
A LIGHTWEIGHT MODEL FOR REPRESENTING
AND REASONING WITH TEMPORAL INFORMATION

IN BIOMEDICAL ONTOLOGIES

Martin J. O’Connor and Amar K. Das
Stanford Center for Biomedical Informatics Research, Stanford University, Stanford, California 94305, U.S.A.

Keywords: Temporal models, Temporal reasoning, Temporal queries, Semantic Web, SWRL, SQWRL, OWL.

Abstract: Over the past decade, the number, size, and complexity of databases for health-related research have grown
dramatically. Ontologies are being developed and used by many scientific communities to support sharing,
integration, and management of the diverse information in these databases. As critical as ontologies have
become, ontology language such as OWL typically provide minimal support for modeling the complex
temporal relationships that are common in biomedical research data. As a result, ontologies often cannot
fully express the temporal knowledge needed by many biomedical applications and thus users and
developers must pursue ad hoc solutions to these challenges. In this paper, we present a methodology and
set of tools for representing temporal information in biomedical ontologies. This approach uses a
lightweight temporal model to encode the temporal dimension of biomedical data. It also uses the OWL-
based Semantic Web Rule Language (SWRL) and the SWRL-based OWL query language SQWRL to
reason with and query the temporal information represented using this model.

1 INTRODUCTION

The past decade of research has seen a growing
consensus regarding the critical nature of controlled
terminologies and ontologies in the construction of
biomedical systems. Ontologies are used to convey
the biomedical meaning of experiments in a
computer-accessible format, and they permit
integration of data and knowledge from diverse
sources by standardized labelling of concepts. The
use of ontologies to represent biomedical knowledge
will be particularly essential to the next generation
of Web-enabled applications in healthcare and
biomedical research. The Semantic effort (Berners-
Lee et al., 2001) aims to provide languages and tools
to provide explicit semantic meaning for data and
knowledge shared among these types of
applications. In particular, the Ontology Web
Language (OWL; McGuinness and Harmelen, 2004)
and its associated Semantic Web Rule Language
(SWRL; Horrocks et al., 2004) provide a powerful
standardized approach for representing and
reasoning with information.

Despite the power of these technologies, they
have very limited support for the modeling of
temporal information. OWL, for example, provides
no temporal support beyond allowing data values to

be typed as basic XML Schema dates, times or
durations (XML Schema, 2009). SWRL includes
operators for manipulating these temporal values
(SWRL, 2004) but, again, these operators work at a
very low-level. There are no standard high-level
mechanisms to consistently represent and reason
with temporal information.

Since the temporal dimension is central in
practically all biomedical data, these representation
shortcomings have significant system
implementation consequences. Primarily, they
restrict the complexity of the temporal information
that can be represented in biomedical ontologies. In
addition, they reduce the possibilities for automated
validation of this information. Crucially, these
restrictions also limit the temporal expressivity of
the deductive rules and queries that can be
formulated over ontology-encoded biomedical data.
Formulating these rules and queries thus requires
custom solutions using technologies that may not
leverage the formal knowledge representation
techniques provided by ontologies. There is a
pressing need for solutions that provide robust
knowledge-level mechanisms for representing and
reasoning with temporal information in ontologies.

90
O’Connor M. and Das A. (2010).
A LIGHTWEIGHT MODEL FOR REPRESENTING AND REASONING WITH TEMPORAL INFORMATION IN BIOMEDICAL ONTOLOGIES.
In Proceedings of the Third International Conference on Health Informatics, pages 90-97
DOI: 10.5220/0002747300900097
Copyright c© SciTePress

2 BACKGROUND

Historically, the centrality of time in biomedical
applications has driven the development of custom
temporal management solutions. One of the first
medical systems to address the temporal
representation problem was the Time Oriented
Database (TOD; Wiederhold, 1981). TOD had a
three-dimensional view of clinical data, with time
represented explicitly as one of the dimensions. Data
relating to a particular patient visit, for example,
were indexed by patient identifier, clinical parameter
type, and visit time. TOD supported a set of basic
temporal queries that allowed data values following
certain temporal patterns to be extracted. The later
Arden Syntax (Hripsack et al., 1994) also supports a
basic instant-based temporal representation.

