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Abstract: In this paper, we present a novel but simple physics based method to manipulate parametric surfaces. This 
method can deal with local deformations with an arbitrarily complicated boundary shape. We firstly map a 
deformation region of a 3D surface to a circle on a 2D parametric plane. Then we derive an approximate 
analytical solution of a set of fourth order partial differential equations subjected to sculpting forces and the 
boundary conditions of the circle. With the obtained solution, we show how to create a deformed surface 
and how sculpting forces and the shape control parameters affect the shape of a deformed surface. Finally, 
we provide some examples to demonstrate the applications of our proposed method in surface manipulation.  

1 INTRODUCTION 

Surface manipulation is at the heart of geometric 
modelling and has attracted a lot of research 
attention. 

Depending on whether physics of object 
deformation is introduced or not, surface 
manipulation can be divided into purely geometric 
and physics based. Purely geometric surface 
manipulation achieves the intended shapes by 
manually changing the positions of surface points or 
control points. Physics based surface manipulation 
obtains different surface shapes by applying virtual 
forces to deform the surfaces.    

Directly manipulating surface points of 
polygonal models or control points of NURBS 
models is a commonly used method for purely 
geometric surface manipulation. In addition, 
extrusion, blending, sweeping, skinning, filleting, 
chamfering, and Boolean operations etc. are also 
frequently applied in shape manipulation (Fleming 
1999; Maestri 1999). 

In order to improve the efficiency and capability 
of surface manipulation, free from deformation 
methods were developed. By simulating the 
deformations caused by twisting, bending, tapering, 
or similar transformations of geometric objects, Barr 
(1984) proposed new operations for shape 
manipulation. Following Barr’s work, Sederberg and 
Parry (1986) developed a more general approach 

called free-form deformation (FFD). This method 
embeds an object in a lattice and achieves the 
deformations of the object by deforming the lattice. 
By using the initial lattice points to define an 
arbitrary trivariate Bézier volume, and allowing the 
combination of many lattices to form arbitrarily 
shaped spaces, Coquillart (1990, 1991) introduced 
Extended Free-Form Deformations (EFFD). Free-
form deformation was also investigated by 
Lamousin and Waggenspack (1994), MacCracken 
(1996), Hirota et al. (2000), and Feng et al. (2002, 
2006).  

Purely geometric surface manipulation methods 
are simpler and more efficient than the physics 
based methods. However, purely geometric methods 
do not follow any underlying physical laws. 
Therefore, if an object is to be modelled by such 
methods, the quality depends on the skills and 
perception of modellers. For a same object, different 
modellers may create somewhat different shapes.    

This issue may be resolved by introducing the 
underlying physics governing the deformation of 
deformable materials. The surface manipulation 
based on this consideration is called physics based. 
It considers material properties and physical laws 
relevant to surface deformation. This approach has a 
potential to create more realistic looking objects.   

Employing the elasticity theory, Terzopoulos and 
his colleagues (1987) and (1988) introduced 
dynamic differential equations for flexible materials 
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such as rubber, cloth and paper. This work was 
extended from elasticity to viscoelasticity, plasticity 
and fracture (Terzopoulos and Fleischer 1988). By 
minimizing the energy functional under user 
controlled geometric constraints and loads, Celniker 
and Gossard (1991) presented a curve and surface 
finite element method for shape manipulation. Based 
on a primal formulation and a hybrid formulation 
derived from the theory of pure elasticity, Güdükbay 
and Özgüç (1994) investigated a physically based 
modeling algorithm to animate deformable objects. 
In order to deal with mass distributions, internal 
deformation energies, and other physical quantities 
of shape manipulation of NURBS, a dynamic 
NURBS was developed by Terzopoulos and Qin 
(1994). This method was further investigated to 
tackle the surfaces with symmetries and topological 
variability which leads to a dynamic NURBS swung 
surface (Qin and Terzopoulos 1995). By extending 
triangular B-splines to triangular NURBS and using 
Lagrangian mechanics, Qin and Terzopoulos (1997) 
developed the mathematical model of dynamic 
triangular NURBS and manipulated the surfaces 
defined over arbitrary, nonrectangular domains 
through the finite element solution of the 
mathematical model. Applying sculpting forces on a 
surface and formulating and minimizing the energy 
functional of the surface, Vassilev (1997) proposed a 
method to manipulate deformable B-spline surfaces. 
Using the model of a bar network, Léon and Veron 
(1997) and Guillet and Léon (1998) dealt with the 
deformation of free-form surfaces. Considering non-
homogeneous material properties and conducting the 
finite element calculations of deformable objects in 
local frames, McDonnell and Qin (2007) presented a 
new, physics based shape manipulation method. 

