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Abstract: The security risk associated with malevolent acts such as those of terrorism are often void of the historical 
data required for a traditional PRA. Most information available to conduct security risk assessments for 
these malevolent acts is obtained from subject matter experts as subjective judgements. Qualitative 
reasoning approaches such as approximate reasoning and evidential reasoning are useful for modeling the 
predicted risk from information provided by subject matter experts. Absent from these approaches is a 
consistent means to compare the security risk assessment results. This paper explores using entropy 
measures to quantify the information uncertainty associated with conflict and non-specificity in the 
predicted reasoning results. Extensions of previous entropy measures are presented here to quantify the non-
specificity and conflict associated with security risk assessment results obtained from qualitative reasoning 
models. 

1 INTRODUCTION 

In security risk assessment from malevolent actions 
(SRAMA) such as those of terrorism, there is an 
absence of quantitative historical data necessary for 
a conventional probabilistic risk assessment. Much 
of the information for SRAMA is elicited from 
subject matter experts (SMEs) as subjective 
judgements and is often available as qualitative 
imprecise values. An Approximate Reasoning (AR) 
model is a useful alternative to a probabilistic model 
when drawing conclusions using imprecise 
knowledge provided by SMEs. AR has numerous 
applications in engineering and control (Ross 2005, 
Barret and Woodall 1997, Lewis 1997) and recently 
has been applied to security risk assessment for 
malevolent actions (Bott and Eisenhawer 2006).  

Important factors differentiating AR in control 
applications with AR of SRAMA applications is the 
type of information used to develop the model and in 
the validation of the results. This paper is focused on 
the validation phase. In control applications 
historical data can be used to validate the AR results; 
however, for particular terrorist attacks there is 
generally an absence of historical data. For example, 
prior to September 11, 2001, there was no historical 
data for successful attempts using airplanes to attack 
World Trade Center Towers in New York. In the 

absence of specific historical data, the AR results for 
SRAMA applications can be realistically verified by 
the SMEs. Apart from the SMEs verification 
approach there has not been a consistent means 
presented to quantify the difference in competing 
results. For example, triage studies of input values 
contributing to the security risk are often a necessary 
part of the security risk assessment model. A means 
to consistently measure the effect of this change in 
input value on the model result is critically 
important in sensitivity studies and result 
comparisons. The resulting deviation may not be 
sufficiently or consistently recognized when relying 
only on SME verification.  

This study therefore proposes using entropy, i.e. 
information uncertainty, to sufficiently and 
consistently compare the AR model results. 
Measures of entropy have not specifically been 
developed for use in AR results. This study extends 
entropy to AR results and it is unique in that a 
similar approach has not been previously pursued in 
AR or applied in the area of SRAMA as a means to 
determine the confidence in the result. It is a novel 
approach due to its application which is distinctly 
different from previous approaches involving 
linguistic values and entropy. 

Like AR, Evidential Reasoning (ER) is an 
alternative approach used to draw conclusions from 
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information. The major difference between the two 
approaches is in the uncertainty quantification. The 
imprecision associated with describing the state is 
captured with AR while the lack of certainty 
associated with assigning a particular state to one of 
several linguistic values is captured with ER. In this 
study AR and ER are collectively referred to as 
qualitative reasoning but each is treated separately. 
In Section 2 both AR and ER are discussed and each 
is illustrated with simple examples. 

In Section 3 entropy as it applies to AR and ER 
is discussed and a general discussion on entropy can 
be found in Klir (Klir 2006). The utility of a 
methodology is measured by its applicability; 
therefore, the quantification of entropy using the 
proposed approach in AR and ER is illustrated in 
Section 3. The implications of quantifying entropy 
in AR and ER for SRAMA are discussed in Section 4. 

