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Multimedia Communications and Signal Processing, University of Erlangen-Nuremberg

Cauerstr. 7, 91058 Erlangen, Germany

Keywords: Object detection, Background modeling.

Abstract: In this paper we present a background subtraction method for moving object detection based on Gaussian
mixture models which performs in real-time. Our method improves the traditional Gaussian mixture model
(GMM) technique in several ways. It takes into account spatial and temporal dependencies, as well as a
limitation of the standard deviation leading to a faster update of the model and a smoother object mask. A
shadow detection method which is able to remove the umbra as well as the penumbra in one single processing
step is further used to get a mask that fits the object outline even better. Using the computational power of
parallel computing we further speed up the object detection process.

1 INTRODUCTION

The detection of moving objects in video sequences is
an important and challenging task in multimedia tech-
nologies. Most detection methods follow the princi-
ple of background subtraction. To segment moving
foreground objects from the background a pure back-
ground image has to be estimated. This reference
background image is then subtracted from each frame
and binary masks with the moving foreground objects
are obtained by thresholding the resulting difference
images.

In (Stauffer and Grimson, 1999; Power and
Schoonees, 2002) the values of a particular pixel over
time are modeled as a mixture of Gaussian distri-
butions. Thus, the background can be modeled by
a Gaussian mixture model (GMM). Once the pixel-
wise GMM likelihood is obtained, the final binary
mask is either generated by thresholding (Stauffer and
Grimson, 1999; Power and Schoonees, 2002; Kaew-
TraKulPong and Bowden, 2001) or according to more
sophisticated decision rules (Carminati and Benois-
Pineau, 2005; Li et al., 2004; Yang and Hsu, 2006).
Although the Gaussian mixture model technique is
quite successful the obtained binary masks are often
noisy and irregular. A main reason for this is that spa-
tial and temporal dependencies are neglected in most

approaches. In (Li et al., 2004) a Bayesian frame-
work for object detection is proposed that incorpo-
rates spectral, spatial, and temporal features. But the
spatial dependency is only deployed during post pro-
cessing mainly by applying morphological operations
which leads to poor object contours.

We improve the standard GMM method by regard-
ing spatial and temporal dependencies and integrating
a limitation of the standard deviation into the tradi-
tional method. Combining this improved method with
our fast shadow removal technique, which is inspired
by the technique of (Porikli and Tuzel, 2003), leads to
good binary masks without adding any complex and
computational expensive extensions to the method.
Thus, better masks are obtained while the computa-
tional speed of the standard GMM method is kept and
further post processing can be omitted. Through par-
allelization of the algorithm we even achieve an enor-
mous performance speedup.

In the follwing, an overview of the GMM method
is given in Section 2. In Section 3 the proposed
method is first described explaining the use of spatial
and temporal dependencies, the limitation of the stan-
dard deviation, and the shadow removal technique.
Experimental results and implementation issues are
discussed in Section 4. Finally conclusions are drawn
in Section 5.

413
Quast K., Obermann M. and Kaup A. (2010).
REAL-TIME MOVING OBJECT DETECTION IN VIDEO SEQUENCES USING SPATIO-TEMPORAL ADAPTIVE GAUSSIAN MIXTURE MODELS.
In Proceedings of the International Conference on Computer Vision Theory and Applications, pages 413-418
DOI: 10.5220/0002816904130418
Copyright c© SciTePress



2 GMM OVERVIEW

As proposed in (Stauffer and Grimson, 1999) each
pixel in a scene can be modelled by a mixture ofK
Gaussians. The modelling is based on the estimation
of the probability density of the color value for each
pixel. It is assumed that the color value of a given
pixel is determined by the surface of an object which
is in the view of the concerned pixel. In non-static
scenes up toK different objectsk= 1...K might come
into the view of a pixel. Therefore, in a monochro-
matic video sequence the probability density of the
color valuec of a pixelx caused by an objectk can be
expressed as a Gaussian function with meanµk and
standard deviationσk

η(c,µk,σk) =
1√

2πσk
e
− 1

2 (
c−µk

σk
)2

(1)

In case of more than one color channel the probability
density of the color value of a pixel is

η(c,µµµk,Σk) =
1

(2π)
n
2 |Σk|

1
2

e−
1
2 (c−µµµk)

T Σ−1
k (c−µµµk) (2)

wherec is the color vector andΣ is a n-by-n covari-
ance matrix of the formΣk = σ2

kI, because it is as-
sumed that the RGB color channels have the same
standard deviation and are independent from each
other. While the latter is certainly not the case, by this
assumption a costly matrix inversion can be avoided
at the expense of some accuracy.

