
PER-REQUEST CONTRACTS FOR WEB SERVICES
TRANSACTIONS

David Paul, Frans Henskens and Michael Hannaford
Distributed Computing Research Group, School of Electrical Engineering and Computer Science

University of Newcastle, Callaghan NSW, Australia

Keywords: ACID reduction, Semantic atomicity, Tentative hold.

Abstract: To allow providers to keep their autonomy and ensure the overall system can run satisfactorily, it is common
practice in the Web Services environment for providers to reduce the strength of some of the traditionally-
required ACID properties when offering transactional support. However, current standards require providers
to offer a constant level of transactional support for each operation they provide. We describe a method that
allows service providers to dynamically decide on the level of transactional support to offer for each client
request. This allows the provider to base the level of transactional support offered on the current state of the
system and internal logic, resulting in potential benefits for both service providers and consumers.

1 INTRODUCTION

Web Services transactions combine services provided
by multiple, possibly completely unrelated parties
into a single action. While these transactions are
loosely based on the techniques used in conventional
databases, strictly enforcing ACID properties in the
Web Services environment is often impractical. Thus,
it is typical to reduce the strength of some of the tra-
ditional transaction properties when combining multi-
ple service calls into a transaction-like workflow. The
currently supported reductions are static; they must be
decided before the transaction begins, and all parties
must provide the same level of support, even if some
would be willing to support stronger versions of the
properties. This paper presents some concepts and
evaluation leading to the development of a protocol
that allows the dynamic specification of the strength
of various ACID properties for Web Services transac-
tions.

The ACID properties of Atomicity, Consistency,
Isolation, and Durability are well understood in tra-
ditional databases (Gray and Reuter, 1993). How-
ever, these are typically single systems, where a trans-
action coordinator has complete control over every
aspect of the system. In the Web Services environ-
ment, transactions involve multiple autonomous enti-
ties working together, and very few are willing to give
up the autonomy that ensuring the full ACID proper-

ties would require. Further, as Web Services transac-
tions can run for long periods of time (perhaps days
or weeks), complete support for the ACID properties
can severely negatively affect the performance of both
individual systems and the system as a whole.

Current techniques (e.g. (Ceponkus et al., 2002;
Cox et al., 2004; Bunting et al., 2003)) reduce these
problems by relaxing some of the ACID properties.
However each entity in the transaction must provide
the same level of transactional support. We believe
that allowing different entities to dynamically provide
different reductions to the ACID properties will im-
prove support for transaction-like workflows in the
Web Services environment. In our model, different
providers in a transaction can choose the level of
support for transactions that they desire. The client
can then combine actions with different transactional
guarantees into a cohesive whole that takes full ad-
vantage of the transactional support offered by each
service. A simulator has been created to evaluate such
a system.

Using this simulator it is possible to test how
different reductions to the ACID properties work in
different situations. The model can also facilitate
changes to parameters such as the network topology,
failure rates of particular services, or the number and
length of transactions being run in such a way that al-
lows repeatable testing with changes only to the trans-
actional properties being used. The simulator will

81
Paul D., Henskens F. and Hannaford M.
PER-REQUEST CONTRACTS FOR WEB SERVICES TRANSACTIONS.
DOI: 10.5220/0002801800810088
In Proceedings of the 6th International Conference on Web Information Systems and Technology (WEBIST 2010), page
ISBN: 978-989-674-025-2
Copyright c© 2010 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



also be used to develop and test a dynamic protocol
that allows the strength of the various ACID proper-
ties supported to be negotiated during run-time.

This paper is organised as follows: Section 2
gives background information about transactions in
the Web Services environment, and points out useful
research for the study discussed in this paper. Sec-
tion 3 then describes a motivating scenario to demon-
strate the usefulness of per-request contracts between
clients and service providers. This scenario is exam-
ined in Section 4, and the results discussed in Section
5. Finally Section 6 concludes the paper and indicates
future directions.

