
VOIPINTEGRATION
VoIP Control and Processing System

F. J. Serrano, G. G. Talaván, B. Curto, V. Moreno, J. F. Rodrı́guez Aragón and A. Moreno
Faculty of Sciences, University of Salamanca, Salamanca, Spain

Keywords: Technology integration, VoIP, Telephony.

Abstract: Analog telephone networks, are gradually giving way in favor of new Internet-based communication systems
(VoIP). However, the diversity and heterogeneity of systems and suppliers prevent users from communicate
with their contacts on an uniform and simple way. In this paper a new VoIP multiprotocol and multidevice
system, extensible by plugins, is presented. Heterogeneous character has lead us to the need of considering
several different communications mechanisms at present. The usage of common devices for telephone com-
munications has also been considered. A complete system has been developed in order to integrate all possible
components of a VoIP system.

1 INTRODUCTION

Analog telephone networks, are gradually giving way
in favor of new Internet-based technologies. There are
more and more protocols like SIP (Rosenberg et al.,
2002) or IAX (Spencer et al., 2009) and systems that
use the Internet as communication channel and pos-
sible replacement for the analog telephone network.
Skype (Skype, 2009) with its own protocol seems to
have a dominant position in this area, although many
providers already offer free calls from computer to
computer, or cheap calls to landlines and mobiles
phones mainly using the SIP protocol.

One of the main barriers preventing the prolifera-
tion of these new technologies is just the diversity and
heterogeneity of systems and suppliers. If end users
want to take full advantage of these technologies, dif-
ficulties arise like the installation of different clients,
learning their particularities, the lack of organization,
and so on. Although these clients are very easy to use,
just the simple need to interact with a computer may
lead some users to prefer to keep using their landline
phones as usual.

Up to date, Asterisk (Asterisk, 2009) was the
only system that integrates several VoIP technologies.
However, Asterisk is server-oriented, i.e. it’s not ori-
ented to final users. A platform bringing together the
different technologies and allowing users to access
them in a uniform way and, if possible, be adapted to
the habits acquired over the years by telephony users

Figure 1: Proposed system.

becomes necessary. The development of an integra-
tion platform is viable since specifications of VoIP
protocols and clients are well defined, and also those
of the subscriber loop and analog phones. The work
in this paper involves the development of a plugin

195
Serrano F., TalavÃąn G., Curto B., Moreno V., RodrÃ guez AragÃşn J. and Moreno A.
VOIPINTEGRATION - VoIP Control and Processing System.
DOI: 10.5220/0002809301950198
In Proceedings of the 6th International Conference on Web Information Systems and Technology (WEBIST 2010), page
ISBN: 978-989-674-025-2
Copyright c© 2010 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



Figure 2: VoIPIntegration architecture.

based communication platform (VoIPIntegration) that
is expected to facilitate access by a large number of
users to VoIP technologies, to allow users to access
all services in the same way that they access the con-
ventional analog phone, and to provide advanced fea-
tures for more experienced users. Below, we will ex-
plain this communication platform we have designed
an implemented, we will show how new plugins are
integrated in the system to provide compatibility with
telephone devices and VoIP protocols, and finally we
will describe the already developed plugins.

2 PROPOSED SYSTEM

The system kernel is a application called VoIPInte-
gration that must be installed on the user’s computer.
This application lets integrate different telephone de-
vices like hardware and software telephones, coordi-
nate them and easily access IP telephony using popu-
lar clients or most relevant protocols (fig. 1).

Platform design is plugin based. On one side, plu-
gins for connection with VoIP clients, like Skype or
SIP protocol, are found. These plugins allow every
telephone devices connected to the system to access
the Internet and to contact other clients using their
respective protocols. On the other side, plugins for
connection with local telephones (software and ana-
log telephones) are found. To achieve integration with
analog phones, we have used the USB port and a hard-
ware adapter that we have designed and developed.