2 QUALITATIVE REASONING 

SMEs may indicate that the occurrence of a 
particular result is “highly likely”, “somewhat 
likely”, or ''negligible'' and the resulting 
consequences are “extremely costly”, “moderately 
costly”, or “insignificant”. These expressions are 
called propositions and the kind of uncertainty 
associated with these propositions can be from 
vagueness, imprecision, a lack of information 
regarding a specific state of the system, or lack of 
certainty when assigning a specific state a particular 
value. While a combination of all these uncertainties 
can also be encountered this study does not address 
the combination of these uncertainties. Uncertainty 
due to vagueness, imprecision, and/or lack of 
information is collectively referred to as fuzzy 
uncertainty while a lack of uncertainty associated 
with assigning a specific state to one of several 
linguistic values is referred to as assignment 
uncertainty (Klir 2006). Fuzzy set theory provides a 
means for representing fuzzy uncertainty contained 
in these propositions while evidence theory provides 
a means for representing assignment uncertainty. 
Both fuzzy set theory and evidence theory as they 
apply to AR and ER, respectively, are discussed in 
this section. The reader is referred to (Ross 2004) for 
an in depth description of fuzzy set theory and 
evidence theory. 

2.1 Fuzzy Set Theory 

Natural language tends to be interpreted differently 
by various individuals. The linguistic values used by 

SMEs are no different and have a tendency to be 
vague and imprecise. For example, an SME may 
indicate that the process to construct a weapon 
device is “extremely difficult” or that it is 
“somewhat difficult”. The precise meaning of these 
linguistic values may be interpreted slightly 
differently by various individuals; however, 
linguistic values may often be the values the SME is 
most confident in and comfortable providing. There 
is vagueness and imprecision associated with a 
linguistic value which has been termed fuzzy 
uncertainty. Fuzzy uncertainty is different from 
random uncertainty, where random uncertainty 
arises due to chance and deals with specific and well 
defined values such as the number on the top face of 
a die that is thrown. Random uncertainty is referred 
to as an aleatoric uncertainty and fuzzy uncertainty 
is referred to as an epistemic uncertainty. In some 
cases epistemic uncertainty may be reduced to 
aleatoric uncertainty but aleatoric uncertainty is non 
reducible uncertainty (Oberkampf et al. 2004, Zadeh 
1995). Linguistic values such as “high”, “medium”, 
and “low” describe several specific states or 
conditions and are considered sets. The boundary 
that defines any one of these sets is unclear or fuzzy 
and thus these sets are called fuzzy sets.  

A collection of elements having similar 
characteristics defines a universe of discourse, X. 
The individual elements, i.e. states, in X are denoted 
as xi, with the same notations used for Y and yj, and 
Z and zk, respectively. The elements can be grouped 
into various sets, such as: ܣሚ, ܤ෨ , or ܥሚ. The set value 
of ܣሚ, ܤ෨ , or ܥሚ may represent something like “high” 
which has a fuzzy boundary. The individual states of 
a fuzzy set can be mapped to a universe of 
membership values using a function theoretic form. 
If a specific state xi is a member of the set ܣሚ, then 
this mapping is given by Equation (1). A typical 
mapping of ܣሚ is shown in Figure 1. 

௜ሻݔ஺෨ሺߤ א ሾ0, 1ሿ   (1) 
 
The complement of ܣሚ  is defined as: 

௜ሻݔ஺෨ҧሺߤ ൌ 1 െ  ௜ሻ   (2)ݔ஺෨ሺߤ
 
The mapping for the complement is also shown in 
Figure 1. The mapping is known as a membership 
function and the membership of a specific state is xi 
is referred to as the degree of membership. The 
degree of membership of xi provides an indication of 
the fuzzy set's ability to describe the state. 
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Figure 1: Mapping of ܣሚ and its complement ܣሚҧ. 

2.2 Fuzzy Set Theory and Approximate 
Reasoning 

An AR model uses the degrees of membership of 
states in fuzzy sets to draw conclusions about a 
system, such as risk of attack on a facility. The AR 
result is comprised of a vector of various fuzzy sets 
used to describe a specific state of risk and a 
respective degree of membership in each fuzzy set. 
Now suppose that an SME indicates that values ܣሚ 
and ܤ෨  for states xi and yj, respectively, infers a 
particular value ܧ෨ for zk. The information provided is 
considered a rule governing the outcome zk and can 
be represented as follows: 
 
