
PARSING BY SIMPLE INSERTION SYSTEMS

Gemma Bel-Enguix1, Pál Dömösi2 and Alexander Krassovitsky1

1GRLMC, Rovira i Virgili University, Avda. Catalunya 35, 43002 Tarragona, Spain
2College of Nyı́regyháza, Institute of Mathematics and Informatics

H-4400 Nyı́regyháza, Sóstói út 31/B, Hungary

Keywords: Insertion systems, Parsing, Natural language, Multi-agent systems.

Abstract: The aim of this paper is to initiate a new direction for the investigation of multi-agent systems. We will
consider the insertion systems as very simple multi-agent systems, where the agents are consisting of their
insertions. We define the systems and describe their working and main features. The central develoment of
the paper is the application of such systems to parsing. Some examples to natural language processing are
introduced that can illustrate the system.

1 INTRODUCTION

Although interaction between the fields of formal lan-
guages and multi-agents systems is not frequent, there
are some examples that illustrate the high theoretical
and applied potential of such collaboration.

Grammar Systems (Csuhaj-Varjú et al., 1994) are
widely considered as a particular case of multi-agent
system focusing in the special task of generating – and
accepting (Fernau et al., 1996)– languages.

Another interesting interdisciplinar approach was
given by Networks of Evolutionary Processors
(NEPs), introduced in (Castellanos et al., 2003), a
type multi-agent systems in the area of formal lan-
guages and bio molecular computing. An overview
on the generative power and complexity results of
NEPs has can be found in (Martı́n-Vide and Mitrana,
2005).

It is not easy to find in the literature practical ap-
plications of Grammar Systems or NEPs. In what
refers to Networks of Evolutionary Processors, some
ideas have been launched for parsing of natural lan-
guages (Bel-Enguix et al., 2009; Ortega et al., 2009)
starting from the idea of accepting NEPs, introduced
in (Margenstern et al., 2004) and developed in several
papers (Manea and Mitrana, 2009).

In this work, we will describe a polynomial parser
working on insertion (derivation) systems which can
be considered as very simple multi-agent systems.
Following with the tradition of NEPs, we want to use
a method that can make some contribution to both

multi-agent systems and formal languages. We are
also preliminary applying the mechanism to parsing
of natural languages.

2 INSERTION SYSTEMS

Insertion systems have been introduced and studied in
(Galiukschov, 1981). Characterization of recursively
enumerable languages by insertion systems is given
in (Păun et al., 1998; Kari and Sosı́k, 2009; Madhu
et al., 2009).

An insertion system(which is also called insertion
grammar in the literature) is a constructG = (V,A,P),
whereV is the (finite)alphabet, A ⊂ V∗ is the (fi-
nite) set ofaxioms, andP ⊂ {(u,α,v) | u,α,v ∈ V∗

is the (finite) set ofinsertionrules. An insertion rule
(u,α,v) ∈ I indicates that the stringα can be inserted
in betweenu and v. The rule (u,α,v) ∈ I corre-
sponds to the rewriting ruleuv=⇒ uαv. We denote
by =⇒ the relation defined by an insertion rule (for-
mally, x =⇒ y iff x = x1uvx2,y = x1uαvx2, for some
(u,α,v) ∈ I andx1,x2 ∈V∗). We denote by=⇒∗ the
reflexive and transitive closure of=⇒ (as usual,=⇒+

is its transitive closure). The language generated byG
is defined by

L(G) = {w∈V∗ | x =⇒∗ w,x∈ A}.

We say that an insertion system has weight

383
Bel-Enguix G., Dömösi P. and Krassovitskiy A. (2010).
PARSING BY SIMPLE INSERTION SYSTEMS.
In Proceedings of the 2nd International Conference on Agents and Artificial Intelligence, pages 383-387
DOI: 10.5220/0002784803830387
Copyright c© SciTePress

(l ,m,m′) if

l =max{|α| | (u,α,v) ∈ P};

m=max{|u| | (u,α,v) ∈ P};

m′ =max{|v| | (u,α,v) ∈ P}.