2 BACKGROUND AND RELATED
WORK

There are two approaches to the specification of Web
Services transactions. The first, used in protocols
such as the Transaction Internet Protocol (Lyon et al.,
1998), is to attempt to move traditional transactions
to the Web Services environment. The second is to
redefine the concept of a transaction. Rather than
specifying that the ACID properties must all be met,
protocols such as BTP (Ceponkus et al., 2002), WS-
Transaction (Cabrera et al., 2005; Cox et al., 2004)
and WS-CAF (Bunting et al., 2003) reduce some of
the ACID properties to allow transaction-like work-
flows that are better suited to the Web Services envi-
ronment.

The Transaction Internet Protocol (Lyon et al.,
1998) is based on the concept of two-phase-commit,
which has a transaction coordinator that first asks
each participant in the transaction to guarantee that
it can perform the requested action. Each participant
then sends a response to the coordinator specifying
whether or not they will give that guarantee. If each
participant does agree, then the coordinator sends a
confirmation message to each of them; the partici-
pants have all guaranteed that the actions will com-
plete successfully, so the transaction will also be suc-
cessful. If one or more participants cannot give the
requested guarantee, then the coordinator must let all
participants know that the transaction has failed.

Once a participant has guaranteed that resources
are available, it must ensure that these resources are
reserved until the coordinator sends its second mes-
sage. This can take an indeterminate amount of time,
and possibly even forever if there is a break in a com-
munication link. During this time, the participant
must keep the requested resources available for the
client, which can negatively affect other client inter-
actions with that system.

Each service provider in the Web Services envi-
ronment is autonomous, so they are typically not will-
ing to give up the control necessary to support full
ACID transactions through a two-phase commit pro-
tocol. Instead they typically offer a reduced level
of transaction support. The most common reduc-
tion for Web Services transactions is to replace the
ACID property of atomicity with semantic atomic-
ity (Garcia-Molina, 1983). Semantic atomicity allows
any requested action to be completed immediately (if
possible), and, if the transaction has to roll back, a
compensating action is performed to undo the already
completed action.

Semantic atomicity typically removes the property
of isolation from Web Services transactions, which
can result in the overall system behaving in an unde-
sirable manner. For example, a request may be denied
because a currently running transaction has already
been allocated the requested resource. If that trans-
action later fails and the compensating action returns
the resource, then, in retrospect, the denied request
could have been approved. While there are techniques
that allow full support of isolation (Alrifai et al., 2006;
Choi et al., 2005), this support necessarily affects how
well services can perform.

There are different techniques that attempt to re-
duce the problems involved with ignoring global iso-
lation while still providing an acceptable level of ser-
vice. One such method is the Tentative Hold Proto-
col (Roberts and Srinivasan, 2001), which replaces
the exclusive locks required by other techniques with
non-exclusive ones. In this protocol, a client requests
some resources from a provider, and the provider
sends a reply that informs the client whether the re-
quested resources are currently available. If the re-
sources are available then the client can continue, as-
suming that the resources will be available when they
are ready to commit. If ever the situation changes, and
the requested resources become unavailable, then the
service provider can notify the client and the transac-
tion can be cancelled.

It is also possible to combine multiple reductions
of transactional properties to allow the benefits of
each technique to be used. For example, (Limthan-
maphon and Zhang, 2004) allows support of both ten-
tative holds and, through the use of compensating ac-
tions, semantic atomicity. (Fauvet et al., 2005) also
includes two-phase commit. These combinations are
useful, but the proposals only allow the use of the re-
ductions explicitly built into them; service providers
are forced into supporting a subset of the allowed re-
ductions, which may not include the level of support
they wish to provide.

