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Abstract: Automated systems and tools for assessing student programs are now commonly used for enhancing the 
teaching and learning of computer programming.  However, many such systems employ rudimentary 
techniques in comparing program outputs when testing student programs for determining their correctness.  
These comparison techniques are typically inflexible and disallow even slight deviations of program output 
which a human assessor would normally tolerate. This may give rise to student frustrations and other 
undesirable pedagogical issues that can undermine the benefits of using these assessment tools.  This paper 
presents an experimental prototype we have developed that adopts a token-pattern-based approach to 
accommodate more tolerant output comparisons in testing student programs, followed by a preliminary 
validation of the prototype by showing how it can be configured to handle the assessment of variants of 
program outputs. 

1 INTRODUCTION 

The use of automated software systems and tools for 
assessing student programs is now popular in many 
universities (Ala-Mutka, 2005).  These systems have 
not only relieved instructors’ workload in 
administering and assessing student program 
submissions (Helmick, 2007; Joy et al., 2005), but 
also provided fast and useful feedback on students’ 
work (Lam et al., 2008; Morris, 2003), thereby 
facilitating the use of enhanced pedagogy in Web-
based or blended learning environments (Choy et al., 
2007; Higgins et al., 2003), as well as increasing 
students’ motivation to learn and improve through 
extensive practice (Law et al., 2010; Yu et al., 
2006). 

Ideally, all aspects of student programs should be 
evaluated to contribute to a holistic and impartial 
assessment, including but not limited to functional 
correctness (or simply correctness), run-time 
efficiency, memory usage, coding style and code 
structure (Ala-Mutka, 2005; Jackson and Usher, 

1997).  However, comprehensive assessment is very 
time-consuming and cannot be done very frequently 
for large classes.  Moreover, each course may differ 
in its emphasis and value some aspects more highly 
than others.  In most of the introductory 
programming classes, for instance, code correctness 
and structure is commonly considered more 
important than run-time efficiency. 

One of the few aspects that are assessed 
automatically in most of the existing systems is the 
(functional) correctness of student programs, 
typically by means of testing (Jackson, 1991; Morris, 
2003; Yu et al., 2006).  A program is usually tested 
by executing it against a prescribed set of test cases 
and comparing its output (the actual output) in every 
test run with the expected output (that is, the output 
produced by a correct program with the input of the 
test run).  Such a method of determining program 
correctness is known as the (program) output 
comparison method (Tang et al., 2009a). 

This output comparison method has been used, in 
one form or another, in most of the existing systems, 
such as ASSYST (Jackson and Usher, 1997), BOSS 
(Joy et al., 2005), Ceilidh/CourseMarker (Higgins et 
al., 2003), HoGG (Morris, 2003) and PASS (Choy et 
al., 2008; Yu et al., 2006).  In principle, the method 
can also be applied to non-text-based programs by 
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adding wrapper modules to convert their inputs and 
outputs into text strings (Morris, 2003).  This paper, 
however, focuses mainly on program assessment in 
elementary programming courses, which in most 
cases require students to write text-based programs.  
Readers may refer to (Ala-Mutka, 2005) for a 
comprehensive survey of methods that apply to 
various types of non-text-based programs. 

In practice, however, many existing systems 
employ rudimentary techniques in comparing the 
program outputs.  These comparison techniques are 
typically inflexible and disallow even slight 
deviations of program output which a human 
assessor would normally tolerate (Jackson, 1991).  
This may give rise to student complaints, 
frustrations and other undesirable pedagogical issues 
that can undermine the benefits of such automatic 
assessment systems (Ala-Mutka, 2005; Higgins et 
al., 2003; Tang et al., 2009b; Yu et al., 2006). 

In the rest of this paper, we shall first analyze the 
characteristics of common minor deviations of 
student program outputs (Section 2).  We then 
review an improved output comparison approach 
based on token patterns (Section 3), present our 
newly developed experimental prototype which 
adopts the token pattern based approach to 
accommodate more tolerant output variants in 
testing student programs, followed by a preliminary 
validation using the prototype (Section 4).  Finally, 
we conclude this paper in Section 5. 

2 PROGRAM OUTPUT 
VARIANTS 

The basic approach of implementing the output 
comparison method is to match the actual and 
expected outputs character by character (Ala-Mutka, 
2005; Helmick, 2007; Jackson, 1991).  In essence, 
this rudimentary character matching technique 
accepts the actual output as correct if and only if it is 
exactly the same text string as the expected output.   