For example, consider an insertion system of the
weight (2,0,0) Π = ({a,b},{ε},{(ε,ab,ε)}). Then,
it is clear thatΠ generates the Dyck language.

We denote byINSm,m′

l the family of languages
generated by insertion systems of weight(l ,m,m′).
In the sequels we will restrict ourselves to inser-
tion systems of weight(l ,1,1), i.e., we assume that
all insertions have the form(a,a1 · · ·ak,b), where
a,a1, . . . ,ak,b∈V, andk≤ l . It is well-known that the
family of languagesINS1,1

l , l ≥ 1 is a proper subfam-
ily of context-free languages (Păun, 1997), for which
there are well-known parsers working in polynomial
time. Therefore, we expect to find parsers of poly-
nomial power for insertion systems of weight(l ,1,1)
too.

3 PARSING FOR SIMPLE
INSERTION SYSTEMS

For the sake of simplicity, first we assume thatA is a
singleton having a string of length two. We call this
type of insertion systemssimple.

For simple insertion systems, we can show an ef-
fective parsing technique based on the idea of CYK
algorithm (Cocke and Schwartz, 1970; Kasami, 1965;
Younger, 1967). The input to the algorithm is a
simple insertion systemG = (V,A,P) and a string
w = a1 · · ·an ∈V∗. In O(n3) time, the algorithm con-
structs a table that checks whetherw is in L(G). Note
that when computing the running time of the check-
ing, the system itself is considered fixed, and its size
contributes only a constant factor to the running time,
which is measured in terms of the length of the string
w whose membership inL(G) is being tested. In this
algorithm, we construct a triangular table, called pars-
ing table, as shown in Table 1.

The parsing table consists ofn−1 rows andn−1
columns, wheren denotes the length of the parsed
word. To fill the table, we work row-by-row up-
wards. Each row corresponds to substrings of the
given length; the bottom row is for strings of length 2,
the second row for strings of length 3, etc., until the
top row corresponds to the only substring of length
n, which is the parsed word. By the proposed algo-
rithm it takesO(n) time to compute each entry of the
table. Since there aren(n− 1)/2 entries, the whole
table construction takesO(n3) time.

Table 1: Parsing Table.

X15

X14 X25

X13 X24 X35

X12 X23 X34 X45

a1 a2 a3 a4 a5

The Algorithm

1. If a1am is not the (only) axiom (i.e.{a1am} 6= A)
thena1 · · ·am /∈ L(G) and we are ready.

2. Otherwise, we consider the following treatment.

(a) for everyj = 1, . . . ,m−1, we put(j, j +1) into
Xj , j+1.

(b) for every i = 2, ...,m− 1 and j = 1, ...,m− i,
we put (j, i +k) into Xj ,i+k if we did not do
it so far in the previous steps, and there ex-
ists an insertion(a j ,a j1a j2 · · ·a js,ai+k) (1 ≤
j < j1 < j2 < · · · < js < i + k ≤ m) such that
(j, j1) ∈ Xj , j1,(j1, j2) ∈ Xj1, j2, . . . ,(js−1, js) ∈
Xjs−1, js,(js, i +k) ∈ Xjs,i+k

1

(c) Finally, if (a1,am)∈X1,m thena1 · · ·am∈ L(G),
otherwise not.

Prove that the algorithm works in polynomial
(O(n3)) time. Moreover, for every stringa1 · · ·am ∈
V∗, we havea1 · · ·am ∈ L(G) if and only if (a1,am) ∈
X1,m.

Theorem 1. Let Π be a simple insertion systems and
let n be the length of the parsed word. There exists a
parser working onΠ in polynomial (O(n3)) time.

Proof:
The reason the algorithm puts the correct pairs of

characters is the following. In the bottom row, which
has the lengthn−1, for every position we put a pair
consisting of the line number of the position and the
consecutive one. Thus, the first pair is(1,2) and the
last pair is(n−1,n).