The probability of a certain pixelx in framet hav-
ing the color valuec is the weighted mixture of the
probability densities of thek= 1...K objects

P(ct) =
K

∑
k=1

ωk,t ·η(ct ,µµµk,t ,Σk,t ) (3)

with ωk as the weight for the respective Gaussian dis-
tribution. For practical reasonsK is limited to a small
number from 3 to 5. For each new frame of the video
sequence the existing model has to be updated. Af-
ter that a background image is estimated based on
the model and the image can be segmented into fore-
ground and background. To update the model it is
checked if the new pixel color matches one of the ex-
isting K Gaussian distributions. A pixelx with color
c matches a Gaussiank if

|c−µµµk|< d ·σk (4)

whered is a user defined parameter. Ifc matches a
distribution the model parameters are adjusted as fol-
lows:

ωk,t = (1−α)ωk,t−1+α (5)

µµµk,t = (1−ρk,t)µµµk,t−1+ρk,tct (6)

σk,t =
√

(1−ρk,t)σ2
k,t−1+ρk,t(‖ct −µµµk,t‖)2 (7)

where ρk,t = α/ωk,t according to (Power and
Schoonees, 2002). For unmatched distributions only a
newωk,t has to be computed following equation (17).

ωk,t = (1−α)ωk,t−1 (8)

The other parameters remain the same. The Gaussians
are now ordered by the value of the reliability measure
ωk,t/σk,t in such a way that with increasing subscript
k the reliability decreases. If a pixel matches more
than one Gaussian distribution the one with the most
reliability is choosen. If the constraint in equation (4)
is not complied and a color value can not be assigned
to any of theK distributions, the least probable dis-
tribution is replaced by a distribution with the current
value as its mean value, a low prior weight and an
initally high standard deviation andωk,t is rescaled.

A color value is regarded to be background with
higher probability (lowerk) if it occurs frequently
(high ωk) and does not vary much (lowσk). To de-
termine theB background distributions a user defined
prior probabilityT is used

B= argmin
b

(

b

∑
k=1

wk > T
)

. (9)

The restK −B distributions are foreground.

3 PROPOSED METHOD

3.1 Temporal Dependency

The traditional method takes into account only the
mean temporal frequency of the color values of the
sequence. The more often a pixel has a certain color
value, the greater is the probability of occurrence of
the corresponding Gaussian distribution. But the di-
rect temporal dependency is not taken into account.

To detect the static background regions and to en-
hance adaption of the model to these regions a param-
eteru is introduced to measure the number of cases
where the color of a certain pixel was matched to the
same distribution in subsequent frames

ut =

{

ut−1+1, if kt = kt−1

0 else
(10)

wherekt−1 is the distribution which matched the pixel
color in the previous frame andkt is the current Gaus-
sian distribution. Ifu exceeds a thresholdumin the
factorα is multiplied by a constants> 1

αt =

{

α0 ·s, if ut > umin

α0 else
(11)
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Figure 1: A frame of sequenceParkingand the correspond-
ing detection results of the proposed method compared to
the traditional method. First row: original frame (a) and
background estimated by the proposed method with tempo-
ral dependency (α0 = 0.001,s= 10,umin= 15) (b). Bottom
row: standard method withα = 0.001 (c) andα = 0.01 (d).

The factorαt is now temporal dependent andα0 is
the initial user definedα. In regions with static im-
age content the model is now faster updated as back-
ground. Since the method doesn’t depend on the pa-
rametersσ andω, the detection is also ensured in un-
covered regions. In the top row of Figure 1 the orig-
inal frame of sequenceParking and the correspond-
ing background estimated using GMMs combined
with the proposed temporal dependency approach is
shown. The detection results of the standard GMM
method with different values ofα are shown in the
bottom row of Figure 1. While the standard method
either detects a lot of false positives or false negatives,
the method considering temporal dependency obtains
quite a good mask.

3.2 Spatial Dependency

In the standard GMM method each pixel is treated
separately and spatial dependency between adjacent
pixels is not considered. Therefore, false positives
caused by noise based exceedance ofd ·σk in equa-
tion (4) or slight lighting changes are obtained. Since
the false positives of the first type are small and iso-
lated image regions the ones of the second type cover
larger adjacent regions as they mostly appear at the
border of shadows, the so called penumbra. Through
spatial dependency both kinds of false positives can
be eliminated.