Rule 1: IF xi is ܣሚ and yj is ܤ෨  THEN zk is ܧ෨  
These IF-THEN rules consist of an antecedent and a 
consequence portion. The conditional portion of the 
rule, i.e. the IF xi is ܣሚ and yj is ܤ෨  of Rule 1, forms 
the antecedent and the consequence of the 
antecedent includes THEN zk is ܧ෨ . All the rules 
governing the particular outcome zk involving values 
for xi and yj can be grouped together into a rule base, 
see Table 1. Now consider the situation when both xi 
and yj can be described by more than one value. In 
such a situation, xi and yj have a degree of 
membership in each value that describes them. The 
values of xi and yj are used to identify the governing 
rule and infer the value of zk. The inferred value of zk 
will have an associated degree of membership which 
results from the conjunction ר, i.e. taking the 
minimum value, of the degree of membership for xi 
AND yj included in the governing rule. Take for 
example the rule specified above with ߤ஺෨ሺݔ௜ሻ ൌ 0.3 
and ߤ஻෨ ൫ݕ௝൯ ൌ 0.6, which results in a ߤா෨ ሺݖ௞ሻ ൌ 0.3. 
Another applicable governing rule may be: 
 

Rule 2: IF xi is ܤ෨  and yj is ܤ෨  THEN zk is ܧ෨  

with ߤ஻෨ ሺݔ௜ሻ ൌ 0.7 and ߤ஻෨ ൫ݕ௝൯ ൌ 0.6, which results 
in ߤா෨ ሺݖ௞ሻ ൌ 0.6. Both Rule 1 and Rule 2 result in 
the value ܧ෨  for zk but there are now two different 
values for the degree of membership in ܧ෨ . That is, 
either Rule 1 OR Rule 2 is applicable and the 
disjunction (ש), i.e. taking the maximum value, of 
ா෨ߤ ሺݖ௞ሻ ൌ 0.3 and ߤா෨ ሺݖ௞ሻ ൌ 0.6, results in ߤா෨ ሺݖ௞ሻ ൌ
0.6. The conjunction and disjunction operations are 
used when the logical AND and OR are encountered, 
respectively. In each of the rules the logical AND is 
encountered and the conjunction operation is used to 
determine the resulting degree of membership. The 
logical OR is encountered in the example because 
either Rule 1 OR Rule 2 result in ܧ෨ . Additional 
logical operations can be found in (Ross 2005) as 
well as the axioms involved in fuzzy sets. It is 
important to note that the excluded middle axiom is 
not required for fuzzy sets; therefore, the resulting 
degree of membership for AR need not sum to 1. 

Table 1: Rule Base. 

Rule Base Universe of Discourse X 
෨ܤ ሚܣ ሚܥ 

Universe of 
Discourse Y 

ሚܣ ෨ܧ ෨ܨ ෨ܧ 
෨ܤ ෨ܧ ෨ܧ  ෨ܧ 
ሚܥ ෨ܧ ෨ܩ ෨ܩ 

2.2.1 Application of AR in Risk 

This section illustrates the use of AR in SRAMA 
using a simple example to determine the risk of 
attack from success likelihood and the economic 
consequences of the attack. Table 2 provides the rule 
base used to infer the risk given the success 
likelihood and the consequences. 

Table 2: AR Risk Rule Base. 

Risk 
Economic Consequence 

Very Low Low Medium High Very High 

Negligible Very Low Very Low Very Low Very Low Very Low 

Extremely 
Unlikely Very Low Very Low Very Low Very Low Low 

Very 
Unlikely Very Low Very Low Very Low Low Medium 

Unlikely Very Low Low Low Medium Medium 

Somewhat 
Likely Very Low Low Low Medium Medium 

Likely Low Low Medium High Very High 

Nearly 
Certain Low Low Medium High Very 

High 
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An attack scenario S1 has the following input vector 
of membership values for success likelihood and 
economic consequences: 

S1(success likelihood): [0, 0, 0, 0.57, 0.43, 0, 0] 

S1(economic consequences): [0, 0, 0, 0, 1] 

The leftmost entry for degree of membership in the 
vector of success likelihood corresponds to 
“negligible”, followed by “extremely unlikely”, 
“very unlikely”, “unlikely”, somewhat likely”, 
“likely” and the rightmost entry corresponds to 
“nearly certain”. The leftmost entry for degree of 
membership in the vector of economic consequences 
corresponds to “very low” and so on to the rightmost 
entry corresponding to “very high”. Using the rule 
base of Table 2 and AR operations of Section 2.2, 
“very high” economic consequences AND an 
“unlikely” success likelihood results in a “medium” 
risk with a degree of membership of 0.57. While a 
“very high” economic consequences AND a “likely” 
success likelihood results in a “medium” risk with a 
degree of membership of 0.43. Since either of these 
two rules, shown in bold in Table 2, result in 
“medium” risk, the maximum of the resulting degree 
of membership values is used to determine the final 
degree of membership for a “medium” risk. The 
resulting vector of membership values for risk in 
scenario 1 are: 

