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Abstract: In the context of fine structure extraction, this paper presents a new method based on multi-resolution segmen-
tation applied for the detection of road cracks. A method already developed to detected low-contrasted bio-
logical membranes has been adapted to detect cracks on images: crack features are defined as heterogeneities
rather than transitions of closed regions characterizing the membranes. This new methodology is quantita-
tively validated on reference segmentations and compared to an adapted filtering and Markovian modelling
algorithm.

1 INTRODUCTION In the field of detection of biological membranes,
recent methods based on multi-resolution watershed

Detecting fine structures is very helpful in a lot of do- segmentation provided great performances, even if
mains: to extract ceramic damages (Elbehiery et al., the objects of interest are low-contrasted (Coudray
2005), to find cracks in underground pipes (lyer and et al., 2007). By analogy, the problem of biolog-
Sinha, 2005), to detect road network in satellite im- ical membranes detection is similar to crack detec-
ages (Geman and Jedynak, 1996), to follow vesselstion. The goal of this paper is to adapt this watershed
in medical images (Frangi et al., 1998). Since 1990, a method to road crack detection, and compare its per-
lot of algorithms have been proposed in the domain of formances with a Markovian modeling-based algo-
crack detection on road pavement surface. In fact, ev-rithm developed specifically for this purpose (Cham-
ery country needs to evaluate, periodically, the qual- bon et al., 2010).
ity of roads and most of this work is done manually, Firstly, a brief state of the art of fine structure ex-
which is expensive, non reproducible, dangerous andtraction is exposed. Secondly, the studied crack algo-
not very efficient. In consequence, a lot of efforts rithms are presented: the Markovian modeling algo-
have been made in the field of research on automaticrithm and the multi-resolution segmentation. Thirdly,
or semi-automatic procedures for detecting deteriora-the protocol used to analyze the performances is
tion on the roads and, in particular detecting cracks. given. And finally, before concluding, results are
In 2003, the report of Schmidt (Schmidt, 2003) gives summarized and discussed.
a good summary of the technologies developed in this
field. The main difficulty of this task is that the de-
fault is not well contrasted compared to the texture of
the road, and that it represents a very small part of the2 FINE STRUCTURE
images (about 1.5% of the image). EXTRACTION

The most recent algorithms proposed to tackle
this problematic are based on multi-resolution ap- We distinguish four methods: those based on a
proaches. Even if they are the most efficient, they Threshold (Koutsopoulos and Downey, 1993), meth-
have shown their limits by giving a sparse detection. ods combining a threshold with mathematical mor-
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phology tools (Morphology) (Tanaka and Uematsu, choose the number of scales, which depends on the

1998), Neural network-based methods (Bray et al., resolution of the image (the size of the pixels): if we

2006), and Multi-scale filtering (Subirats et al., 2006). suppose that we have 1 mm/pixel, 5 scales are suf-

A detailed state of the art can be found in (Chambon ficient (we can detect cracks from 2 mm to 1 cm).

etal., 2010). Then, we also have to choose the number of directions
Threshold methods are popular and simple but in- for the adapted filtering and, considering the aspect of

efficient (the amount of false positives and of false the road cracks, it is realistic to use these directions:

negatives is important). Methods based on Morphol- [0, 7, 3, 37"]. Interested readers can find more details

ogy reduce the number of false positives but they about this work in (Chambon et al., 2010). The goal

are strongly dependent on the choice of the parame-of this paper is to compare this method with the new

ters. Neural network techniques are efficient but they one presented below.