While most standards specify support for only

WEBIST 2010 - 6th International Conference on Web Information Systems and Technologies

82



certain transaction-like behaviours and reductions,
there has been some work into offering more gen-
eral support. For example, transactional attitudes
(Mikalsen et al., 2002) allow providers to specify their
transaction-like behaviour using an extension to their
WSDL service descriptions. This allows the provider
to explicitly describe how its actions can be used in a
transaction, and allows for the combination of multi-
ple different levels of transaction support, using mid-
dleware to hide the transactional complexities this re-
quires from the client. However, providers are re-
stricted to offering only one level of transaction sup-
port for each published service; it is impossible for
the provider to change the level of support from one
request to another.

This project believes that there is a number of pos-
sible reductions to the ACID properties that result in
a useful transaction-like workflow. In particular, we
believe that allowing different reductions to be used
by different providers in a single transaction can im-
prove performance of both transactions and individual
providers. Further, we believe that a provider should
be able to dynamically decide the level of transac-
tional support to provide for a particular request based
on internal logic, its current state, and the incoming
request. For the purpose of this paper, we look at ser-
vices that can be provided with either semantic atom-
icity or tentative holds, as specified in the next section.

3 EXAMPLE SCENARIO

Consider three providers offering a competing service
that clients wish to use in a transaction. This service
allows a client to order a certain number of finite re-
sources (for example, this could be a booking of a
number of hotel rooms, or an order for a number of
books). Each provider is free to choose the level of
transaction support that it wishes to make available,
and each service is identical except for the level of
transaction support being offered.

The providers choose between the following three
levels of transaction support: (It is assumed that
clients can query the level of transactional support of-
fered by a service provider at any time.)
• Support for Semantic Atomicity. A client sends a

request asking the provider for a certain number
of resources. If the provider offers these to the
client, then those resources cannot be offered to
any other client. The client can, however, later
cancel the order without penalty, in which case the
resources again become available for later clients.

• Support for Tentative Holds. A client can send a
request asking if the provider could fulfil a partic-

ular order. The provider sends back a message
indicating whether the requested number of re-
sources are currently available. Whilst the client
has not finalised the booking, the provider is able
to use the requested resources for other clients. If
the resources become unavailable before the client
finalises its booking, the provider lets the client
know that the hold is no longer valid. Once a
client has finalised an order, it cannot be cancelled
without penalty.

• Variable Support. The provider offers seman-
tic atomicity while resources are plentiful, but
switches to only supporting tentative holds when
the number of resources it can provide reach a cer-
tain level.

The behaviour of clients depends on the level of
transactional support offered by the providers. Some
clients will refuse to use any provider that does not
support semantic atomicity. As the service offered by
these providers is only one part of the client’s trans-
action, using a service that only offers a tentative hold
may lead to some actions in a transaction complet-
ing successfully before another action fails. To en-
sure that the client has no risk of penalty for a failed
transaction, it may be necessary for the client to undo
a booking without penalty, which is only possible if
semantic atomicity is offered.

Other clients will not care about the level of trans-
action support offered for this service. These clients
are either using the order for this service as a pivot ac-
tion (Zhang et al., 1994) (a single action in a transac-
tion such that its success or failure determines the suc-
cess or failure of the entire transaction), or are willing
to accept the risk that either this order succeeds while
their other actions fail, or that this order fails while
their other actions succeed.

Finally, some clients will prefer to use a provider
that offers semantic atomicity, but, if necessary, will
be willing to use one that only provides tentative
holds. These clients are similar to those that do not
care about the level of transaction support being of-
fered, but are only willing to risk having this booking
complete and the other actions fail if no better alter-
native exists.

In any case, each client finds a provider that of-
fers a level of transaction support that they are happy
with. If no such provider is found then the trans-
action fails with no action being taken. Otherwise,
if this provider offers semantic atomicity, the client
books the resources and then attempts the other ac-
tions in their transaction. If the other actions fail then
the client cancels the order and the transaction fails
without penalty. If the other actions succeed, then the
transaction has completed successfully.

