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Abstract: Determining the pose of the camera is a need to many higher level computer vision tasks. We assume a set
of features to be distributed on a planar surface (the world plane) as a Poisson point process, and to know
their positions in the image plane. Then we propose an algorithm to recover the pose of the camera, in the
case of two degrees of freedom (slant angle and distance from the ground). The algorithm is based on the
observation that cell areas of the Voronoi tessellation generated by the points in the image plane represent
a reliable sampling of the Jacobian determinant of the perspective transformation up to a scaling factor, the
density of points in the world plane, which we demand as input. In the process, we develop a transformation
of our input data (areas of Voronoi cells) so that they show almost constant variances among the locations, and
analytically find a correcting factor to considerably reduce the bias of our estimates. We perform intensive
synthetic simulations and show that with few hundreds of random points our errors on angle and distance are
not more than few percents.

1 INTRODUCTION

With “camera pose estimation” one refers to the prob-
lem of determining the position and orientation of a
photo camera with respect to the coordinate frame of
the imaged scene. When acquiring this information
by external instruments is too expensive for the ap-
plication of interests, or simply is impossible because
the picture is already taken, one must resort to com-
puter vision techniques and use at best the visual data
at disposal. It is a task that needs to be performed
in a wide range of different situations, subsumed by
many higher level computer vision problems like ob-
ject detection, object recognition, vision-based safety
applications, augmented reality. Anytime one needs
to measure metric or affine quantities in a 3D scene
captured by a photo camera, the parameters of the
perspective projection need to be recovered, i.e. infor-
mation about the camera position have to be inferred
from the image itself.

In the case the images containing artifacts like
buildings or other non-natural structures, classical ap-
proaches consist in finding straight lines, known an-
gles, orthogonalities or reference points and use them
to invert partially or totally the perspective distor-
tion (Hartley and Zisserman, 2004). Images of nat-
ural scenes don’t offer such references, and other ap-

proaches need to be investigated. In recent years, re-
searchers have proposed approaches that leverage the
statistical properties of the viewed scene. The main
idea is to study how these properties are modified in
the image by the perspective distortion, so that the
desired information about the parameters of the per-
spective itself can be estimated.Shape from texture
is a well established techniques that uses the perspec-
tive distortion of some homogeneous or isotropic pat-
tern to get 3D clues about a surface shape (Permuter
and Francos, 2000), (Malik and Rosenholtz, 1997),
(Clerc and Mallat, 2002), (Gårding, 1992), (Kanatani
and Chou, 1989).

Although the problem of estimating the position
and orientation of the camera has received a consider-
able amount of attention, little has been done in esti-
mating the camera pose using features uniformly dis-
tributed in a picture. Our approach leverages some
of the intuitions foundational toshape from texture
techniques; namely we use the concept ofarea gra-
dient (Gårding, 1992) to determine the nature of the
perspective transform. The main objective is to ex-
ploit the information content of thelocation of uni-
formly distributed features, which can actually come
from preprocessing homogeneous image textures, but
they can also correspond to the spatial locations of
objects whose background is not a homogeneous tex-
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ture. This differentiates with theshape from texture
paradigm which relies on the presence of homogene-
ity or isotropy on a wholepatchof the image. There-
fore, the information embedded in the image required
to estimate the camera pose is lesser, leading to a
wider application area. Because of those reasons in
the present work we suggest the decoupling, in the
spirit of (Kanatani and Chou, 1989), between image
processing and distortion analysis in the task of re-
covering the orientation of a planar surface subjected
to perspective transformation.

In this paper we assume the viewed scene to be
a planar surface on which a Poisson point process
takes place, i.e. the points are uniformly distributed
on such “world plane”; our technique first measures
the perspective distortion induced on this pattern by
the transformed size of small areas surrounding each
point in the resulting image. Then this measure is
linked to the parameters of the perspective transfor-
mation we’re interested in, i.e. the slant angle and
the distance from the scene along the optical axis. In
particular, we model the intuitive concept of “small
areas” using the size of the cells in the Voronoi tes-
sellation generated by the point pattern. We do that
through the following observation: the size of the
Voronoi cell centered at the pointp in the image di-
vided by the size of a typical cell of the Poisson-
Voronoi tessellation in the world plane yields a rea-
sonable approximation of the Jacobian determinant
of the perspective transform computed in the back-
image of the pointp. Our simulations confirm this
intuitive claim: with this procedure, given the density
λ of the Poisson process we get consistent estimation
for the slant angle and the distance from the ground.