However, unless a programming exercise is 
prescribed with highly precise requirements and 
demands complete conformance, most instructors 
would agree that, for a given test input, there exist 
many variants of actual output that deviate “slightly” 
or “insignificantly” from the expected output (such 
as an extra blank space or fullstop at the end) but 
still can be accepted as correct when judged by a 
“reasonable” human assessor (Jackson, 1991).  (For 
simplicity, in this paper, we shall refer to these 
outputs as admissible variants).  Therefore, in 
practice, almost all current automated programming 

assessment systems supplement the basic character 
matching approach with some simple filtering 
strategies that disregard, for example, blanks, dots, 
hyphens or control characters (Ala-Mutka, 2005; Joy 
et al., 2005; Choy et al., 2008).  These strategies are 
nevertheless ad hoc and still unsatisfactory. 

To deal with this problem, we adopt a more 
fundamental and systematic approach.  We first 
extracted a sample of programming exercise 
solutions previously submitted by our students 
across different courses, topics and intended learning 
outcomes.  We then manually examined, in detail, 
the output variants that are rejected by our automatic 
assessment system as “wrong outputs”  (Lam et al., 
2008). Among these output variants, we were able 
distinguish between admissible variants (which we 
considered acceptable as correct) from other variants 
(which we considered as truly incorrect).  Our 
analysis of the admissible variants showed that they 
are typically characterized as follows: (1) typos, 
such as misspelling of words, (2) equivalent words, 
that is, different words that basically have the same 
meaning as the expected output words, (3) numeric 
precision, that is, floating point numbers outputed in 
a higher or lower precision than the expected values, 
(4) presentation, such as spacing and relative 
positioning of output items, (5) ordering, which is 
regarded as immaterial for some programming 
problems, (6) punctuation mark, which is also 
considered immaterial for most programming 
problems.  Note that this list is not exhaustive as it 
results from the analysis of our sample exercises 
only.  It, however, serves as an useful guide for the 
design of an experimental prototype to improve the 
capability of automated systems in assessing 
admissible output variants. 

Moreover, our analysis of the output variants 
makes it clear that most of the deviations pertain to 
information of elements such as words, numbers, 
ordering, etc., that cannot be easily captured by 
inspecting individual characters.  Thus, instead of 
using a character-based matching approach, we 
experimented with an approach based on the notion 
of token pattern, recently introduced by Tang et al. 
(2009a).  In the next section, we shall summarise the 
key notions involved and briefly describe the new 
approach of output comparison before presenting 
our experimental prototype in Section 4. 
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Figure 1: A token pattern example. 

3 A TOKEN PATTERN BASED 
APPROACH 

3.1 Token and Token Pattern 

An output string can be decomposed into groups of 
successive characters, called tokens, representing 
meaningful pieces of information.  To each token 
extracted from the expected output, one can attach 
precise criteria for comparison with tokens derived 
from an actual output.  A token pattern thus refers to 
a string of tokens, each having a data type, value, 
and some associated (tagged) matching rule.  For 
example, when an expected output token value is a 
floating point number, then the associated rule may 
state the desired minimum number of decimal places 
so that matching the token’s value succeeds only if 
the actual output token has the same value, correct to 
the stated number of decimal places. 

Figure 1 depicts an example token pattern 
converted from the output text: “The average 
of 3 numbers is 74.67”.  Here the blank 
“Space” separating the words and numbers are 
associated with a “Don’t care” matching rule, 
meaning that the number of blank spaces is 
irrelevant as long as at least one is present as a 
separator.  The stop words “The”, “of” and “is” 
are specified as insignificant to be “Ignored” during 
matching.  On the other hand, the “Char” strings 
“average” and “numbers” are significant, but 
variants are admissible if “Correction” can be made 
to match them using a built-in “Dictionary”, thus 
allowing for minor deviations of equivalent words.  
For the “Integer” value “3”, exact value matching is 
required and other rules are not applicable (“N/A”).  
Finally, the value “74.67” is of type “Double”, 
and matching succeeds only if the other value agrees 
with it correct to “Decimal place at least 2”. 

3.2 Output Comparison based on 
Token Patterns 

The token pattern approach works as follows.  First, 
as usual, the instructor has to provide the expected 
output for each input.  Next, the automated system 
splits the expected output string into a sequence of 
tokens. The system then automatically proposes 
some default matching rules for the tokens according 
to the type of token values and some configurable 
default options.  The instructor can then fine tune the 
matching rules of individual tokens to determine 
exactly how the output tokens are to be matched.   

Meanwhile, the automated assessment system 
also splits the actual output string into a sequence of 
tokens for matching with the expected output token 
pattern.  A successful match according to the rules 
specified in the token pattern signifies that the actual 
output is acceptable as correct. 

4 COMPARSION USING OUR 
EXPERIMENTAL PROTOTYPE 

The token pattern approach was first conceptualised 
and proposed by Tang et al. (2009a).  In this work, 
we have built an experimental prototype to validate 
the approach, evaluate its feasibility and explore the 
different possible options and matching rules. 