PER-REQUEST CONTRACTS FOR WEB SERVICES TRANSACTIONS

83



If, on the other hand, the found provider only of-
fers a tentative hold to the client, then the client’s ac-
tion depends on the risk they are willing to take. If
the client is willing to have this service succeed with
a possibility that the other actions in the transaction
fail, then they complete this order immediately, and
then attempt the other actions. Successful comple-
tion of the other actions means a successful comple-
tion of the entire transaction. Failure of the other ac-
tions, however, means that the transaction fails and
the client cannot cancel its completed order with the
provider without a penalty.

The final case is where the found provider offers
a tentative hold, and the client is willing to have the
other actions complete successfully while the order
for this service fails. Once the client has the ten-
tative hold on the resources, it attempts to complete
the other actions. If these fail then the client re-
leases its tentative hold and the transaction fails with-
out penalty. However, if the other actions complete
successfully then the client attempts to finalise the or-
der. As long as the tentative hold is still valid then
this will be successful, resulting in a successful trans-
action. However, it is possible for the tentative hold
to become invalid while waiting for the other actions
to complete. If this occurs, the client can attempt to
find the resources from another provider, but if this is
impossible the transaction will fail with the other ac-
tions having been completed successfully. If the other
actions are not undoable, this will result in a partially
completed transaction, which may mean a penalty for
the client.

To ease the burden on the client, the above logic
can be moved into an abstract service (Schäfer et al.,
2007). Each of the three competing providers is reg-
istered with the abstract service, and clients then send
their requests to this service rather than to any of the
providers individually. The abstract service then takes
the responsibility for finding an appropriate provider
for any booking or tentative hold request. In particu-
lar, in the event that the abstract service has a tentative
hold that is later cancelled, the abstract service can
attempt to find the resources from another provider,
only informing the client of any problem if no other
provider can satisfy the request.

4 EXAMINING THE SCENARIO

In order to determine whether having providers that
dynamically change their transactional support for a
service is beneficial, a software model of the situa-
tion in Section 3 has been created. This model simu-
lates the sending of messages between clients and ser-

vice providers, monitoring each message that is sent.
The clients directly interact with the three service
providers, though the logic would be similar if each
client instead utilised an abstract service for commu-
nicating with the different providers.

In the model, the transactions of 1000 clients are
generated to be started between times 1 and 100, with
the start time of each transaction chosen randomly. It
is assumed that the majority of these clients (80%)
would prefer providers that offer semantic atomic-
ity over those only offering tentative holds, with the
other 20% being equally split between those unwill-
ing to use any provider that does not offer semantic
atomicity and those who do not care about the trans-
action support offered by the providers. Given that
each provider offers an otherwise identical service, it
is fair to assume that the majority would prefer the
provider that offers a better transactional guarantee.

For the first test, as well as their other activities,
each client wishes to order (randomly) between 1 and
10 resources from one of the three providers. The
second test is identical except half of the clients wish
to order a large number of resources (50). When a
client needs to choose which provider to use, it ran-
domly chooses between any of the providers that of-
fer the required resources with the requested transac-
tional guarantee.

Of the clients willing to risk having a partially
completed transaction (that is, all except those who
insist on semantic atomicity), half are assumed to risk
having this service complete and the other actions in
their transaction fail, and the other half to risk having
this service fail while the other actions in their trans-
action complete. The results of failures with penal-
ties would be skewed differently if these rates were
changed, but, for this study, all that is important is the
fact that a failure with penalty occurred, not whether
that penalty was on this service or the other actions in
the transaction.

Each client also wishes to perform some other ac-
tions as a part of their transaction. These other actions
are modelled as an activity that takes between 1 and
10 time units, and fails 20% of the time. In reality,
the other actions could consist of multiple activities,
but, for this study, it is sufficient to model them as a
single activity, since all that is important is whether
they succeed or fail.