need a learning step that is quite expensive and non-

automatic. Finally, Multi-scale methods seem to be 3.2 Multi-Resolution Detection of

the most efficient: unlike other methods, they lead to Heter ogeneities (M RDH)

less false positives, but more false negatives. In con-

clusion, we can use methods that detect most of theThis method is inspired from the 3-step segmen-

crack but give a lot of errors or methods that obtain (5tion method developed for the segmentation of
only a part of the crack with low errors. low and heterogeneously contrasted biological mem-
In the field of microscopy images, a watershed pranes (Coudray et al., 2007). The aim was to par-
segmentation has been proposed to extract biologicalkition the image by detecting the closed contours of
membranes (Coudray et al., 2007). The problem of mempranes. In this initial algorithm, the edges are
this task is comparable to the problem of road crack sty thresholded at different scales, and, secondly,
detection: edges of the membranes (here the default),q resulting binary images are combined in a Re-
are low and heterogeneously contrasted compared t0;gnstructed Gradient-Like (RGL) image. Finally, the
the background (the road). Consequently, we proposeyyatershed algorithm is applied on the RGL image
to adapt this method to the road application. to obtain the searched partition. For the cracks, the
third step has been adapted and a fourth step has been
added to discard spurious detections. The steps are
3 CRACK DETECTION detailed below. N _
ALGORITHMS N _A rr_lult|-resolut|on tra_nsform is f|rs_t applied to thfa
initial image 1(x,y,1) using a pyramidal transform:

. . . im X r in ateusing:
In this part, we briefly present a recent crack detection ages! (x,, s)ka ekobta ed at scatausing
+k  +

algorithm based on an adapted filter combined with _

Markovian modeling segmentation and, then, we in- He¥s) = ,r;kn:zke(m’ nol(sxrmsyrnl). (1)
troduce a new method, based on multi-scale analysis
with watershed and we describe all the contributions
in order to adapt this method to a road crack detection.

where G(m,n,s) is the smoothing average filter.
Dyadic pyramids reduce the size of the image by a
factor of 2 between each scale. Here, non-dyadic
. . . pyramids are used to better represent and identify the
31 Adapted Filteringand Markovian features, wittse Vs = {1,2,...,10} (at scales coarser

Modeling (AFMM) than 10, the images become too small to be analyzed).

Heterogeneities are detected and thresholded at each

The method proposed in (Chambon et al., 2010) usesscale, leading to binary imagBgx, y,s). In this study,
these two hypotheses, well known in the field of road features to be identified, i.e. the cracks, are better de-
crack detection: scribed as local heterogeneities than local transitions
k- (e.g. Figure 1), making a local standard deviation fil-
ter more appropriate than a gradient filter like Sobel,
for instance.

(H1) Pixels of a crack are darker than the bac
ground (the road);

(H2) Acrackis asetof connected segmentswithdif- |n the next step, binary images are combined to
ferent orientations. form the RGL imagérecL(X,Y):
Consequently, the principle of the method is, first, to IraL(X,Y) = max((11—s) x B(x,y,8)).  (2)
seVs

binarize the image (by adapted filtering) and, second,
to refine the binarization by a segmentation based onWith the (11— s) weighting, the gray-level on the
Markovian modeling. At the beginning, we have to RGL image corresponds to the finer scale at which
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Cs—eg =G I-Bkg -G Lseg (3)

Figure 1: Initial image exampld (x,y,1)) — The crack cor- 1 segment
responds to a local low-contrasted heterogeneity.
Figure 4: A potential crack composed of 5 segments (each

the feature has been identified. Details identified with "2V"d @ different color).

a better precision have therefore a higher value (e.g.

Figure 2). GLgkg (€.9. Figure 5) is measured using a large filter

averaging the neighboring values of the background
(pixels not labeled as PCP). The filter kernel size did
not seem critical, but it should be large enough to re-
duce the influence of noise, and small enough to con-
sider the irregularities of the road: a 2325 pixels
kernel was experimentally chosen.

Figure 2: RGL image of Figure 1gg|(x,y)) — The brighter
the pixels, the higher the precision of the detection.