Then, for everyi = 2, ...,m−1 and j = 1, ...,m− i,
we can put(s,t) into the j-th position of thei-th row
if and only if two conditions are holding: a.)s= j; b.)
there exist an insertion(a j ,a j1a j2 · · ·a js,ai+1) and po-
sitions Xj , j1−1,Xj1, j2−1, . . . ,Xjs−1, js−1,Xjs, j i+k which

1Note that, by our assumptions,|a j1a j2 · · ·a js| ≤ ℓ.
Therefore, the number of elementary operations in step 2
is not more that(m−2)(m− i)ℓ.

ICAART 2010 - 2nd International Conference on Agents and Artificial Intelligence

384

contain pairs of line numbers of the parsed string such
that their column index is the same as the first mem-
ber of the contained pair, and their first indexes form a
sequencej1−1, j2−1, . . . , js−1, where j1, . . . , js are
the indexes of letters in the parsed strings for which
a j1a j2 · · ·a js is the middle part of the insertion rule
(a j ,a j1a j2 · · ·a js,ai+k).

For the running time, note that there areO(n2) to
compute, and each involves comparing and comput-
ing with not more thannℓ pairs of entries, whereℓ
denotes the maximum of the length of the middle part
in the insertion rules. We mention that the considered
simple insertion system is fixed, and the number of its
letters, its insertions do not depend onn, the length
of the parsed stringw. Thus, the time to compare at
mostℓ positions isO(1). As there are at mostnℓ such
pairs for each position of the parsing table, the total
working time isO(n). Therefore, the running time of
the parser isO(n3). �

4 PARSING FOR INSERTION
SYSTEMS OF WEIGHT (l ,1,1)

On the basis of our previous algorithm, we give a
parser for general insertion systems of weight(l ,1,1)
working also in polynomial time. Thus, the input to
the algorithm is an insertion systemG = (V,A,P) of
weight(l ,1,1) and a stringw = a1 · · ·an ∈V∗.

Let us denote byℓ the maximal length of axioms,
and for every 1≤ i < i + k ≤ n, denote byG i,i+k
the simple insertion systemG i,i+k = (V,{aiai+k},P).
The algorithm works as follows. First we built a di-
graph with set of vertices{1, . . . ,n} such that the pair
(i, j),1 ≤ i < j ≤ n is an edge if there is a path from
the vertex 1 to the vertexi having its length not more
thenℓ−1. Listing and checking the paths in this di-
graph, leading from 1 ton, we terminate the algorithm
if one of the following conditions holds:

1. we found a path 1, i1, . . . , i j ,n with a1ai1 · · ·ai j an ∈

L(G), or

2. for every path 1, i1, . . . , i j ,n such that it leads
from the vertex 1 to the vertexi, we have
a1ai1 · · ·ai j an /∈ L(G).

We establisha1ai1 · · ·ai j an

∗
⇒
G a1 · · ·an (i.e., we

establisha1 · · ·an ∈ L(G) such that, we use con-
secutively our parser for simple insertion sys-

tems in order to show thata1ai1

∗
⇒
G a1 · · ·ai1,ai1ai2

∗
⇒
G ai1 · · ·ai2, . . . , ai j−1ai j

∗
⇒
G ai j−1 · · ·ai j ,ai j an

∗
⇒
G

ai j · · ·an.

The Algorithm

1. The algorithm constructs a digraphD with set of
vertices{1, . . . ,n} in the following way.

(a) let us label the edge 1 by 0.

(b) For everyi = 2, . . . ,n, Let (1, i) be a (directed)
edge ofD if (a1, . . . ,ai)∈ L(G1,i),

2, and in this
case, let us label the edgei by 1.

(c) For every j = 3, . . . , ℓ, i = j, . . . ,n let (s, i) be
an edge ofD if s is labeled by j − 1 and
(as,as+1, . . . ,ai) ∈ L(G s,i), and in this case, let
us label the edgei by j.