S1(risk): [0, 0, 0.57, 0, 0] 

Corresponding to linguistic risk values of “very 
low”, “low”, “medium”, “high”, and “very high” 
from left to right. Inference trees, consisting of a 
complex sequence of inference rules leading up to 
risk are used to assess risk for each attack scenario 
(see Bott and Eisenhawer 2006). Here only a 
simplified portion is provided.  

2.3 Evidential Reasoning 

This paper is concerned with a particular aspect of 
evidence theory which involves the uncertainty 
associated with assigning a specific x to a particular 
crisp value A. The SMEs’ degree of belief that x is A 
is called a basic evidence assignment (bea). A crisp 
set value has a precise well defined boundary and 
precisely describes x. The ER model uses the bea in 
the antecedent of the rule, to determine the bea for 
the consequence of the rule. That is, the SMEs bea 
quantifies the evidence supporting a particular claim, 
i.e. x is ܣ, which can be used to form other belief, 
plausibility, and probability measures (see Ross 
2005). The bea does not account for the uncertainty 

associated with imprecisely describing x with A. The 
degree of membership is used to assess the 
uncertainty involved in describing a specific state 
using an imprecise linguistic value. There have been 
recent attempts to combine AR and ER for SRAMA 
applications which have been termed fuzzy 
evidential reasoning (Yang et al. 2009) and belief 
measures on fuzzy sets (Darby 2007). However, the 
simultaneous quantification of fuzzy and assignment 
uncertainty was not addressed by Yang et al. and 
Darby and the reader is referred to Chavez (Chavez 
2007). In this paper, AR and ER are recognized as 
distinct methods and discretely applied.  

An ER result is comprised of a vector of bea 
values for x is Aj, where Aj ...An are the available 
crisp linguistic sets in the outcome. Comparing one 
resulting vector to another is the focus of this paper. 
Here we briefly discuss the operations used to obtain 
an ER vector result in SRAMA. A simple method of 
determining the bea associated with the inferred 
linguistic value for each rule is to take the product of 
the bea values involved in the antecedent of the rule. 
This process is performed for all the inferred 
linguistic values in the result.  Two or more rules in 
the rule base may result in the same linguistic value, 
in such a case these resulting bea values are summed 
to determine the resulting bea value for the linguistic 
value. It is important to note that the bea (m) must 
satisfy the following boundary conditions: 

 
݉ሺ׎ሻ ൌ 0     (3) 

 

݉ሺܣሻ ൌ ෍ ݉ሺܣ௝ሻ
௝ୀଵ,ଶ,ଷ,…,௡

஺ೕא௉ሺ௑ሻ

ൌ 1 

 (4) 
 
Equation 3 indicates that a bea value cannot be 
assigned to the proposition that xi is defined by the 
null set, ׎, because the null set defines no states. 
Equation 4 indicates that the sum of the bea values 
for xi is Aj is equal to 1 where, Aj are crisp subsets of 
the power set P(X). The power set P(X) is the set if 
all subsets of X. 

2.3.1 Application of ER 

This section demonstrates the use of ER using a 
simple example to determine the effectiveness of 
physical inventory from the material inventory 
frequency and effectiveness of inventory verification. 
Table 3 provides the rule base used to infer the 
effectiveness of physical inventory from the material 
inventory frequency and effectiveness inventory 
verification. A processing facility F1 has the 
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following vector of bea values for a specific material 
inventory frequency and a specific effectiveness of 
inventory verification: 
 
F1(material inventory frequency): [0, 0.1, 0.9, 0]  
F1(effectiveness of inventory verification):  
[0, 0, 1, 0] 