The next step aims to thin the RGL image fea-
tures to obtain 1-pixel wide objects, and has been
adapted from our initial work to this road application.
It needed to be modified since, contrary to membrane Figure 5: Estimated background of Figure 1.
edges, cracks do no form closed regions: therefore,

we can either apply the watershed algorithm aftercon- 5 segment is considered as targeting a crack if

sjderir_19 the bgckgrounq of the RQL image as seedscs—eg> Crr (e.g. Figure 6). Measures have been real-
(i.e. pixels which value is 0 and which touolbn— 0

" > r i ized to set the main parameters of the algorithms, i.e.
value pixels), or by applying a gray-scale thinning al- he kernel size of the standard deviation filter and the
gorithm (Redding, 1996). For its simplicity and lower  hrasholdcy,: we identified that the best results were
computational time, the watershed approach has beeryizined with a 5 5 pixels kernel an@r; = 50. We
used in this study. The resulting imafg (.9 Fig- il describe the analysis methodology, and we will
ure 3) points to the potential crack pixels (PCP). restrain the presentation of the influenc&egf on the
results.

Figure 3: Potential crack pixels from Figurelg{displayed
in blue on the original image). Figure 6: Final crack detected on Figure 1 (usiig = 40).

A last step has been added to validgeand re-
duce the. false detec.tions: a PCP is validated if its 4 ASSESSMENT
contrast is above a given thresh@g,. To make the
measure more robust to the noise, instead of analyzing METHODOLOGY
each PCP independently, the contrast is averaged on )
segments (a segmentis a set of contiguous pixels hav-T0 evaluate and compare the cra_ck detection methods,
ing at most two neighboring PCP, see Figure 4 for an We had to choose: a/ the tested images, b/ how to de-
illustration of this vocabulary). The average contrast termine the "ground truth” segmentation or reference
Cseg Of @ segment is the difference between the aver- segmentation and c/ the criteria in order to quantita-
age gray-level of the segmei@{(seg, and the average ~ tively evaluate the results.

gray-level of the neighboring backgrour@l(gyg):
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4.1 Images Synthetic image Ground truth

The algorithms were evaluated on 3 sets of test im-

ages: on 14 synthetic crack images, on 10 real images,
and on 10 pre-processed real images. For synthetic
images, it is easy and reliable to give a ground truth

segmentation. For real images, estimate a "ground
truth" or a reference segmentation is more compli- Real image + simulated
cated but the images are more realistic than the syn- default

thetic images. L

The 14 synthetic images were built using different
kinds of backgrounds: cracks were added on 8 im-
ages built with a random dot texture (samfig, and e ‘
on 6 images of road containing no cracks, 2 of them Real image manually segmented
acquired with a static camera (sam@g, and 4 of GaEs
them dynamically acquired with a camera embedded
on a vehicle (sampl&s). For the last four ones, con-
trolled lights were added. For all the 14 images, the
cracks were randomly added, with a random shape
and a random gray-level (Figure 7).

On the 10 real images, 4 were acquired using a
static camera and 6 using the dynamic system (Fig-
ure 7).

In the third set of test images, the 10 real images
were pre-processed using:

Ground truth

Reference

Figure 7: Tested images.

Then, the result is dilated with a structuring ele-

1. Threshold — In order to reduce the light halo in  ment of size 3« 3. Results of the manual segmenta-
some images (the last six ones presented in Fig-tions are presented in Figure 9 (for more details, the
ure 9), each pixel over a given threshold is re- study of the reliability of these reference segmenta-
placed by the local average gray levels. tions can be found in (Chambon et al., 2010)).

2. Smoothing -A mean filter of size X 3 is applied.

. . _ , 4.3 Quantitative Assessment
3. Erosion — An erosion with a square structuring

element of size & 3 is agplied. In Figure 8, the evaluation criteria are presented. They

4. Restoration — This last pre-processing tries to are the most used in the literature, except "accepted”
combine the advantages of all the previous meth- pixels. In consequence, we have included accepted
ods in three steps: histogram equalization, thresh- pixels in the computation of the similarity coefficient.

olding (like Threshold, and erosion (likeEro- For estimating accepted pixels, a threshold is applied
sion). on the distance between the detected pixel and the ref-
erence segmentation. This threshold is estimated us-

4.2 Reference Segmentation ing the mean distance between each of the four seg-

mentations used for establishing the reference.