The three providers are tested using each of the
three possible transactional guarantees. When using
the variable scheme that changes from semantic atom-
icity to tentative holds, the provider changes to use
tentative hold if the request would bring the number
of available resources to under 50% of the initial re-
sources offered by the provider. This is sufficient for

WEBIST 2010 - 6th International Conference on Web Information Systems and Technologies

84



Table 1: Results when providers have limited resources.

Provider 1 Provider 2 Provider 3 Clients (%)
Failure with

Protocol Protocol Protocol Success No
penalty

Penalty
on other
activity

Penalty
on this
service

Any
penalty

Tentative Tentative Tentative 61.2 28.7 7.6 2.5 10.1
Variable Tentative Tentative 61.3 29.9 6.3 2.5 8.8
Variable Variable Tentative 62.2 29.5 5.7 2.6 8.3
Variable Variable Variable 61.6 31.7 3.6 3.1 6.7
Semantic Tentative Tentative 61.9 31.6 4.6 1.9 6.5
Semantic Variable Tentative 62.0 32.5 3.0 2.5 5.5
Semantic Variable Variable 62.0 31.7 3.1 3.2 6.3
Semantic Semantic Tentative 60.3 32.6 3.7 3.4 7.1
Semantic Semantic Variable 60.8 32.8 2.1 4.3 6.4
Semantic Semantic Semantic 61.0 39.0 0.0 0.0 0.0

the purposes of this investigation, but the logic could
be much more complicated in a real world system
(for example, a provider could always offer semantic
atomicity to regular clients, or only ever offer tenta-
tive holds to unfamiliar clients with large orders).

It is assumed that each provider offers the same
number of resources. This is tested firstly with each
provider offering 1000 resources, and then with each
offering 3500. Thus, in the first test, there are far
fewer resources than are required by the set of clients,
meaning that the reservations for these providers are
most likely to fail. When each provider has 3500 re-
sources, there are sufficient resources for each client
and transactions only fail if the other actions fail, or
semantic atomicity is required but not offered.

5 RESULTS

The results for the test where providers only have
1000 resources are shown in Table 1. In each case, at
least 99.9% of the resources offered by each provider
were used, so the only important difference between
tests are the protocols used by the providers and
the number of clients that succeeded, failed without
penalty, and failed with penalty.

The protocol offered by each provider is speci-
fied in its “Protocol” column of the table. “Tentative”
means that the provider offered the tentative scheme,
which only ever gives out tentative holds. “Semantic”
means that the provider offered the semantic scheme,
always offering semantic atomicity if the requested
resources are available. Finally, “Variable” means
that the provider offered the variable scheme, where
it switches from offering semantic atomicity to offer-

ing tentative holds once its change-over threshold has
been reached.

The other columns in the table show the success or
failure rate of the clients. The “Success” column gives
the percentage of clients that successfully booked the
required resources from one of the three providers
and also had their other activities succeed. The “No
penalty” column specifies how many clients had both
actions fail without penalty. “Penalty on other activ-
ity” gives the number of clients that had their other ac-
tivities succeed but were unable to book the resources
required from any of the three providers. “Penalty on
this service” gives the number of clients that success-
fully booked the resources from one of the providers,
but then had their other activities fail. “Any penalty”
is the sum of “Penalty on other activity” and “Penalty
on this service”, and indicates how many clients had a
failure resulting in a partially completed transaction.

When all providers offered the tentative scheme,
61.2% of transactions completed successfully, and
10.1% failed with penalty. When a single provider
instead offered the variable scheme, the number of
failures with penalty was slightly lower (8.8%). Com-
pare this to the case where a single provider offered
the semantic scheme while the others offered the ten-
tative scheme. In this case, only 6.5% of transac-
tions failed with penalty. This shows that the variable
scheme provides better service for clients than exclu-
sive use of the tentative scheme, as the rate of client
failures with penalty is much lower (though not as low
as when the provider offers the semantic scheme).