The main contribution of this work is the tailor-
ing of thearea gradientconcept to the case of a dis-
crete set of points through the use of Voronoi tessel-
lations. In the process, we develop a transformation
of our input data (areas of Voronoi polygons) so that
they show almost constant variances among the dif-
ferent locations in the image plane, and analytically
find a correcting factor for the linear model to which
we fit such data in order to have an unbiased linear
least squares estimation of the parameters of interest,
slant angle and distance.

The remaining of the paper is organized as fol-
lows: in Section 2 we present the homography we will
consider during the subsequent sections; in Section 3
we define formally the problem, then we introduce
our algorithm in Section 4 and present the results of
our experiments in Section 5. Our conclusions will be
given in Section 6.

2 THE HOMOGRAPHY UNDER
STUDY

In this work we consider homographies between
planes, i.e. our perspective transformation, induced
by an ideal pinhole camera, will be a functionP :
P

2 → P
2 whereP2 is the projective plane;P is repre-

sented in homogeneous coordinates by a 3×3 matrix,
defined up to a multiplicative factor. We nameworld
planethe domain ofP, andimage planeits codomain.
The principal ray is the line from the camera center
perpendicular to the image plane and theprincipal
point is its intersection with the image plane. In a
completely general settings, we have eight degrees of
freedom (DOF) overP; we restrict our attention to the
case of two DOF, namely the distanced between the
camera center and the inverse image of the principal
point throughP, and the angleθ between the principal
ray and the world plane (see figure 1). The remaining
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Figure 1: Camera center, image plane and world plane.

parameters are reference frames for the two coordi-
nate systems and orientation of the world plane with
respect to the image plane, and they are chosen in or-
der to send the vanishing line of the world plane to an
horizontal line in the image; the focal lengthf is as-
sumed to be known, the pixels are squared and there
is no skew.

Let us consider the origins of the world and image
coordinate systems are the inverse image of the prin-
cipal point and the camera center respectively then ex-
pression ofP is the following:

P : P
2 −→ P
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For the sake of clarity we remark its behavior on
the affine part:

Pd,θ(u,v) = (x(u,v),y(u,v)) (2)

=

(

u f
vcosθ+d

,
v f sinθ

vcosθ+d

)

3 PROBLEM STATEMENT

Suppose that a certain number of points are uniformly
distributed on some portion of the world plane, and
that we look at them through our pinhole camera,
whose model is described in Section (2). Then, their
spatial distribution is not uniform anymore in the im-
age plane. We assume to have some good algorithm
to detect their position in the picture, and our aim is to
recover the parametersd andθ of the planar homogra-
phy studying such distortion. As stated in Section (2)
the “horizon” is assumed to be parallel to the horizon-
tal axes of the image, but it can be very well outside
the picture. In our framework, the density of pointsλ
in the world plane (i.e. the number of points per unit
area) needs to be known — it’s a consequence of the
formula (2), wherePds,θ (us,vs) = Pd,θ (u,v) for every
s∈ R, which means that changing the distanced is
equivalent to change scale in the world plane, and just
looking at the picture we cannot distinguish between
small distance with dense points and big distance with
sparse points.

4 THE ALGORITHM

In order to study the perspective distortion of uni-
formly distributed points, one need to capture the fol-
lowing intuitive notion: points get closer to each other
as approaching to the horizon. What is needed is a
statistical quantity able to discriminate between dif-
ferent perspective projections; our suggestion is to
measure “how much free space”Sp is present around
each pointp of our random configuration. Suppose
that we were able to knowSp in the world plane for a
givenp, and also its transformation, denoted by abuse
of notationP(Sp); if Sp was small enough, i.e. if
the points where sufficiently dense, the ratio of ar-
eas|P(Sp)|/|Sp| would have been a good estimation
of the determinant of the Jacobian matrix ofP at the
point p — the Jacobian determinant measures the fac-
tor with which a function modifies volumes around a
point. And doing this for all the points of the config-
uration, one can havemanysamples of the Jacobian,
hopefully enough to do a regression and estimate the
parameters of interestd andθ.