Surfaces can also be described by the solution to 
a partial differential equation subjected to suitably 
defined boundary conditions. Partial differential 
equations (PDEs) based modelling was first 
introduced by Bloor and Wilson (1989, 1990). In 
order to cope with more complicated surface 
modelling problems, Bloor and Wilson proposed a 
spectral approximation method (1996) and a 
perturbation method (2000). Using the partial 
differential equation (PDE) method, Ugail et al. 
(1999) examined how practical surfaces can be 
constructed interactively in real time. Kubeisa et al. 
(2004) addressed the problem of interactive design 
of higher order PDEs. In the work carried out by 
Ugail (2004), the generation of the spline of a PDE 
surface and parameterization of the surface by using 
the spline were investigated. By studying the so-
called harmonic and biharmonic Bézier surfaces, 

Monterde and Ugail (2004) presented a new method 
of surface generation. By defining the trim curves to 
be a set of boundary conditions, Ugail (2006) 
proposed a method to trim PDE surfaces. How 
Bézier surfaces can be generated from boundary 
information through a general 4th-order PDE was 
tackled by Monterde and Ugail (2006). Generalizing 
the governing partial differential equation to 
arbitrary order, complex shapes were designed as 
single patch by Ugail (2007). Incorporating dynamic 
effects into a fourth order PDE, You and Zhang 
studied creation of 3D deformable moving surfaces 
(2003). Using a sixth order PDE and a semi-
analytical and semi-numerical solution, Zhang and 
You (2004) presented a method for surface 
modelling. 

This paper will focus on surface manipulation 
using an approximate analytical solution to fourth 
order partial differential equations. It maps an 
arbitrary deformation region in 3D coordinate space 
to a circle in 2D parametric plane, achieves the 
approximate analytical solution of the deformation 
within the circle, and uses it to manipulate surfaces. 

2 MATHEMATICAL MODEL  

The deformations of a surface can be simulated 
through those of a thin elastic plate. When subjected 
a lateral load q , the mathematical model describing 
surface deformations is 
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subjected to the following boundary conditions 
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and E  and   are Young’s modulus and Poisson’s 
ratio, and h  is the thickness of a surface. 

3 SOLUTION  

Since  the  analytical  solution  of  Eq.  (1)  under the 

MANIPULATION OF PARAMETRIC SURFACES THROUGH A SIMPLE DEFORMATION ALGORITHM

85



 

 

boundary conditions (2) on a circular boundary is 
obtainable, we take the boundary defined by 
parametric variables u  and v  to be  

0122  vu       
(4) 

For the deformation which has both positional 
and tangential continuities at boundary (2), we take 
the following functions as the solution of Eq. (1) 
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where m  is an unknown constant. 

Substituting Eq. (5) into (2), boundary conditions 
are satisfied exactly. 

Substituting Eq. (5) into (1), we determine the 
unknown constant m  and obtain the analytical 

solution of Eq. (1). 

4 APPLICATIONS  

In order to use the above method to determine the 
deformations of a 3D surface, we relate a 
deformation region with an arbitrary boundary shape 
to a circle.  

As shown in Figure 1, we use the length of the 
boundary of the deformation region and the circle to 
determine the corresponding points P  and P  
between them. Then, we find a point O on the 3D 
surface which corresponds to the geometric centre of 
the deformation region. The surface curve OP  is 
related to the straight line PO  . With such a 
treatment, we obtain the one-to-one relationship 
between all the points on the 3D surface and those 
within the circle. 

 

Figure 1: Parameterization of boundary   and 
deformation region. 

Finally, we apply a sculpting force q , and use 

the above method to calculate the deformations of 

the 3D surface, and superimpose these deformations 
to the original surface to create the deformed 
surface. In the subsections below, we will 
demonstrate this through a number of examples.   

4.1 Surface Deformations within a 
Triangle 

In this subsection, we investigate how to deform a 
triangle.  