Further, replacing more providers offering the
tentative scheme with providers that offer the vari-
able scheme results in even lower rates of failure
with penalty. When all providers offered the vari-

PER-REQUEST CONTRACTS FOR WEB SERVICES TRANSACTIONS

85



Table 2: Results when providers have sufficient resources.

Provider 1 Provider 2 Provider 3 Clients

Protocol Utility (%) Protocol Utility (%) Protocol Utility (%)
Success
(%)

Failure
with no
penalty
(%)

Failure
with
penalty
(%)

Tentative 37.37 Tentative 34.49 Tentative 32.17 72.6 18.8 8.6
Variable 68.89 Tentative 19.71 Tentative 20.06 76.6 18.0 5.4
Variable 53.57 Variable 54.46 Tentative 7.51 80.0 18.8 1.2
Variable 43.31 Variable 37.60 Variable 35.40 80.7 19.3 0.0
Semantic 99.40 Tentative 06.91 Tentative 8.11 80.0 19.2 0.8
Semantic 63.66 Variable 49.51 Tentative 4.11 80.7 18.8 0.5
Semantic 43.31 Variable 37.60 Variable 35.40 80.7 19.3 0.0
Semantic 59.09 Semantic 54.09 Tentative 4.11 80.7 18.8 0.5
Semantic 43.31 Semantic 37.60 Variable 35.40 80.7 19.3 0.0
Semantic 43.31 Semantic 37.60 Semantic 35.40 80.7 19.3 0.0

able scheme, only 6.7% of transactions failed with a
penalty for the client. While this is not as good as the
0% rate when only the semantic scheme was offered,
it is significantly better than the original 10.1%.

The success rate of transactions using techniques
other than the tentative scheme are also fairly high.
The decreased risk obviously means that fewer trans-
actions can succeed, but this is almost completely
compensated for by the clients that refuse to use any
transactional guarantee other than semantic atomicity;
when only the tentative scheme is offered, they are
guaranteed to fail (without penalty), but when even
just one provider offers the semantic scheme or the
variable scheme then these transactions have a chance
to succeed.

Table 2 shows the results of starting each provider
with 3500 available resources. Again, clients can be
seen to have a lower chance of failure with penalty
when transactional guarantees stronger than tentative
holds are provided. In fact, as there are sufficient re-
sources, the only failures with penalty that occur are
when the client risks making a booking on a provider
that only offers a tentative hold, and then the other
actions in the client’s transaction fail.

More interesting are the results for provider util-
ity, namely the percentage of original resources that
the clients have used once all transactions have com-
pleted. Since it is assumed that most clients prefer
using a provider who offers semantic atomicity, when
each provider has enough resources, those using the
variable scheme or the semantic scheme have a higher
utility. In fact, in many cases, the provider offering
the variable scheme behaves exactly like the provider
offering the semantic scheme, as the number of re-
sources it has remaining never gets below the amount

where the switch to tentative hold occurs.

The most obvious exception to this is where two
of the providers offer the tentative scheme, and the
other offers either the variable scheme or the seman-
tic scheme. When the provider offers the variable
scheme, it has a utility of 68.89%. When the semantic
scheme is used instead, however, the provider has a
utility of 99.40%. This is because the provider offer-
ing the variable scheme offers semantic atomicity un-
til its utility would be over 50%, and then only offers
tentative holds. Thus, once the provider changes to
tentative holds, clients no longer prefer that provider
over any of the others. When the semantic scheme
is offered, however, more clients prefer using that
provider as long as it has resources available.

