
(there is a doubt in their detection and noted 
Pj ∪ A j ) are considered. Then if the wrinkles are 
detected as present (the energy threshold is higher 
than the defined value) the corresponding state is Pj  
if not, the corresponding state is Pj ∪ A j . The piece 
of evidence mTFj

ΩTFj  of each state is derived according 
to the model depicted in Figure 9.b. The nasal root 
wrinkles are used as a refinement process and are 
associated to Disgust and Anger expressions 
(without favoring any of them). If they are present 
the current expression is Disgust or Anger with the 
piece of evidence: mTF1

ΩTF1 (P1) = mTF1

ΩTF1 (E3 ∪ E5) =1. If they 
are not present, the current expression can be one of 
the 7 studied expressions with the piece of evidence: 
mTF1

ΩTF1 (P1 ∪ A1) = mTF1

ΩTF1 (E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5 ∪ E6 ∪ E7) =1
If present, the nasolabial furrows are associated to 
Happiness, Disgust and Anger expressions with the 
piece of evidence: mTF2

ΩTF2 (P2) = mTF2

ΩTF2 (E1 ∪ E3 ∪ E5) =1. If 
they are absent: the current expression is one of the 
7 expressions with the piece of evidence: 
mTF2

ΩTF2 (P2 ∪ A2) = mTF2

ΩTF2 (E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5 ∪ E6 ∪ E7) =1. 
Orientation: The BBAs of the nasolabial furrow 
angle states are defined as: 

mAn
ΩAn 2ΩAn → 0, 1[ ] 

CΩ An → mAn
ΩAn (C), mAn

ΩAn

C ∈2ΩAn

∑ =1 
(10)
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Figure 10: (a) Example of the increasing temporal window during a sequence of Disgust expression; (b) BBAs selection 
refinement process at time k; (c) Example of the selection of the characteristic distance states inside the temporal window.  

Where An  is the angle, ΩAn = {Op,Cl}, 
2Ω An = {{Op},{Cl},{Op,Cl}}, Op  and Cl  mean 
opened and closed angles (see section 2.2.2) 
{Op,Cl} means Op or Cl  and corresponds to the 
doubt between Op and Cl  (noted Op∪ Cl). The 
pieces of evidence associated to the states of the 
computed detected angles are defined using the 
model proposed in Figure 9.c. Based on the BBAs of 
the nasolabial furrow angle states, the piece of 
evidence associated to each one of the 3 expressions 
Happiness ( E1), Anger ( E3) and Disgust ( E5) is  
based on the fuzzy-like model of Figure 9.d as:  
mAn

Ω An (An ≤ s1) = mAn
Ω An (Cl) = mAn

Ω An (E 5 ) = 1 
mAn

ΩAn (An ≥ s4) = mAn
ΩAn (Op) = mAn

ΩAn (E1) =1
mAn

ΩAn (s2 ≤ An ≤ s3) = mAn
ΩAn (Op∪Cl) = mAn

ΩAn (E1 ∪ E3 ∪ E5) =1 

In the other cases the piece of evidence of the 
expression or subset of expressions is equal to the 
projection of the angle value on the proposed model. 

4 TEMPORAL INFORMATION 

The dynamic and asynchronous behavior of the 
facial features is introduced by combining at each 
time t their previous deformations from the 
beginning until the end of each emotional segment 
(see Section 2) to take a decision. The analysis of the 
facial feature states is made inside an increasing 
temporal window Δt  (Figure 10. a). The size of the 
window Δt increases progressively at each time from 
the detection of the beginning until the detection of 
the end of the expression. Then, at each time t inside 
the window Δt, the current state of each facial 
feature (i.e. characteristic distances and transient 
features) is selected based on the combination of 
their current state at time t and of the whole set of 
their past states since the beginning which then takes 
into account their dynamic and asynchronous facial 

feature deformations (Figure 10.b). The dynamic 
fusion of the BBAs is made according to the number 
of appearance of each symbolic state noted 
Nb

Δt
(state) and their integral (sum) of plausibility 

noted Pl
Δt

(state)  computed progressively inside the 

temporal window Δt . For instance, for a 
characteristic distance Di and for the state = C− : 

Kt (C−) =
1 if mDi (C−) ≠ 0

0 otherwise 1 ≤ t ≤ Δt

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
Nb

Δt
(C−) = Kt (C−)

t=1

Δt

∑ (11)

Pl
Δt

(C− ) = (mD j (C− ) +
t=1

Δt

∑ mD j (S ∪ C−))
 

(12)

From the two parameters Nb
Δt

(state) and Pl
Δt

(state) , 

the selected states of each visual cues at each time t 
inside the temporal window Δt are chosen as: 

State(Di)
Δt

= max(Pl
Δt

(stateDi ) /Nb
Δt

(stateDi ))  
state D i ∈ Ci

+,Ci
−,Si ∪ Ci

+,Si ∪ Ci
−{ }1 ≤ i ≤ 5 

(13)

State(TR j )
Δt

= max(Pl
Δt

(stateTRj ) /Nb
Δt

(stateTRj ))  
state TR j ∈ P j , P j ∪ A j{ }1 ≤ j ≤ 2

(14)

State(An)
Δt

= max(Pl
Δt

(stateAn ) /Nb
Δt

(stateAn )) 
state An ∈ Op , Cl, Op ∪ Cl{ }

(15)

Figure 10.c shows an example of the temporal 
selection of the states of the characteristic 
distance D2 . One can see the correction of the false 
detection state ( C +) by the temporal fusion process 
(equation 13). The piece of evidence associated to 
each chosen state corresponds to its maximum piece 
of evidence inside the temporal window as: 
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(a)                                                             (b)                                               (c) 