As indicated in Figure 2, by calculating the 
length of the triangle and the circle, we find the 
points A , B and C on the circle which correspond 
to the three vertices A, B and C of the triangle, 
respectively.    

Then we calculate the geometric centre O of the 
triangle from its three vertices. This geometric 
centre O  is related to the centre O  of the circle. 

 

Figure 2: Parameterization of a triangle. 

For an arbitrary point P  on the boundary of the 
triangle, we find its corresponding point P  on the 
circle. The points on the line OP are related to the 
points on the line PO  . The same method is used to 
determine the one-to-one relationship of the points 
between the triangle and the circle. 

          
              a                                                      b 

Figure 3: Surface deformation within a triangle region. 

For a triangle deformation region indicated in 
Figure 3a, we set Young’s modulus 10000E , 
Poisson’s ratio 3.0 , surface thickness 1.0h  
and the sculpting force 100zq . The deformation of 

the triangle was obtained and depicted in Figure 3b. 
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4.2 Effect of Material and Geometric 
Properties 

In this subsection, we examine how material and 
geometric properties affect the shape of a surface.  

The deformation region in a 3D coordinate space 
was shown in Figure 4a. It was mapped into a circle. 
Basic parameters are taken to be: the material 
properties 10000E , 3.0 , geometric property 

1.0h , and sculpting force 100zq .  

     
                  a                                                  b 

   
                       c                                                    d 

 
                                          e 

Figure 4: Effect of material and geometric properties. 

The deformed surface indicated in Figure 4b was 
obtained. Only raising Young’s modulus to 20000 
and keeping all other basic parameters unchanged, 
the deformation was reduced and the deformed 
shape in Figure 4c was generated. When Poisson’s 
ratio of the basic parameters was increased to 0.6, 
the deformation given in Figure 4b was dropped to 
that in Figure 4d. Increasing the surface thickness to 
0.15 also decreases the deformation and produces 
the shape in Figure 4e. 

4.3 Effect of Sculpting Forces 

Here we study how sculpting forces affect surface 
deformations. The deformation region in a 3D 
coordinate space is an ellipse. The original surface 
shape within the ellipse is depicted in Figure 5a. The 
surface will be deformed in z  direction. Young’s 
modulus E is taken to be 30000E , Poisson’s ratio 
is set to 3.0 . Applying a sculpting force 50zq  

on the surface, the surface was pulled upwards and 
the deformed shape was indicated in Figure 5b. 
Raising the sculpting force to 200, the deformation 
was greatly increased as indicated in Figure 5c. 
Changing both the direction and size of the sculpting 
force, i. e., setting the sculpting force to -120, the 
surface was push downwards and the deformed 
shape in Figure 5d was created. These images 
indicate that sculpting forces are very useful in 
surface manipulation.   

    
                         a                                                    b 

    
                   c                                                     d 

Figure 5: Effect of sculpting force. 

4.4 Local Deformations 

In this subsection, we discuss how to use our 
proposed method to achieve complex local 
deformations of 3D models.  

For a 3D surface model, we first interactively 
specify the region which will be deformed. Then we 
extract the boundary curve of the deformation 
region. Finally, the above method is used to 
determine the corresponding relationship between 
the deformation region and a circle. 

Here we give an example to deform a male chest. 
The undeformed chest was shown in Figure 6a. The 
boundary of the deformation region on the chest was 
shown in Figure 6f. By applying different sculpting 
forces to the deformation region, different deformed 
shapes were obtained and depicted in Figures 6b, 6c 
and 6d. A local view of the deformation shape in 
Figure 6b was given in Figure 6e. 
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5 CONCLUSIONS 

A physics based surface manipulation method has 
been proposed through the above work. For doing 
this, we examined the relationship between a 
deformation region in 3D coordinate space and a 
circle in 2D parametric plane and formulated the 
corresponding boundary conditions. By constructing 
proper trial functions, we obtained an approximate 
analytical solution which exactly satisfies both 
positional and tangential continuities at the circle 
and the partial differential equations. With the 
application examples given in this paper, we 
discussed how to use the solution to carry out 
surface manipulation. 

 

       
                   a                                                b 

       
                       c                                                 d 

      
 e                                                  f 

Figure 6: Deformation of a male chest. 

The method proposed in this paper can be easily 
developed into an interactive software tool whereby 
surface manipulation can be performed easily and in 
real-time. We intend to develop such a tool in the 
future. 
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