The leftmost entry for bea in the vector of material 
inventory frequency corresponds to “not applicable” 
(NA), followed by “occasionally”, “regularly”, and 
the rightmost entry corresponds to “continuously”. 
The leftmost entry for the bea in the vector of 
effectiveness of inventory verification corresponds 
to “not applicable” (NA), followed by “low”, 
“moderate”, and the rightmost entry corresponding 
to “excellent”. Using the rule base of Table 3 and 
ER operations of Section 2.3, a bea value of 0.1 in 
“occasionally” for material inventory frequency 
AND a bea value of 1.0 in “moderate” for 
effectiveness of inventory verification results in a 
bea value of 0.1 in “low” for effectiveness of 
physical inventory. While a bea value of 0.9 in 
“regularly” for physical inventory frequency AND a 
bea value of 1.0 in “moderate” for effectiveness of 
inventory verification results in a bea value of 0.9 in 
“moderate” for effectiveness of physical inventory.  

F1(effectiveness of physical inventory): 
[0, 0.1, 0.9, 0], 

The resulting vector of values for effectiveness of 
physical inventory of: “not applicable”, “low”, 
“moderate”, and “excellent” from left to right. 

Table 3: Effectiveness of Physical Inventory ER Rule 
Base. 

Effectiveness of 
Physical Inventory 

Effectiveness of Inventory 
Verification 

NA Low Moderate Excellent 

 NA NA NA NA NA 

Occasionally NA Low Low Low 

Regularly NA Low Moderate Moderate 

Continuously NA Low Moderate Excellent 

3 QUANTIFICATION OF 
INFORMATION 
UNCERTAINTY  

Decision makers are interested in the confidence 
associated with each of the competing alternatives. 
The quantity of uncertainty present in a result is 
related to the confidence (Devore 1999). That is, the 
less uncertainty present in the resulting alternative 
the more confidence one can have in the result. 
Thus, by measuring the information uncertainty 
present in each resulting alternative, the possible 
alternatives can be compared and the alternative 
with the most confidence can be determined.  

The quantification of entropy for random 
uncertainty was addressed by Shannon (Shannon 
1948). The term entropy is defined as a measured 
quantity of information uncertainty related to non-
specificity and conflict (Klir and Wierman 1999). 
The measure of entropy proposed by Shannon 
measures conflict and works as follows: there exists 
a regular die with six faces all of which are equally 
likely to be thrown and there exists a six sided trick 
die with one side being twice as likely to be thrown 
as the remaining sides. The regular die has more 
entropy than the trick die because all sides are 
equally likely to occur in the regular die. The trick 
die is less uncertain because one side is twice as 
likely to be thrown as each of the remaining five; 
thus, one can have more confidence in the resulting 
trick die.  

Klir and Wierman (Klir and Wierman 1999) 
discuss measuring conflict from evidence on sets. 
The ER problem examined here does not involve the 
entire set but only one state assigned to one or more 
set values. Klir (Klir 2006) elaborates on Shannon's 
measure of entropy and identifies conflict as the 
basis for the entropy measured by Shannon. De Luca 
and Termini (Deluca 1972) extended Shannon's 
measure of entropy to fuzzy uncertainty in a fuzzy 
set while others also presented alternative measures, 
see Yager (Yager 1979), and Higashi and Klir 
(Higashi and Klir 1982). Pal and Bezdek (Pal and 
Bezdek 1994) provide a good summary of many of 
the approaches used to measure entropy associated 
with a fuzzy set. All the previous approaches 
examined for fuzzy uncertainty quantified the 
entropy involved in an entire fuzzy set, whereas the 
current study examines quantifying the entropy 
involved in AR where one state is described using 
several fuzzy sets. 

Shannon's measure of conflict for probability (p) 
has the form 
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ܵሺ݌ሻ ൌ െ ∑ ௑אሻ logଶ௫ݔሺ݌  ሻ.  (5)ݔሺ݌
 
Klir and Wierman provide an extended measure of 
conflict to bea values on sets, that is, in Equation 5, 
x is replaced with A and p is replaced with m. For 
ER applications, the focus is on a specific x assigned 
to Ai. Thus, the conflict in an ER vector result ൫ ሬܴԦாோ൯ 
is: 
൫ܥ ሬܴԦாோ൯ ൌ െ ∑ ݉஺೔

ሺݔሻ logଶ
௡
௜ୀଵ ݉஺೔

ሺݔሻ,  (6) 
De Luca and Termini's (Deluca and Termini 1972) 
measure for the entropy of a fuzzy set is similar to 
Shannon's but conceptually different. Shannon 
measures the conflict due to random uncertainty 
while De Luca and Termini measure the conflict due 
to the fuzzy uncertainty associate with a membership 
function for a fuzzy set. As shown in Equation 7, 
Deluca and Termini proposed quantifying the 
conflict of a fuzzy set from its membership function 
and the complement of its membership function. Pal 
and Bezdek (Pal and Bezdek 1994) indicate that 
inclusion of the complement in Equation 7 is 
necessary to satisfy maximality.  