Figure 11: Recall, Precision and F measures (in %) of the model and human performances (Happiness ( E1), Surprise ( E 2), 
Disgust ( E 3), Fear ( E4 ), Anger ( E 5), Sadness ( E 6), Neutral ( E 7)). Black bars: model performances; grey bars, human 
performances. Plain and dashed horizontal lines mean model and human performances over all the expressions respectively. 

mState
Δt

(Cues),Δt = max(mCuesi ,1...Δt )
 

Cues ∈ Di,TF j , An{ }1 ≤ i ≤ 5, 1 ≤ j ≤ 2  
(16)

Then at each time t from the beginning to the end of 
the expression sequence, once the basic belief 
assignments of all the visual cues are refined, the 
corresponding expression is selected according to 
the rules table 3. 

5 BELIEFS FUSION  

The fusion process of all the visual cue states is done 
at each time (Figure 10.a) using the conjunctive 
combination rule (Denoeux, 2008) and results in 
mΩ the BBA of the corresponding expression or 
subset of expressions:  

mΩ = ⊕mCues
Ω (17)

From Table 3 and the BBAs of the sensor states: the 
characteristic distance states mDi

ΩDi , the transient 
features’ states mTFi

ΩTFi  and the angles’ states mAn
ΩAn , a 

set of BBAs on facial expressions is derived for each 
sensor as: mDi

Ω , mTFi
Ω  and mAn

Ω . The fusion process of 
the BBAs mDi

Ω , mTFi
Ω  and mAn

Ω  is performed 
successively using the conjunctive combination rule 
(equation. 17).  For example, for two characteristic 
distances Di and Dt  the joint BBA mDi ,t

Ω  using the 
conjunctive combination is:  

mDi,t

Ω (A)=(mDi

Ω ⊕mDt

Ω )(A)= mDi

Ω (E)∗mDt

Ω (F)
E∩F=A
∑   (18)

The obtained results are then combined to the BBAs 
of the transient features’ states as:

   
m D i ,TF j

Ω (G ) = (m D i

Ω ⊕ mTFj
Ω )(G ) = m D i

Ω ( A) ∗ mTFj
Ω (B)

A ∩ B = G
∑   (19)

The obtained results are finally combined to the 
BBAs of the angles’ states as: 

mD,TFj ,An
Ω (H)=(mDi ,TFj

Ω ⊕mAn
Ω )(H)= mDi ,TFj

Ω (G)∗mAn
Ω (C)

G∩C=H
∑ (20)

Where A , B, E , F , G, H , C  denote propositions and 
E ∩ F , A ∩ B, G ∩ C the conjunction (intersection) 
between the corresponding propositions. This leads 
to propositions with a lower number of elements and 
with more accurate pieces of evidence.  
The decision is the ultimate step and consists in 
making a choice between various hypotheses Ee  
and their possible combinations. The decision is 
made using the credibility as: 

              
Bel : 2Ω → [0, 1]  

I → Bel(I) = mΩ(B),∑ ∀ I ∈ Ω

(21)

6 CLASSIFICATION RESULTS  

In order to measure the introduction of the transient 
features and the temporal modeling compared to the 
model proposed by Hammal et al., 2007, the 
classification results were performed on the six basic 
facial expressions from three benchmark databases, 
Cohn-Kanade, Hammal-Caplier and Stoic databases 
(a total of 182 videos). Recall (R), Precision (P) and 
F-measure (F), which combines evenly Recall and 
Precision as: F = 2*Recall*Precision (Recall+ Precision) 
are used for the evaluation of the proposed method.  
Figure 11 shows the performances obtained by the 
proposed model (black bars). The mean 
classification recall and precision reaches 83% and 
85% respectively and the mean f-measure (f) 84% 
(horizontal plain lines). The best performances are 
obtained for Anger (f=94%) and Happiness 
(f=91%). The lowest performances are obtained for 
Fear (f=72%) and Sadness (f=69%) expressions. 
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These results can be explained by two doubt states 
that appear frequently: the doubt between Fear and 
Surprise and the doubt between Sadness and Anger 
expressions. Interestingly, these expressions are also 
notoriously difficult to discriminate for human 
observers (Roy et al., 2007). Compared to the model 
of Hammal et al., 2007 the introduction of the 
temporal modeling of all the facial features 
information leads to an average increase of 12% of 
the performances. To better evaluate the quality of 
the obtained results, the model performances are 
compared with those of human observers on the 
same data. 15 human observers were asked to 
discriminate between the six basic facial expressions 
on 80 videos randomly interleaved in 4 separate 
blocks. Figure 11 reports the human performances 
(grey bars). The human and model performances are 
not significantly different (two-way ANOVA, 
P>0.33). 

7 CONCLUSIONS 

The current paper proposes a model combining a 
holistic and a feature-based processing for the 
automatic recognition of facial expressions dealing 
with asynchronous facial feature deformations and 
multi-expression sequences. Compared to the static 
results, the introduction of the transient features and 
the temporal modeling of the facial features increase 
the performances by 12% and compare favorably to 
human observers. This opens promising perspectives 
for the development of the model. For example, 
preliminary results on spontaneous pain expression 
recognition proved its suitability to generalize to 
non-prototypic facial expressions. A future direction 
would be the synchronization of the facial and the 
vocal modalities inside each detected emotional 
segment and the definition of a fusion process 
towards a bimodal model for multi-expression 
recognition. 
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