Figure 2 shows a browser-based user interface of 
our experimental prototype for editing the default 
comparison options.  In the figure, the specified 
options are as follows. (1) Character cases are 
insensitive (immaterial).  (2) Stop words (in the 
given editable list) are ignored.  (3) Other words are 
corrected by using both the Soundex algorithm (a 
phonetic algorithm which can correct minor 
deviations of words such as missing a vowel) and  
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Figure 2: Interface of the prototype for editing the default comparison options.

searching for equivalent words using a built-in 
dictionary.  (4) All whitespaces (including spaces, 
tabs, carriage returns/line feeds) are considered 
“Don’t care”.  (5) All punctuation marks in the 
editable list are ignored, both at the trailing part of 
every line and everywhere else. 

Next, the instructor provides the expected output 
(which may be automatically generated if a correct 
program exists, such as the one written by the 
instructor).  The prototype automatically analyzes 
the expected output to generate a token pattern based 
on the output string and the specified default 
comparison options.   

In the example shown in Figure 2, the expected 
output string is “The average of 3 numbers 
is 74.67”.  The string was decomposed by our 
prototype into 13 tokens, as tabulated in Figure 3. 
The table consists of 7 columns, namely, the token’s 
ID, start and end positions in the output string, value, 
type, matching rule (automatically proposed by the 
prototype in accordance with the specified default 
comparison options) and its parameters, if any.  
Each row of the table corresponds to a token.  The 
whole token pattern, which should now be self-
explanatory, is the same as the one shown in 
Figure 1.  Through the interface shown in Figure 3, 
the instructor may, if desired, fine tune the matching 
rule of any tokens at will.  When editing of this table 
is completed, the prototype will generate an XML 
representation of the token patterns.  Thus, once 
made, the instructor’s choices are recorded in the 
XML representation to be subsequently interpreted 

by the prototype to perform the output comparisons 
accordingly. 

The prototype thus allows the instructor to 
specify coarse-grained criteria (comparison options 
that apply to all tokens) as well as fine-grained 
criteria (matching rules), if desired, for individual 
tokens extracted from each test case.  It also 
provides an easy-to-use and intuitively meaningful 
user interface to facilitate the specification of these 
criteria.  Alternatively, the instructor can simply 
accept the default settings if they are considered 
appropriate for the programming exercise. 

We now demonstrate the results of comparing 
two actual outputs with the token pattern specified in 
Figure 3.  Figure 4 shows that (1) the word “mean” 
is accepted to be equivalent (or “considered 
matched”) to “average” according to the built-in 
dictionary, (2) the singular word “number” is 
accepted as equivalent (or “considered matched”) to 
its plural form while the extra colon “:” at the end 
of the word is ignored, and (3) the number 
“74.6667” agrees with “74.67”, correct to 2 
decimal places.  Thus the actual output is acceptable 
according to the matching rules. 

Figure 5 shows that, according to the Soundex 
algorithm, the misspelt word “aevrage” is 
acceptable, but not “mumber” (having a different 
sound).  The latter is shown in red to indicate a 
mismatch.  Thus, this output is rejected as incorrect. 

AN EXPERIMENTAL PROTOTYPE FOR AUTOMATICALLY TESTING STUDENT PROGRAMS USING TOKEN
PATTERNS

147



 
Figure 3: Interface of the prototype for editing the token matching rules. 

 
Figure 4: An actual output of successful match. 

 
Figure 5: An actual output rejected as incorrect. 
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5 CONCLUSIONS 

Our experience, in common with the literature, is 
that students often feel frustrated with the strict 
output format requirements due to the automatic 
tester (Joy et al., 2005; Jackson, 1991; Morris, 2003; 
Yu et al., 2006).  The inflexibility of existing output 
comparison approaches based on character matching 
gives rise to undesirable pedagogical issues that can 
undermine the benefits of using an automated 
assessment system (Tang et al., 2009b).  To date, 
little progress has been made to address these (albeit 
well known) problems since the use of lex/yacc tools 
by Jackson (1991) and regular expressions (regex) in 
BOSS (Joy et al., 2005) and CourseMarker (Higgins 
et al., 2003).  Nevertheless, regex and lex/yacc tools 
demand high proficiency of the user and are not 
reported to have been widely used in other systems. 

In this work, we have characterized several 
common types of admissible variants and validated a 
newly proposed comparison approach based on 
token patterns by using an experimental prototype.   
We recognize some limitations of our present 
prototype, such as the need for more matching rule 
options.  Scope of this paper forbids detailed 
discussions on these.  Fundamentally, however, the 
token pattern approach supports easy specification 
of matching criteria of varying granularity.  It is 
intuitively easy to understand by various users.  This 
is essential for determining adoption in practice and 
dealing with complaints.  In time, we plan to identify 
areas of improvement of the new approach, perform 
experiments to evaluate its effectiveness, and assess 
the extent of additional effort required in practice. 
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