ሚ൯ܣ൫ܦ ൌ െ ෍ ஺෨ߤ

௡

௜ୀଵ

ሺݔ௜ሻlogଶߤ஺෨ሺݔ௜ሻ ൅  ௜ሻݔ஺෨ҧሺߤ௜ሻlogଶݔ஺෨ҧሺߤ

      (7) 
 
In the previous approaches involving fuzzy 
uncertainty, the entropy quantified involves all the 
possible states described by a particular fuzzy set 
(Pal and Bezdek 1994, Klir and Wierman 1999, Klir 
2006); whereas, in this application the entropy 
quantified is associated with only one state described 
linguistically using various fuzzy sets. 

The outcome resulting from the AR is expressed 
as a vector of membership values for x in ܣሚ௜. In an 
AR model the conflict is not among one fuzzy set 
but several, that is, there is conflict among all the 
fuzzy set alternatives having a non-zero degree of 
membership in the resulting vector. There exists a 
fundamental difference between the application for 
the previous approaches and the application of the 
current study. However, Equation 7 can be modified 
so that it is applicable to account for the conflict 
involved in imprecisely describing a specific state x 
with the various fuzzy sets ෨ܴ௜ in the resulting vector 
ሬܴԦ. The proposed equation, applicable to an AR 
result, is presented in Equation 8. Note, the major 
difference between Equation 7 and 8 is that Equation 
8 involves one state x potentially described using n 
fuzzy sets, ܣሚ௜,ڮ,௡; whereas, Equation 7 involves one 
fuzzy set describing n different states, ݔ௜,ڮ,௡.  
 

൫ܥ ሬܴԦ൯ ൌ െ ෍ ஺෨೔ߤ

௡

௜ୀଵ

ሺݔሻlogଶߤ஺෨೔
ሺݔሻ ൅ ஺෨ҧߤ

೔
ሺݔሻlogଶߤ஺෨ҧ

೔
ሺݔሻ 

       (8) 
 
Where ሬܴԦ is the vector consisting of the degree of 
membership for each fuzzy set in the AR result for 
one scenario, and C is the conflict, ߤ஺෨೔ሺݔሻ is the 
degree of membership of state x in the fuzzy set ܣሚ௜. 

Another type of entropy, known as non-
specificity, reflects the ambiguity in specifying the 
exact solution (Klir 2006). Hartley (Hartley) first 
proposed measuring the lack of specificity which is 
simply related to the number of alternatives present. 
Klir simply defines the Hartley measure of 
uncertainty as:  

Hሺ ா݂ሻ ൌ  (9)                           ,|ܧ|ଶ݃݋݈

where ா݂ is any function of the subset E. Klir 
discusses the Hartley measure as it applies to 
probability distribution functions and membership 
functions which are not discussed here and the 
reader is referred to (Klir 2006, Klir and Wierman 
1999). In this paper, the measure of non-specificity 
is considered as a means to determine the lack of 
specificity in the resulting AR or ER vector using 
the number of non-zero alternatives in the vector. By 
considering that ா݂ instead represents a vector result 
and E represents R, the number of nonzero values in 
the resulting vector, the non-specificity of the 
resulting vector is determined. The measure for non-
specificity in an AR or an ER result is thus 
quantified using Equation 10: 

N൫ ሬܴԦ൯ ൌ  ଶ|ܴ|,   (10)݃݋݈

Where R is the number of linguistic sets in the 
resulting AR or ER vector having a non-zero degree 
of membership or bea, respectively.  