Both TOD and the Arden Syntax model time by
associating an instant timestamp with particular
records. An instant timestamp permits a range of
simple temporal questions about associated data,
such as "Did the patient suffer from shortness of
breath before the visit?" or "Did the patient receive
Ibuprofen last week?" However, associating an
interval timestamp with data enables more complex
queries. Interval timestamps are composed of a start
timestamp and a stop timestamp. Later systems used
this interval-based representation of temporal data.
These systems were typically built to operate with
relational database systems and exploited the
considerable amount of research on temporal
database systems in the 1990s.

This research aimed to address the shortcomings
of relational databases for representing temporal
information. While relational databases can readily
store time values, the relational model provides poor
support for storing complex temporal information. A
simple instant timestamp is all that it provides, and
there is no consistent mechanism for associating the
timestamp with non-temporal data. For example, if a
database row contains some temporal information,
there is no indication as to the relationship between
it and the non-temporal data in the row. Does the
timestamp refer to the point at which the information
was recorded, or the point at which it was known?
Other shortcomings include no standard way to
indicate a timestamp's granularity. As a result, the
relational model provides very limited capabilities
for temporal querying (Snodgrass et al., 1998).

More than a dozen formal extensions to the
relational data model were proposed. These multiple
approaches ultimately led to efforts to develop a
consensus language, called TSQL2 (Snodgrass,
1995). This language supports both temporal and

non-temporal tables, and provides a temporal
relational algebra that can undertake temporal
selection of data, temporal joins based on temporal
intersection, and temporal catenation of interval time
stamps. The TSQL2 query language is compatible
with standard SQL, since it is a strict super set of it.
No complete implementations of TSQL2 were
produced, however, but several temporal query
systems were written using its core features. The
Chronus system (Das and Musen, 1994) and its later
evolution, Chronus II (O’Connor et al., 2002) were
both developed to perform temporal queries in
clinical decision support systems. Like TSQL2, they
used a SQL-based language for querying temporal
data in relational databases. These systems were
successfully used in several biomedical applications
(Nguyen at al., 1999; Goldstein et al., 2004).

Experience with these systems illustrated that the
entire TSQL2 specification is not necessary for
querying biomedical data. A few simple language
extensions can provide a large increase in
expressivity. The most important lesson learned is
that a principled temporal model is key to
developing these extensions. This model must
enforce a consistent representation of all temporal
information in a system. One of the important results
of the TSQL2 standardization efforts was the
convergence on the valid-time temporal model
(Snodgrass, 1995). While numerous models were
proposed to represent temporal information in both
relational databases and other types of information
systems, this model was selected because it coupled
simplicity with considerable expressivity.

In the valid-time model, a piece of information—
which is often referred to as a fact—can be
associated with instants or intervals denoting the
times that they are held to be true. Such facts have a
value and one or more valid times. In other words,
every temporal fact holds information denoting the
facts's valid-time. Conceptually, this representation
means that every temporal fact is held to be true or
valid during the time or times associated with this
fact. No conclusions can be made about the fact for
time periods outside of its valid-time. The valid-time
model effectively provides a mechanism to
standardize the representation of time-stamped data.
When this model is used in a relational system,
temporal information is typically attached to all
tuples in a temporal table. This approach effectively
adds a third dimension to two-dimensional relational
tables. The valid-time model is not restricted for use
in relational systems, however, and can be used in
any information system that requires a consistent
representation of temporal information.