i iofl lain h h | The DICE values lie on thé0; 1] interval, but to
For real images, we briefly explain how the manual g ity the visualization of the results, we display

segmentation is validated. Four experts manually S€9-DICEx100in all figures and tables of section 5.
mented the images with the same tools and in the

same conditions. Then, the four segmentations were

following th les:
merged, following these rules 5 RESULTSAND DISCUSSION

1. A pixel labeled as crack by almost two experts

was kept;

_ _ 5.1 Synthetic Images
2. Every pixel near to a pixel kept by step 1 was also

kept. Figure 10 compares results for the different meth-

The second rule is iterative and stops when no pixel is ods with synthetic images. It shows that the multi-
added. resolution withCy, =50 is the best to identify most of
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Corrects = True positives (TP)
Positives (P)

False False
Positives Negatives
(FP) (FN)
>
Accepted Reference
Similarity .
coefficient or 2TP Raélgtgsttigﬁsgr?g od
Dice FN-+TP+P non-detection
similarity) on-detectio

Figure 8: Evaluation criteria — Representation of the recov

ery between an estimated segmentation (positives, P) and a

reference segmentation.

Figure 9: Manual ground truth segmentations.

70 i uTP
mAcc
- BFP
HFN
DICE
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AFMM

MRDH MRDH MRDH
Cwr=30 Crr=40 Crr=50

Figure 10: Summary of the algorithm performances on syn-

thetic images.
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the edges, while the AFMM method is more adapted
to keep the proportion of FN low. By comparing
DICE values, the multi-resolution method appears to
be the most adapted.

Table 1 details the results for the different types
of images (sampleS; to S; presented in section 4.1).
On fully synthetic images, both algorithms perform
very well. It appears that the images acquired with
the dynamic system are the most difficult to process,
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Table 1: Results on Synthetic Images — The 3 image cate-
gories are:Sy, fully synthetic imagesS,, background ac-
quired with a camera an8lz, background acquired with
the dynamic system. Results in bold indicate best values
and it illustrates how the MRDH approach outperforms the
AFMM, in particular, with the most difficult images (sam-
ple S3) where DICE is correct (greater than 50) whereas it
is very low with the other methods.

AFMM |MRDH, |MRDH, |MRDH,
Crr =30 |Cqr =40 |Crr =50
SR IEIEIEIETIEIEIEIEAE
TP+Acc¢87|46|15|68|41|30|86|53|43|91|66|59
FN (1.53.72.62.84.417|5.36.918|6.716.918
DICE |92|63|24|81|59|44|92|69|57|94|80|70

whatever the method used.
5.2 Real Images

Figure 11 displays the results obtained on the real im-
ages. We see that the amount of FN is higher than
with synthetic images, but we note that these values
are probably over-estimated, the human-reference im-
ages tending to select only the major cracks. The
AFMM algorithm identified almost half of the cracks
selected by the human, and a bit more than half were
identified with the multi-resolution method. Consid-
ering the DICE measure, the multi-resolution tests
gave the best overall results; though, on camera ac-
quired images, DICE values can be considered as
equivalent for both methods.

-40

Figure 11: Summary of the algorithm performances on real
images.

5.3 Real Pre-processed | mages

Here, we compare the AFMM method with the
MRDH method (only the one with the more efficient
parameter, i.eCr, = 50, is discussed here) when the
real images are pre-processed. In particular, we eval-
uate the influence of the 4 pre-processing described in
section 4.1.

Table 2 shows the DICE measures obtained. It
can be seen that the four pre-processings enhance the
overall performances.
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Table 2: DICE of pre-treated images: the three numbers REFERENCES
show the average valuesiith the 10 images (with the 4
images acquired in static way, with the 6 images acquired Bray, J., Verma, B., Li, X., and He, W. (2006). A neural

in a dynamic manner). nework based technique for automatic classification
— of road cracks. Irdnternational Joint Conference on
AFMM MRDH, Crr = 50 Neural Networkspages 907-912.