But what does “free space around a point” means?
And what is|Sp|? We don’t have any clue about the
world plane, we just have its perspective view. Again:
what isP(Sp)? We don’t even know the functionP.

A reasonable answer to the first question is given
by the 2-dimensional Voronoi diagram, a tessellation
of the plane generated by a set of points{pi} such
that a pointq belongs to the cell ofpk if it’s closer to
pk than to any otherpi ; small Voronoi cells mean that
the generating points are “dense”. So for us the free
space around a point is its Voronoi cell. The answer
to the second question is 1/λ, whereλ is the density
of points in the world plane. In fact, this is the ex-
pected value for|Sp|, assuming a Poisson distribution
for the points (Hayen and Quine, 2002); the key point
is its independence fromp, which can be intuitively
understood observing that if we take some regionA
in the world plane, the expected value of the num-
ber of points insideA is proportional to the area of
A, no matter of its location. In the third question we
ask how to approximate the projection of the Voronoi
cell Sp; our answer is to compute the Voronoi diagram
generated by the projected points.

Before stating precisely our algorithm we write
the formula of the Jacobian determinant (from now on
just “Jacobian”) of our homography, using the same
notation as in eq. (2)

JP(u,v) = det

(

xu xv
yu yv

)

=
f 2dsinθ

(vcosθ+d)3 (3)

and point out that since all our measurements are done
in the image plane, while the domain of the above Ja-
cobian is the world plane, what we are going to sam-
ple is the composition

(JP ◦P−1)(x,y) =
( f sinθ− ycosθ)3

f (dsinθ)2 (4)

= (a+ yb)3

At this point, the natural choice to recover the pa-
rametera andb, henced andθ, would be to set the
linear regression model

λ|P(Sp)|= (a+by)3+ ε (5)

where the zero mean noise is taken into account by
the random variableε. Unfortunately, the variance of
ε varies with the location of the cellSp; furthermore,
it is reasonable to assume that such variance is trans-
formed under perspective likewise areas, i.e.

Var(ε) = (λ(a+by)3)2Var(Sp) (6)

This means that knowing Var(ε) is equivalent to know
the parametersa andb that we’re about to estimate.
Any heuristic we could use to estimate the variances
of the errorsε will result in a poor fitting to the 3rd
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degree polynomial (4); also, in weighting the least
squares summation with empirical variances we ex-
perimented numerical problems due to very small
condition numbers of the matrices involved. For this
reason we resort to a variance-stabilizing transfor-
mation; by the error propagation formula (G.Cowan,
1998) and given the assumption (6), the ideal can-
didate would be the logarithm, but the regression
wouldn’t be linear any more. We found experimen-
tally that the cube root of our data{λ|P(Sp)|}p shows
approximately constant variances.

Thus we don’t use model (5) for our regression,
but 3

√

λ|P(Sp)|= (a+by)+η (7)

With a second order Taylor expansion of the left-
hand-side around(a+by)3 one can show thatE(η) =
−λ2(a+ by)Var(Sp)/9 —interestingly, the mean of
the noise is proportional toa+ by. A closed form
for the variance Var(Sp) of cell sizes for a Poisson
Voronoi tessellation is not known, but the six decimal
digits approximation 0.280176/λ2 found in (Hayen
and Quine, 2002) is more than enough for our pur-
poses. Thus we can restate (7) in a suitable form for
the ordinary least squares method, i.e. with an error
termη̃ that has zero mean and constant variance:

3
√

λ|P(Sp)|= (a+by)

(

1− 0.280176
9

)

+ η̃ (8)

What follows is the detailed algorithm we use.

1. INPUT: the points{p1, . . . , pn} in the image
plane.

2. Generate the Voronoi diagram from{p1, . . . , pn}.

3. Points close to the boundaries of the viewed scene
will produce degenerate cells, i.e. unbounded or
very oblong. Remove all the cells which have at
least one vertex outside the viewed scene.

4. Compute the areas of the remaining cells
{C1, . . . ,Ck}, whereCi is the cell generated by the
point pi (we reordered the cells so that the first
k are the ones we keep). These arek noisy sam-
ples of the functionJP ◦P−1 up to the (known)
scaling factorλ, in the sense that area(Ci) ≈ JP ◦
P−1(pi)/λ.