2. If the vertexn has no incoming edge, thenw /∈
L(G), and we are ready.

3. Otherwise let us continue our treatment as fol-
lows.

(a) Omit the vertices having no labels.

(b) One after the other consider the paths
1, i1, . . . , i j ,n (which have less thanℓ length,
leading from the edge 1 to the edgen
in the reduced digraph), and check whether
a1ai1 · · ·ai j an is an axiom or not. If yes then
w∈ L(G), and we are ready.

(c) Running out of the paths such that nothing
leads to an axiom, we can concludew /∈ L(G),
and we are ready again.

The system can have several interesting applica-
tions, like the use for parsing of natural language. Let
us consider an example, with the following insertion
rules:

(0) (¢,<boy> <eats> <cake>,$)

(1) (<a>,<very>,<very>)

(2) (<a>,<very>,<nice>)

(3) (<a>,<nice><young>,<boy>)

(4) (<a>,<nice><apple>,<cake>)

(5) (<¢>,<a>,<boy>)

(6) (<eats>,<a>,<cake>)

By this simple insertion system sentences like [1]
can be parsed.
[1] ¢ a very very nice young boy eats a very nice apple
cake $

The procedure is shown in Table 2.

Theorem 2. There exists a parser working on inser-
tion systems of weigh(l ,1,1) in polynomial (O(n5))
time.

2We can decide by the previously discussed parser
whether it is true or not.

PARSING BY SIMPLE INSERTION SYSTEMS

385

Table 2: An example of parsing by simple insertion system.

(1,14)

(1,7)

(2,7) (8,13)

(9,13)

(2,5)

(2,4) (9,11)

(1,2) (2,3) (3,4) (4,5) (5,6) (6,7) (7,8) (8,9) (9,10) (10,11) (11,12) (12,13) (13,14)

¢ a very very nice young boy eats a very nice apple cake $

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Proof: The correctness of the algorithm has been
already explained. We built the digraphD in
∑ℓ

i=1n− ℓ = n(n− 1)/2− (n− ℓ)(n− ℓ− 1)/2 ele-
mentary steps. Thus the number of elementary steps
is O(n2). On the other hand, each of the elementary
steps takesO(n3) running time. Thus the running
time of the parser to builtD is O(n5). The time to
omit the non-labeled vertices isO(n). Because the de-
rived digraph is loop- and circle-free having not more
thanℓ edges, the total number of the path in this di-
graph starting by 1 and finishing byn, is 2ℓ−1. Re-
call that the considered insertion system with weight
(l ,1,1) is also fixed and the number of its letters, its
insertions, its axioms, and thus the maximumℓ of the
length of the axioms does not depend onn, the length
of the parsed string. Therefore, the running time of
the enumeration of the considered paths and checking
whether the strings characterized by these paths are
axioms or not, isO(1). Therefore, the running time of
the parser in total isO(n5). �

5 CONCLUSIONS

It is well-known that the family of languages, gener-
ated by insertion systems of weight(l ,1,1), l ≥ 1, is
a proper subfamily of context-free languages (Păun,
1997), for which there are well-known parsers work-
ing in polynomial time. Therefore, it can be pre-
dicted that there are parsers of polynomial time com-
plexity for languages generated by insertion systems
of weight (l ,1,1) too. In this paper, we have intro-
duced the concept of simple insertion systems and
showed a parser running on the generated languages
in time O(n3). On the basis of this result, we showed
another parser for the languages generated by inser-

tion systems working inO(n5) time. To find parsers
of polynomial time complexity for languages gener-
ated by general insertion systems or, even by inser-
tion systems of weight(l ,2,1) is not expected. It
is shown in (Păun, 1997) that insertion systems of
the weight(2,2,2) can generate non-semililear lan-
guages. Hence, it is unlikely there is a polynomial
time parser for these type of systems. For the future,
it could be interesting to refine the presented parsers
having lower time complexity (at least) for some fam-
ily of languages generated by special insertion sys-
tems. Also, it is interesting to consider the parsing
of insertion systems if an additional encoding of the
output words (e.g. by the finite state transducer) is
used. Some examples for application in natural lan-
guage processing are also shown. It could be worth-
while to check the capacity of these systems and their
future developments for parsing different syntactical
structures.