None 46 (49,44) 5 (52,57) Chambon, S., Gourraud, C., Moliard, J.-M., and Nicolle, P.
Threshqld 64 (68,61) 55(60,50) (2016). .,Road craci< e'>7<traction ’wi.th éblapted filteri’ng'
Smoothing| 66 (77,59) 52 (63,42) and markov model-based segmentationVISAPR

Erosmn 59 (58,60) 57(64,51) Coudray, N., Buessler, J.-L., Kihl, H., and Urban, J.-P.
Restoration| 52 (49,55) 57 (59,55) (2007). Tem images of membranes: a multiresolu-
tion edge-detection approach for watershed segmenta-
When pre-processed with thiereshold smooth- tion. InPhysics in Signal and Image Processing (PSIP
ing, erosionandrestoration the AFMM'’s algorithm 2007)
is better, with the best results being obtained after a Elbehiery, H., Hefnawy, A., and Elewa, M. (2005). Sur-
smoothing Also, smoothingand thresholdhave an face defects detection for ceramic tiles using image
even more beneficial effect when static images are ~ Processing and morphological techniquéBroceed-

ings of World Academy of Science, Engineering and
. Technolo PWASE9:158-162.
According to the DICE measure, the perfor- : g_y( P . )

Frangi, A. F., Niessen, W. J., Vincken, K. L., and Viergever,

mances of MRDH applle_d_after pre-treatmt_ent are M. A. (1998). Muliscale vessel enhancement filtering.
quite disparate. In fact, it illustrates how this new In MICCAI, pages 130—137
method is globally quite robust against the acquisition ’ ' _ .

. . Geman, D. and Jedynak, B. (1996). An active testing model
Condltlons' Images do not need to be pre-p_rogessepl In for tracking rogds in sa(ltellite) imagesEEE Pat'?ern
order to increase the performances and this is an im- Analysis and Machine Intelligenc&8(1):1-14.
por_tan? Su.penomy compared to the AF.MM methoc.j lyer, S. and Sinha, S. (2005). A robust approach for auto-
which is highly dependent on the acquisition condi- matic detection and segmentation of cracks in under-
tions. Analyzed in details, we notice that for static ground pipeline image$mage and Vision Computing
images, DICE values seem to be enhanced by each 23(10):921-933.

pre-processing, while DICE values seem to decreasekoutsopoulos, H. and Downey, A. (1993). Primitive-based

used.

for "dynamic" images. classification of pavement cracking imageASCE,
Journal of Transportation Engineerind 19(3):402—
418.

6 CONCLUSIONS Redding, N. (1996). The autoscaling of oblique ionograms.

Technical report, Defence science and technology or-
ganization canberra.

Schmidt, B. (2003). Automated pavement cracking assess-
ment equipment — state of the art. Technical Report

A methodology for adapting a multi-resolution-based
segmentation to the field of road crack detection has

been introduced. The experimental results demon- 320, Surface Characteristics Technical Committee of
strate the efficient results obtained on 14 synthetic the World Road Association (PIARC).

images and 10 significant real images. Moreover, it sypirats, P., Fabre, O., Dumoulin, J., Legeay, V., and Barba
shows how it outperforms a previous method based D. (2006). Automation of pavement surface crack de-
on adapted filtering, in particular with the most dif- tection with a matched filtering to define the mother
ficult images acquired dynamically and that present ~ Wavelet function used. |uropean Signal Process-

illumination defaults. ing Conference

The next step of this work will be to validate this Tanaka, N. and Uematsu, K. (1998). A crack detection

work on more data (32 more images will be avail- methoi it? road S”rfﬂ.ce i\r;la_ges USiIr.‘g morphology.
able soon). It has been shown that MRDH improves Ilnsxzol%;_ op on Machine Vision Applicationsages

the percentage of true detections (this percentage is
higher than with AFMM), but the AFMM presents
less false negatives. The next improvement will be
to reduce this phenomenon by introducing more con-
straints on the final step, like for example, an active
contour constraint instead of using only the constraint
on the contrast.
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