5. Solve the linear least squares problem

min
a,b

∑
i

{

3
√

λ area(Ci)− (a+yib)

(

1− 0.280176
9

)}2

(9)
whereyi is they-coordinate of the pointpi .

6. OUTPUT: the estimates

θ̂ = arctan
(

−a
f b

)

d̂ = f

a 4
√

b2 f 2+a2 (10)

5 EXPERIMENTAL RESULTS

We evaluated our algorithm on a set of random point
configurations synthetically generated; the parame-
ters of interest that we vary are the slant angleθ of
the camera and the number of points in the config-
uration; we keep fixed the lengthd of the principal
ray to 100 meters. We recall that at a givenθ, adding
points to the configuration while keepingd constant
is equivalent to keep the point density constant and
increased. We tested the algorithm with 12 anglesθ
ranging uniformly from 2◦ to 60◦ and with the number
of points ranging uniformly from 100 to 2000; for ev-
ery of these combinations we generated one hundred
random point configurations. During the simulation
we kept the focal lengthf fixed to 50mm, and our
pictures are squares of 25mm×25mm centered in the
origin of the image plane.

Figure 2 reports our results concerning the esti-
mation of the distanced. It shows 4 plots, corre-
sponding to some of the values ofθ for which we
tested the algorithm. Each plot contains columns rep-
resenting a boxplot and a 95% confidence interval for
ten different quantities of points in the image, from
100 to 2000. For every of these quantities we simu-
lated 108 different point patterns; the boxplots sum-
marize those measures, with median, lower and up-
per quartile, maximum and minimum observed value,
outliers. The confidence interval on the right of each
boxplot refers the empirical meanE(d̂) and is based
on the Student’t distribution. Figure 3 is closely re-
lated to figure 2, since it shows the relative errors of
the empirical mean|E(d̂)−d|/d, whered is the true
value andd̂ the estimator. The first information these
two figures show is that as the number of points in-
creases, our estimator gets more accurate: the vari-
ability in figure 2 decreases towards the right hand
side, the confidence intervals get narrower and the rel-
ative error resembles loosely a multiple of the inverse
of the square root of the number of points. We per-
formed tests up to 5000 points, and the results show
and improved convergence, but we consider unrealis-
tic the demand for more than 2000 feature points in
the scene. The same holds for the estimator of the
slant anglêθ, figures 4 and 5. As a rule of thumb, we
can say that with at least 1000 points in the image we
can get reliable estimates of slant and distance (less
than 5% of error).

6 CONCLUSIONS

In this work we propose a novel technique to study the
distortion induced by perspective projection on a pla-

VISAPP 2010 - International Conference on Computer Vision Theory and Applications

182



100 1000 2000
80

90

100

110

120
theta = 13°

100 1000 2000
80

90

100

110

120
theta = 28°

100 1000 2000
80

90

100

110

120
theta = 44°

100 1000 2000
80

90

100

110

120
theta = 60°

Figure 2: Estimated distance versus number of points.
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Figure 3: Relative error for̂d versus number of points.
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Figure 4: Estimated slant angleθ versus number of points.
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Figure 5: Relative error for̂θ versus number of points.

nar Poisson point process; we use this to recover the
pose of a pinhole camera with two degrees of free-
dom, slant angle and distance from the ground along
the optical axis. Our approach relies on the observa-
tion that the Voronoi tessellation generated by a Pois-
son point process under perspective is a faithful rep-
resentation of the area transformation ratio, i.e. the

Jacobian of the perspective, up to a scaling factor that
we demand as input (the density of the Poisson pro-
cess). We perform intensive simulations on synthetic
data and do a careful error analysis, concluding that
1000 points on the scene are enough to get estimates
of the parameters of interests with an error less than
5%. Our work borrows ideas from theshape from tex-
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tureparadigm (thearea gradientconcept), but instead
of assuming the presence of a whole patch of homoge-
neous or isotropic texture, we pursue a feature-based
approach which considers only a discrete set of points
with homogeneity properties; such different premises
make a direct comparison withshape from textureal-
gorithms non obvious. Our hypothesis make the pro-
posed solution more suitable for camera pose estima-
tion in general settings, specifically natural environ-
ments, where reference artifacts are missing and one
must resort to stochastic modeling.
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