3 VOIPINTEGRATION
ARCHITECTURE

The platform kernel (fig. 2) performs the typical func-
tions of a private branch exchange (PBX) and an ad-
dress book. It establishes connections between tele-
phone devices and VoIP clients with device occupa-
tion management and configurable relationships be-
tween VoIP accounts and telephone devices, so that
calls are received by different phones depending on

their origin account. This becomes even more use-
ful by allowing users to maintain multiple active calls
simultaneously. As shown in figure 2 one of the soft-
ware components works as a switchboard. This PBX
connects telephone devices installed in the system
among themselves or with VoIP clients through plu-
gins. Access to each plugin is done through proxies.
Each proxy accesses a plugin through a well-known
interface and using a specific protocol. Proxies are
responsible for getting the required information from
the plugins, storing their state and providing as much
functionality as possible in order to make the imple-
mentation of plugins as simple as possible.

Specifically, a phone plugin proxy stores the
phone status (on-hook, off-hook, dialing, ringing,
talking), the name of the audio input/output devices
that the phone uses, the default VoIP account used by
the phone (although any account integrated in the sys-
tem may be used), and the establishment of calls by
the three available dialing modes (normal, letters and
T9). Several instances of a same telephone plugin can
coexist.

VoIP client proxies link the PBX with client plu-
gins. These plugins can’t have several instances, but
they can access several accounts so that each one is
seen by the PBX as a different communication chan-
nel.

4 VOIPINTEGRATION API

VoIPIntegration has its own API that specifies how
different plugins must connect and communicate with
the system. This API is based on a generic inter-
face for each plugin type (telephone or VoIP client)
and on the format of the text messages exchanged be-
tween the application and different plugins. This API
also allows extending and supporting new protocols
and new phone devices. For this, plugins must fulfill
certain requirements and respect the VoIP integration
communication protocol. Plugins are not able to start
a communication by themselves, but they must wait a
VoIPIntegration request. With this plugin design, it’s
not necessary to use any library, call any function or

WEBIST 2010 - 6th International Conference on Web Information Systems and Technologies

196



Figure 3: Phone plugins integration.

know anything about VoIPIntegration. This implies a
low coupling design.

4.1 Phone Plugins

Communication between VoIPIntegration and phone
plugins (fig. 3) is performed by an interface
(PhonePluginInterface) and using an specific proto-
col (Phone Protocol) that we have defined. Basic ser-
vices must be provided by the plugin implementing
the interface. Communication protocol messages are
used for notifications, for advanced features and for
adding new functionality in the future keeping back-
wards compatibility.

Basic services that the plugin must provide are: to
communicate with the user in order to let him know
about the reception of calls and to provide him some
kind of interface so the user can also make calls; to
know at every moment the status of the phone (on-
hook, off-hook) and to associate with an input and an
output audio device of the system.

Protocol between VoIPIntegration and a phone
plugin (Phone Protocol) allows bidirectional commu-
nications between them by a plain text messages ex-
change. Message structure contains a command field
and some attributes. Plugins send requests to VoIP-
Integration using the return value of an PhonePlug-
inInterface function (getEvent). This function will
be called continuously by VoIPIntegration. To avoid
busy waiting, plugins must internally block this func-
tion until they need to send any request. If a plu-
gin doesn’t fulfill this requirement, or send incorrect
messages, VoIPIntegration would deactivate it. VoIP-
Integration responds all the request made by plugins
calling another PhonePluginInterface function (even-
tResponse). Response may be the ”OK” string or
the ”ERROR” string followed by a textual descrip-
tion of the error that happened. Several commands
can be sent by means of a numeric sequence to pro-
vide advanced functionalities of VoIPIntegration (ad-
dress book, dialing methods, voice synthesis, etc.) in
phone devices without graphical interface. VoIPInte-
gration can also send orders and notifications to the
phone plugins through PhonePluginInterface.

Extra features from the plugins are allowed
by combining the ”ACTION” command from the
Phone Protocol with the getActions function from the
PhonePluginInterface interface. Plugins must send to
VoIPIntegration the name of additional features that
they provide using the return value of the getActions
function. These names are included in the VoIPIn-
tegration graphical interface and when a user selects
any of them, an ”ACTION” command is sent to the
corresponding plugin with the name of the special ac-
tion that must be performed.

Already existing methods are used to extend the
protocol with new commands. Thus, plugins com-
patibility with new versions of VoIPIntegration are
ensured. New requests between VoIPIntegration and
plugins will be performed in the common way.