Since in the case of false positives the color value
c of x is very close to the mean of one of theB dis-
tributions, at least for one distributionk ∈ [1...B] a
small value is obtained for|c−µµµk|. In general this
is not the case for true foreground pixels. Instead of
generating a binary mask we create a maskM with
weighted foreground pixels. For each pixelx = (x,y)

Figure 2: Detection result of the proposed method with tem-
poral dependency (left) compared to the proposed method
with temporal and spatial dependencies (right) for sequence
Parking.

its weighted mask value is estimated according to the
following equation

M(x) =







0, if k(x) ∈ [1...B]
min

k=[1...B]
(|c−µµµk|) else (12)

The background pixels are still weighted with zero,
while the foreground pixels are weighted according
to the minimum distance between the pixel and the
mean of the background distributions. Thus, fore-
ground pixels with a larger distance to the background
distributions get a higher weight. To use the spatial
dependency as in (Aach and Kaup, 1995), where the
neighborhood of each pixel is considered, the sum of
the weights in a square window W is computed. By
using a thresholdMmin the number of false positives
is reduced and a binary maskBM is estimated from
the weighted maskM according to

BM(x) =

{

1, if ∑
W

M(x)> Mmin

0 else
(13)

In Figure 2 (right) part of a binary mask for se-
quenceParkingobtained by GMM method consider-
ing temporal as well as spatial dependency is shown.

3.3 Avoiding Typical Detection
Artefacts

If a pixel in a new frame is not described very well by
the current model, the standard deviation of a Gaus-
sian distribution modelling the foreground might in-
crease enourmously. This happens most notably when
the pixel’s color value deviates tremendously from the
mean of the distribution and large values ofc−µµµk are
obtained during the model update. The largerσk gets
the more color values can be matched to the Gaussian
distribution. Again this increases the probability of
large values ofc−µµµk.

Figure 3 illustrates the changes of the standard de-
viation over time for the first 150 frames of sequence
Streetmodeled by 3 Gaussians. The minimum, mean
and maximum standard deviations of all Gaussian dis-
tributions for all pixels are shown (dashed lines). The
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Figure 3: Maximum, mean and minimum standard devia-
tion of all Gaussian distribution of all pixels for the first
150 frames of sequenceStreet.

maximum standard deviation increases over time and
reaches high values. Hence, all pixels which are not
assigned to one of the other two distributions will be
matched to the distribution with the largeσ value.
The probability of occurrence increases and the dis-
tribution k will be concidered as a background distri-
bution. Therefore, even foreground colors are easily
but falsely identified as background colors. Thus, we
suggest to limit the standard deviation to the initial
standard deviation valueσ0 as demonstrated in Fig-
ure 3 by the continuous red line. In Figure 4 the tra-
ditional method (left background) is compared to the
one where the standard deviation is restricted to the
initial valueσ0 (right background). By examining the
two backgrounds it is clearly visible that the limita-
tion of the standard deviation improves the quality of
the background model, as the dark dots and regions
in the left background are not contained in the right
background.

Figure 4: Background estimated for frame 97 of sequence
Street without (left) and with limited standard deviation
(right). Ellipse marks region, where detection artefacts are
very likely to occur.

3.4 Single Step Shadow Removal

Even though the consideration of spatial dependency
can avert the detection of most penumbra pixels, the
pixels of the deepest shadow, the so called umbra,
might still be detected as foreground objects. Thus,

we combined our detection method with a fast shadow
removal scheme inspired by the method of (Porikli
and Tuzel, 2003).

Since a shadow has no affect on the hue, but
changes the saturation and decreases the luminance,
possible shadow pixels can be determined as follows.
To find the true shadow pixels, the luminance change
is computed in the RGB space by projecting the color
vectorc onto the background color valueb

h=
〈c,b〉
|b| (14)

A luminance ratio is defined asr = |b|/h to measure
the luminance difference betweenb andc while the
angleφ = arccos(h/c) between the color vectorc and
the background color valueb measures the saturation
difference. Each foreground pixel is classified as a
shadow pixel if the following two terms are both stat-
isfied

r1 < r < r2, φ < φ1 (15)

wherer1 is the maximum allowed darkness,r2 is the
maximum allowed brightness andφ1 is the maximum
allowed angle separation. Since umbra pixels are
considerably darker than penumbra pixels the condi-
tions for penumbra and umbra suppression can not be
satisfied simultaneously. Thus, the shadow removal
scheme described in (Porikli and Tuzel, 2003) has to
be run twice with different values forr1, r2 andφ1 to
remove either penumbra or umbra.

In theφ-r-plane the area were shadow is removed
is represented by two rectangles as shown in the left
graph of Figure 5. To reduce the processing time we
introduce a second angleφ2 and the angle constraint
of equation (15) is replaced by

φ <
φ2−φ1

r2− r1
· (r − r1)+φ1. (16)

a new shadow detection area is defined in theφ-r-
plane as can be seen in the right graph of Figure 5.
Thus, umbra and penumbra can be removed reason-
ably well in one single step instead of two separated
ones. To clearly show the performance, both shadow
removal approaches were applied on the results of
Subsection 3.2. The obtained masks are shown in Fig-
ure 6.