Finally, table 3 shows the results when each
provider offers 3500 resources, and half the clients
attempt to order 50 of them. Once again, the num-
ber of transactions that fail with penalty decreases
as more providers offer stronger transactional guar-
antees. However, since many clients attempt to book
large numbers of resources, when only the semantic
scheme is offered the utility of each provider is sig-
nificantly reduced. This is because clients lock the re-
sources, making them unavailable for others, so more
transactions fail immediately. Interestingly, when just
one provider offers the variable scheme or the ten-
tative scheme rather than the semantic scheme, the
utility of all providers is increased. Since clients get
the tentative holds rather than immediately failing, the
transaction stays active for longer, giving it a greater
chance to succeed. If ever the tentative hold is can-
celled, the client, rather than simply failing, searches
for another provider to offer the required resources.
If this occurs after a transaction that had an exclu-

WEBIST 2010 - 6th International Conference on Web Information Systems and Technologies

86



Table 3: Results when half of the clients request large amounts of resources.

Provider 1 Provider 2 Provider 3 Clients

Protocol Utility (%) Protocol Utility (%) Protocol Utility (%)
Success
(%)

Failure
with no
penalty
(%)

Failure
with
penalty
(%)

Tentative 98.51 Tentative 99.91 Tentative 100.00 46.5 32.6 20.9
Variable 99.94 Tentative 99.54 Tentative 98.74 45.0 36.3 18.7
Variable 99.11 Variable 99.89 Tentative 99.74 43.4 43.0 13.6
Variable 98.06 Variable 99.49 Variable 99.57 43.0 48.0 9.0
Semantic 99.94 Tentative 98.89 Tentative 99.54 44.9 41.6 13.5
Semantic 99.94 Variable 100.00 Tentative 97.00 44.8 45.9 9.3
Semantic 99.94 Variable 99.71 Variable 99.34 42.2 53.4 4.4
Semantic 99.69 Semantic 99.97 Tentative 99.80 41.3 51.5 7.2
Semantic 97.60 Semantic 96.31 Variable 96.14 39.7 57.6 2.7
Semantic 83.06 Semantic 81.34 Semantic 83.51 34.8 65.2 0.0

sive hold on items from a different provider has failed,
those resources are then available to the client that lost
the hold.

6 CONCLUSIONS AND FUTURE
WORK

Transactions in the Web Services environment are
necessarily quite different to traditional ACID trans-
actions. However, the support provided by current
standards is not always sufficient. While existing
standards do allow some reduction to the ACID prop-
erties, these reductions are static, and each provider
in the transaction must necessarily support the same
reductions.

We have demonstrated that allowing service
providers to dynamically decide on the level of trans-
action support to offer for a particular request can be
beneficial to both service providers and clients. Us-
ing a simple example where a provider changes from
offering semantic atomicity to tentative holds based
purely on the number of resources it has available, it
has been seen that fewer client transactions fail with a
penalty. Further, assuming that most users would pre-
fer services with better transactional guarantees, the
utility of the provider increases.

It has also been shown that, in certain circum-
stances, using the variable scheme can increase the
utility of providers over that supplied by using only
semantic atomicity. Thus, the alternate scheme has
benefits over both offering just semantic atomicity
and just tentative holds.

While the example in this paper only consid-
ers two different transactional approaches (semantic

atomicity and tentative hold), many others are avail-
able. Thus, future work will look at combining dif-
ferent transactional guarantees into a single system
in which providers can dynamically decide on the
level of transaction support they wish to provide.
This study will also investigate different logic to help
providers make that decision.

The authors have not discussed the actual protocol
to allow clients and providers to negotiate on the level
of transaction support to be provided for a particular
service request. When performing a transaction com-
prised of actions from multiple providers, the level of
risk a client is willing to accept on one service call
may depend on the guarantees given by the providers
of the other actions in the transaction. Thus, not only
will the level of support a provider is willing to guar-
antee change dynamically, but so too will the level
that a client is willing to accept. As service providers
typically want their services to be used to give the
highest profit possible, and offering certain transac-
tional guarantees can be expensive, research into de-
termining how a provider can discover the level of
support required to attract a particular client will be
as important as having the client determine what level
is being offered.