4.2 VoIP Client Plugins

Communication between VoIPIntegration and VoIP
plugins is performed through an interface (VoIP-
ClientPluginInterface) and with a specific protocol
(fig. 4) in a similar way as phone plugins described in
the above section. VoIP client plugins must provide
access to at least one IP telephone account that al-
lows starting calls, receiving them and hanging them
up. Plugins must also play and extract audio from de-
vices indicated by VoIPIntegration. For this, an audio
library is provided with the application. Communica-
tion between VoIPIntegration and VoIP client plugins
is bidirectional and uses the same mechanisms as tele-
phone plugins (getEvent, eventResponse, getActions,
etc.) although the exchanged messages are different.

5 DEVELOPED PLUGINS

VoIPIntegration provides a GUI in order to manage
and control the plugins and the address book. It also
provides a library to manage the audio devices of the
system that allows recording, playing and synthesiz-
ing voice from text. VoIPIntegration includes a plugin
discovery system that allows automatically recogniz-

VOIPINTEGRATION - VoIP Control and Processing System

197



Figure 4: VoIP clients integration.

ing them. For implementing it, Java facilitates that
work as it allows us to pack plugins into a jar files with
information about them in the manifest.mf file. We
will now describe the VoIP clients and telephones de-
veloped plugins (Skype, SIP, software telephone and
USB telephone).

Skype plugin allows sending and receiving calls
through it, sending DTMF tones and additionally im-
porting Skype address book. Skype must be installed
in the system and logged in for the plugin to work.

SIP protocol plugin uses open source library
MjSIP (Veltri, 2005) in order to send and receive
calls. It lets VoIPIntegration the use of several IP tele-
phone accounts with any provider using this protocol.
All SIP accounts are managed concurrently, so that
several incoming and outgoing call can coexist simul-
taneously through different accounts.

Software telephone plugin implements a virtual
telephone with a friendly graphical interface for VoIP-
Integration that uses all the API functionality.

USB adapter plugin allows VoIPIntegration to ac-
cess to the analog telephone adapter that has been
built. Plugin can connect to the phone, retrieve its sta-
tus, send and receive DTMF tones, send and receive
ringtones and send caller ID information. It allows
any analog phone connected to the adapter to send and
receive calls using any of the VoIP clients integrated
in VoIPIntegration. The developed USB adapter ful-
fill the USB Audio Class and the USB HID Class stan-
dards. Therefore, the prototype doesn’t need specific
drivers for Windows and Linux, but generic drivers
provided by the operating system that are automati-
cally loaded.

6 CONCLUSIONS

A voice communication system in order to work in
an heterogeneous VoIP environment has been devel-
oped. Main VoIP systems and classic telephone de-
vices have been considered in their specifications.
System design has been made in a way that, in the
future, new services of this technological scope can
be incorporated. For this, we have designed a soft-

ware that can handle plugins. Different plugins for
the most popular technologies like Skype client or SIP
protocol have been developed in order to validate the
proposed design.

From the users point of view, different interfaces
are also supported in our plugin-based proposal. So, a
software telephone and its corresponding plugin have
been developed. An USB adapter, which allows in-
teraction between the system and analog phones, has
been developed and built in order to achieve a greater
usability. It’s been necessary to design and develop
a complete hardware system with its corresponding
embedded real-time control software. The prototype
has been tested with different analog telephones and
satisfactory results have been obtained.

This proposal allows accessing different VoIP
technologies in a simple way at low cost. So, users
may integrate their telephone systems with current
VoIP systems performing a small investment using
our proposed architecture.

ACKNOWLEDGEMENTS

This work has in part been financed by Junta de
Castilla y León (Project SA030A-07) and Span-
ish Ministry of Science and Innovation (DPI2007-
62267). The main author has also worked under the
support of an University of Salamanca fellowship.

REFERENCES

Asterisk (2009). Asterisk reference information version
1.6.1.6. Asterisk.org.

Rosenberg, J. et al. (2002). Sip: Session initiation protocol
(rfc3261). Network Working Group.

Skype (2009). Skype public api 4.1 reference guide. In
Skype API reference. Skype.

Spencer, M. et al. (2009). Iax: Inter-asterisk exchange ver-
sion 2 (rfc5456). Network Working Group.

Veltri, L. (2005). Mjsip version: 1.5. In MjSip-Mini-
Tutorial. MjSIP.

WEBIST 2010 - 6th International Conference on Web Information Systems and Technologies

198