A LIGHTWEIGHT MODEL FOR REPRESENTING AND REASONING WITH TEMPORAL INFORMATION IN
BIOMEDICAL ONTOLOGIES

91

3 TEMPORAL MODEL

The valid-time model has been used in ontology-
based systems. Shahar (1999), for example, has
made extensive use of this model in clinical decision
support systems using a Frame-based ontological
representation. Adding a temporal dimension to the
OWL ontology language is not straightforward,
however. OWL does not provide any constructs for
modeling time. As with the relational model, a
simple instant timestamp representation is all that it
supports. More importantly, OWL’s logic-based
formalism makes it difficult to model dynamically
changing information. Some formal temporal
extensions have been developed (e.g., Sim et al.,
2008) but these proposals are fairly elaborate and
none has resulted in practical and usable
representations.

Rather than extending OWL’s logical model,
other researchers have attempted to support
temporal representations on top of OWL. For
example, OWL-Time (Hobbs and Pan, 2004)
proposes an ontology that provides rich description
of temporal instants, intervals, durations, and
calendar terms. However, this representation is not
all that lightweight and concerns itself with
descriptions of individual data elements rather than
building a temporal model to consistently describe
all temporal information in a system. In recent work,
researchers have described the development of a
user-level valid-time model in OWL (O’Connor et
al., 2009). This model was used to encode all
clinical data collected during a clinical trial. A
constraint language was developed using this model
and was used to specify the temporal constraints
contained in clinical trial documents.

We have adopted the temporal valid-time model
used in this system and simplified it so that it can
more easily be integrated with existing ontologies.
This enhanced model was designed to be
lightweight, thus allowing it to be layered on
existing ontologies without requiring significant
redesign of these ontologies. This model concerns
itself with time only and provides a simple approach
to adding a temporal dimension to existing entities
in domain ontologies. Typically, these entities will
be in the information model part of these ontologies,
though the temporal model can also be used to add
temporal information to other entities. The temporal
model conforms closely to the valid-time temporal
model used by Chronus II (O’Connor et al., 2002),
which was based on an earlier model by Shahar
(1999).

We developed an ontology in OWL to encode
this valid-time temporal model. We henceforth use
the prefix temporal for entities defined in this
ontology. The core class modeling an entity that can
extend over time is represented by an OWL class
called temporal:Fact. This class is associated with
a property called temporal:hasValidTimes that
holds the time or times during which the associated
information is held to be true. Values of this
property are modeled by a class called
temporal:ValidTime, which has subclasses
temporal:ValidInstant and
temporal:ValidInterval, which represent instants
and intervals, respectively. The class
temporal:ValidInstant is associated with the
property temporal:hasTime, and the
temporal:ValidInterval class, is associated with
the properties temporal:hasBeginning and
temporal:hasFinish. These three properties are of
XML Schema type xsd:DateTime. Intervals and
instances also have granularities associated with
them. This association is modeled by the
temporal:hasGranularity property with a range
class called temporal:Granularity. Specific
granularities, such as days and minutes, are
represented as instances of this class.

One possible use of the valid instant and interval
classes is to take an existing OWL class and add a
user-defined property with a range of one of these
two classes to it. The choice of class depends on
whether one wishes to model an activity that occurs
at a single instant in time or one that takes place over
an interval of time. Also, if the activity occurs only
once the association will be represented as an OWL
functional property, whereas an activity that may
repeat can use a non-functional property. For
example, consider the case where an investigator
wishes to add a temporal dimension to a blood
pressure measurement that is described using a class
called BloodPressureMeasurement, which has
properties for both the systolic and diastolic values.
Blood pressures are typically recorded as
instantaneous measurements so the valid instant
class would be the appropriate property range choice
here. By using the valid instant class as the range of
a user-defined property associated with the
measurement class, all instances of
BloodPressureMeasurement can now use the
temporal:hasTime and temporal:hasGranularity
properties associated with the instant, which will
allow them to consistently record the temporal
information associated with the measurement.
Similarly, if the investigator wishes to work with
prescriptions using an existing class called

HEALTHINF 2010 - International Conference on Health Informatics

92

Prescriptions they might chose to use the valid
interval class as the range of a user-defined property
associated with the class.