REFERENCES

Alrifai, M., Dolog, P., and Nejdl, W. (2006). Transactions
concurrency control in Web Service environment. In
The Fourth IEEE European Conference on Web Ser-
vices (ECOWS’06), pages 109–118.

Bunting, D., Chapman, M., Hurley, O., Little, M., Mis-
chkinsky, J., Newcomer, E., Webber, J., and Swen-
son, K. (2003). Web Services Composite Application

PER-REQUEST CONTRACTS FOR WEB SERVICES TRANSACTIONS

87



Framework (WS-CAF) ver1.0. Technical report, Ar-
juna Technologies Ltd.

Cabrera, L. F., Copeland, G., Feingold, M., Freund, R. W.,
Freund, T., Johnson, J., Joyce, S., Kaler, C., Klein,
J., Langworthy, D., Little, M., Nadalin, A., New-
comer, E., Orchard, D., Robinson, I., Shewchuk, J.,
and Storey, T. (2005). Web Services Coordination
(WS-Coordination). Technical report, Arjuna Tech-
nologies Ltd., BEA Systems Inc, Hitachi Ltd., IBM
Corporation, IONA Technologies, Microsoft Corpo-
ration.

Ceponkus, A., Dalal, S., Fletcher, T., Furniss, P., Green, A.,
and Pope, B. (2002). Business Transaction Protocol
1.0. Technical report, OASIS.

Choi, S., Jang, H., Kim, J., Kim, S. M., Song, J., and Lee,
Y. (2005). Maintaining consistency under isolation re-
laxation of Web Services transactions. In The Sixth In-
ternational Conference on Web Information Systems
Engineering (WISE’05), pages 245–257, New York,
NY, USA.

Cox, W., Cabrera, L. F., Copeland, G., Freund, T., Klein,
J., Storey, T., and Thatte, S. (2004). Web Services
Transaction (WS-Transaction). Technical report, BEA
Systems Inc, International Business Machines Corpo-
ration, Microsoft Corporation.

Fauvet, M.-C., Duarte, H., Duman, M., and Benatal-
lah, B. (2005). Handling transactional properties in
web service composition. In The Sixth International
Conference on Web Information Systems Engineering
(WISE’05), pages 273–289.

Garcia-Molina, H. (1983). Using semantic knowledge for
transaction processing in a distributed database. ACM
Trans. Database Syst., 8(2):186–213.

Gray, J. and Reuter, A. (1993). Transaction processing :
concepts and techniques. Morgan Kaufmann Publish-
ers, San Mateo, Calif.

Limthanmaphon, B. and Zhang, Y. (2004). Web Service
composition transaction management. In The Fif-
teenth Australasian database conference (ADC ’04),
pages 171–179. Australian Computer Society, Inc.

Lyon, J., Evans, K., and Klein, J. (1998). Transaction Inter-
net Protocol version 3.0. Technical report, Microsoft
Corporation and Tandem Computers.

Mikalsen, T., Tai, S., and Rouvellou, I. (2002). Trans-
actional attitudes: Reliable composition of au-
tonomous web services. In Workshop on Dependable
Middleware-based Systems (WDMS’02) at the De-
pendable Systems and Network Conference (DSN’02).

Roberts, J. and Srinivasan, K. (2001). Tentative Hold Pro-
tocol part 1: White paper. Note, World Wide Web
Consortium.

Schäfer, M., Dolog, P., and Nejdl, W. (2007). Engineer-
ing compensations in web service environment. In In-
ternational Conference on Web Engineering, Como,
Italy. Springer Berlin/Heidelberg.

Zhang, A., Nodine, M., Bhargava, B., and Bukhres, O.
(1994). Ensuring relaxed atomicity for flexible trans-
actions in multidatabase systems. In The ACM SIG-
MOD International Conference on Management of
Data (SIGMOD’94), pages 67–78. ACM Press.

WEBIST 2010 - 6th International Conference on Web Information Systems and Technologies

88