ACKNOWLEDGEMENTS

This work has been supported by the project
MTM2007-64322 from the Ministerio de Ciencia y
Tecnologı́a, and by the Active Researchers Program
from the URV, Department of Romance Phylologies.

REFERENCES

Bel-Enguix, G., Jiménez-López, M. D., Mercas, R., and
Perekrestenko, A. (2009). Networks of evolutionary
processors as natural language parsers. In Filipe, J.,
Fred, A., and Sharp, B., editors,Proceedings of the
1st International Conference on Agents and Artificial
Intelligence, pages 619–625. INSTICC Press.

ICAART 2010 - 2nd International Conference on Agents and Artificial Intelligence

386

Castellanos, J., Martı́n-Vide, C., Mitrana, V., and Sempere,
J. M. (2003). Networks of evolutionary processors.
Acta Informatica, 39:1–13.

Cocke, J. and Schwartz, T. (1970). Programming languages
and their compilers: Preliminary notes. Technical re-
port, Courant Institute of Mathematical Sciences, New
York.

Csuhaj-Varjú, E., Dassow, J., Kelemen, J., and Păun, G.
(1994). Grammar Systems. A Grammatical Approach
to Distribution and Cooperation. Gordon and Breach,
London.

Fernau, H., Holzer, M., and Bordihn, H. (1996). Accept-
ing multi-agent systems: The case of cooperating dis-
tributed grammar systems.Computers and artificial
intelligence, 15(2–3):105–264, 123–139.

Galiukschov, B. (1981). Semicontextual grammars (in rus-
sian).Mat. Logica i Mat. Ling., pages 35–80.

Kari, L. and Sosı́k, P. (2009). On the weight of universal
insertion systems. Manuscript.

Kasami, T. (1965). An efficient recognition and syntax-
analysis algorithm for context-free languages. Tech-
nical Report AFCRL-65-758, Air Force, Cambridge
Research Lab, Bedford, MA.

Madhu, M., Krithivasan, K., and Reddy, A. (2009). On
characterizing recursively enumerable languages by
insertion grammars. Technical report, III T, Hyber-
abad.

Manea, F. and Mitrana, V. (2009). Accepting networks
of evolutionary processors. complexity aspects. In
Proceedings of the 1st International Conference on
Agents and Artificial Intelligence, pages 597–604. IN-
STICC Press.

Marcus, S. (1969). Contextual grammars.Rev. Roum. Math.
Pures Appl., 14:1525–1534.

Margenstern, M., Mitrana, V., and Pérez-Jiménez, M.
(2004). Accepting hybrid networks of evolutionary
processors. InPre-proceedings of DNA 10, pages
107–117.

Martı́n-Vide, C. and Mitrana, V. (2005).Networks of evo-
lutionary processors: results and perspectives, vol-
ume Molecular Computational Models: Unconven-
tional Approaches, pages 78–114. Idea Group Pub-
lishing, Hershey.

Ortega, A., del Rosal, E., Pérez, D., Mercas, R.,
Perekrestenko, A., and Alfonseca, M. (2009). Pneps,
neps for context free parsing: Application to natural
language processing.LNCS, 5517:472–479.

Păun, G., Rozenberg, G., and Salomaa, A. (1998).DNA
Computing. New Computing Paradigms. Springer-
Verlag, Berlin.

Păun, G. (1997).Marcus Contextual Grammars. Kluwer,
Dordrecht.

Younger, D. (1967). Recognition and parsing of context-
free languages in timen3. Information and Control,
10(2):189–208.

PARSING BY SIMPLE INSERTION SYSTEMS

387