4 IMPLEMENTATION AND
EXPERIMENTAL RESULTS

The proposed algorithm has been tested on several
video sequences. After parameter testing we obtained
good detection results for the sequences applying the
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Figure 5: Detection areas (black rectangles) for umbra and penumbra removal inφ-r-plane using the two-step method (left)
and detection area (black triangle) for shadow removal (umbra and penumbra) inφ-r-plane using the one-step method (right).

Figure 6: The proposed one-step shadow removal tech-
nique achieves the same result(left) as the two-step method
(right), while it needs only half the processing time.

Table 1: Average detection rateRD, average false positives
rateRFP and average false negatives rateRFN using the tra-
ditional GMM method.

sequenceno. of framesRD(%) RFP(%) RFN(%)
Parking 20 98.72 1.11 0.17

Shopping 20 95.65 3.40 0.95
Airport 20 95.35 2.56 2.09

GMM method with K = 3, T = 0.7, α0 = 0.002,
d = 2.5 andσ0 = 10, while setting the parameters for
temporal dependencyumin = 15 ands= 10 and the
parameters for spatial dependency toMmin = 180 and
W = 3× 3. One-step shadow removal was run with
r1 = 1, r2 = 1.7, φ1 = 4 andφ2 = 6. For sequences
Shoppingand Airport the binary masks of the pro-
posed method are compared with the results of the tra-
ditional GMM method (Stauffer and Grimson, 1999)
and the statistical background modeling method of
(Li et al., 2004) in Figure 7. The visual study of the
masks shows that the proposed method generates rea-
sonably good detection results which can even outper-
form methods with more complicated detection rou-
tines. To further evaluate the detection performance a
detection rateRD and a false alarm rate for the false
positivesRFP and the false negativesRFN were cal-
culated for each frame and then averaged over the
whole sequence. For computingRD, RFP andRFN the
mask is compared with a ground truth. False positives
are defined as the number of background pixels that
are misdetected as foreground while false negatives

Table 2: Average detection rateRD, average false positives
rateRFP and average false negatives rateRFN using the pro-
posed method.

sequenceno. of framesRD(%) RFP(%) RFN(%)
Parking 20 99.29 0.50 0.21

Shopping 20 97.56 1.43 1.01
Airport 20 95.88 2.07 2.06

Table 3:F1 scores of the traditional GMM method and the
proposed method.

sequencetraditional GMM proposed method
Parking 0.76 0.85

Shopping 0.70 0.81
Airport 0.65 0.68

are the number of missing foreground pixels. For se-
quencesShoppingandAirport the ground truths from
(Li et al., 2004) were used while the ground truths for
sequenceParkingwere manually labeled.

By comparing the detection rates it is obvious that
the proposed method (Table 2) outperforms the tradi-
tional method (Table 1). We further calculated theF1
measure (Table 3) for sequenceAirport:

F1 = 2 · Recall·Precision
Recall+Precision

(17)

wherePrecision is the number of detected fore-
ground pixels divided by the number of all detected
pixels andRecall is the number of detected fore-
ground pixels divided by the number of foreground
pixels in the ground truth.

The performance of the proposed algorithm with-
out using parallel computing is about 29 fps for
480x270 image resolution on a 2.83GHz Intel Core2
Q9550. Thus, the algorithm already performs at least
as fast as the traditional GMM method while obtain-
ing better results and is clearly faster than background
subtraction methods with complex and computation-
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Figure 7: Original frame (a) and the corresponding detection results of the traditional method (b), the statistical background
modeling method (Li et al., 2004) (c) and the proposed method(d) for sequencesShopping(top) andAirport (bottom).

Table 4: Average detection frame rate for sequenceParking
using different numbers of threads.

threads 1 2 4 8 16 32
fps 29.20 48.54 60.16 73.21 75.43 72.76

ally expensive routines such as (Yang and Hsu, 2006).
Since the GMM estimation is done independently for
each pixel, parallel computing using multithreading
can further speed up the object detection process. Of
course it would not be practical to use a single thread
for each pixel. Thus, we devide each frame inton
slices. The slices are then parallel processed. By
using multithreading we increased the frame rate as
shown in Table 4. For each number of threads the
algorithm was run 100 times and the obtained frame
rates were then averaged.

5 CONCLUSIONS

A moving object detection method based on spatio-
temporal adaptive GMMs is proposed. The proposed
method significantly increases the quality of the de-
tection results without increasing the needed process-
ing time. Through parallelization of the algorithm we
further achieve a speedup factor of up to 2.5 compared
to a single thread implementation.
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