Random uncertainty may be present in available 
information elicited from SMEs but it is at an 
epistemic level and captured in the linguistic values 
provided by the SMEs. As a result the conflict due to 
random uncertainty is captured by Equation 6 for ER 
or Equation 8 for AR. Conflict is determined 
differently in AR and ER applications due the 
restrictions of Equation 2 on the degree of 
membership and the restrictions of Equations 3 and 
4 on the bea. Equations 6, 8 and 10 have units of bits 
of information from the use of the logarithm base 2 
(Klir 2006). A simple determination of maximum 
confidence can be made from minimum information 
uncertainty among competing alternatives.  
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3.1 Entropy in AR and ER Results  

The quantification of conflict and non-specificity in 
AR and ER results are demonstrated here using the 
examples provided in Section 2. Using Equation 6 
the conflict involved in the ER result 
F1(effectiveness of physical inventory):[0, 0.1, 0.9, 
0], is calculated as. 
 
ܥ ൌ െሾ0.1logଶሺ0.1ሻ ൅ 0.9logଶሺ0.9ሻሿ ൌ 0.469 
 
The non-specificity involved in the ER result is 
calculated using Equation 10. 
N൫ ሬܴԦ൯ ൌ |ଶ|2݃݋݈ ൌ 1  

Using Equation 8 the conflict involved in the AR 
result S1(risk): [0, 0, 0.57, 0, 0], is calculated as 
follows. Recall that the membership of the 
complement is determined from Equation 2. 

൫ܥ ሬܴԦ൯ ൌ െሾሺ0.57logଶ0.57ሻ ൅ 0.43logଶ0.43 ൌ 0.9858 

The non-specificity involved in the AR result is 
calculated using Equation 10. 

N൫ ሬܴԦ൯ ൌ |ଶ|1݃݋݈ ൌ 0 

In addition to the ER and AR example provided 
previously two additional ER results and AR results 
are provided. The ER and AR results and their 
quantities of information uncertainty are presented 
in Tables 4 and 5, respectively.  

Table 4: ER entropy results for Effectiveness of Physical 
Inventory example.  

ER result Conflict Non-specificity 
F1[0, 0.1, 0.9, 0] 0.469 1 
F2[0, 0.2, 0.8, 0] 0.722 1 
F3[0, 0.15, 0.75, 0.1] 1.054 1.585 

Table 5: AR Entropy results for Economic Risk example. 

AR result Conflict Non-specificity 
S1[0, 0, 0.57, 0, 0] 0.9858 0 
S2[0, 0.3, 0.7, 0.2, 0] 2.883 1.585 
S3[0, 0.2, 0.6, 0.2, 0.1] 2.484 2.000 
 
The results demonstrate the utility of quantifying 
information uncertainty to compare the results. In 
Table 4, the effectiveness of physical inventory, F1, 
F2 and F3 all result in a linguistic value as “mostly 
moderate”. There is an observable difference in each 
resulting vector; however, a realistic comparison is 
not possible without a useful metric. Entropy 
measures, specifically conflict, provide a 
recognizable and comparable difference with all 

three ER results. In the case of the AR results, Table 
5, there is also a recognizable difference in the 
conflict and the non-specificity. The non-specificity 
reflects a difference that can also be discerned 
visually, i.e. the greater number of non-zero 
alternatives the greater the non-specificity. 
Alternatively, measuring the conflict provides 
comparative information that is not as easily 
discerned visually.  

Tables 4 and 5 illustrate the quantification of 
the conflict and non-specificity using simple AR and 
ER models. Based on information uncertainty, the 
alternative with the least information uncertainty is 
also the alternative with the most confidence. 
Therefore, F1 and S1 are the alternatives providing 
the most confidence.  

4 CONCLUSIONS 

ER and AR results for SRAMA have quantifiable 
amounts of information uncertainty and this study 
extends information theory to AR and ER SRAMA 
models. Straight-forward extensions of previous 
approaches are presented in this paper and used to 
quantify the information uncertainty in AR results. 
The information uncertainty measurements of 
conflict and non-specificity associated with AR and 
ER results are illustrated and used to compare the 
results to one another. Maximum confidence is 
simply based on minimum measured information 
uncertainty in each result. Through ongoing 
research, the results can be further extended through 
the development of a metric comparing measured 
confidence to the maximal potential value of 
confidence determined from a combined measure of 
information uncertainty. Moreover, future work will 
involve comparisons of the results obtained using 
the proposed metrics to rank the results to those 
obtained from a SME ranking of the results. 
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