A more useful modeling approach is to directly
use the temporal:Fact class to represent temporal
entities. This class can be made the superclass of an
existing OWL class that we wish to add a temporal
dimension to, effectively asserting that instances of
that class have a temporal extent. For example, if an
investigator wishes to take the earlier blood pressure
measurements class and model it as a temporal fact
they can simply take the class and make it a subclass
of the temporal:Fact class. Instances of this class
will now be able to use the
temporal:hasValidTimes property to store their
valid instants as instances of the
temporal:ValidInstant class. Similarly, the earlier
prescriptions class can be modeled as a temporal
entity by making it a subclass of the temporal fact
class and using the temporal:ValidInterval class
to store the temporal intervals associated with it. The
granularities of those instants or intervals can also be
modeled with the temporal:hasGranularity

property associated with the temporal:ValidTime
superclass.

Representing temporal entities as subclasses of
the temporal:Fact class can clarify the distinction
between the temporal and non temporal entities in an
ontology. This temporal representation can also
coexist with any existing temporal representations in
the ontology so does not necessitate modifications to
the temporal component of existing entities. In most
cases, existing temporal information will need to be
mapped from the source entities to conform to the
format encoded by valid-time instants or intervals.
This mapping may be non trivial in some cases but
will ensure a consistent representation of temporal
information.

4 TEMPORAL REASONING
AND QUERYING

Once all temporal information is represented
consistently in an ontology, it can then be
manipulated using reusable methods. While OWL
itself has no temporal operators for manipulating
time values, its associated rule language SWRL
(Horrocks et al., 2004; SWRL, 2004) provides a
small set. However, the operators in this set are very
basic, providing simple instant-based comparisons
only.

4.1 Basic Rules and Queries

Fortunately, SWRL provides a mechanism for
creating user-defined libraries of custom methods—
called built-ins— and using them in rules. We have
used this mechanism to define a library of methods
that implement Allen’s (1983) interval-based
temporal operators. About two dozen built-ins
implementing the entire set of the Allen operators
are provided by this library. The library also
supports operations on basic XML Schema temporal
types, such as xsd:date, xsd:dateTime, and
xsd:duration. Operators to perform granularity
conversion and duration calculations at varying
granularities are also provided. This library also has
a native understanding of the valid-time temporal
model and supports an array of temporal operations
on intervals defined using the classes in this model.
It can thus be used in rules to directly reason about
valid time instants and intervals.

The following rule illustrates the use of a built-in
defined by this library called temporal:before,
which can be used to see if one valid time is before
another. These valid times can any combination of
instant or intervals. This rule classifies patients as
trial-eligible if they have any completed DDI drug
therapy before 1999. In this rule, a patient has a
property called hasTreatment which has a range
class that is a subclass of the temporal:Fact class
and holds a list of valid-time intervals for each
treatment.

Patient(?p) ^ hasTreatment(?p, ?t) ^
hasDrug(?t, DDI) ^
temporal:hasValidTime(?t, ?tVT) ^
temporal:before(?tVT, “1999”)
→ TrialEligible(?p)

The temporal built-ins can take any combination of
valid-time instants, valid-time intervals, or XSD date
or datetime literal values. In this case, the
temporal:before built-in is supplied with a valid-
time interval and a literal date value.

In addition to being able to write temporal rules,
the ability to write temporal queries on an ontology
is also desirable. A SWRL-based query language
called the Semantic Query-Enhanced Web Rule
Language (SQWRL; O’Connor and Das, 2009) has
been developed that provides such support. Using
built-ins, SQWRL defines a set of SQL-like query
operators that that can be used to construct retrieval
specifications for information stored in an OWL
ontology. These operators are used in the consequent
of a SWRL rule to format the information matched
by a rule antecedent. This antecedent is effectively

A LIGHTWEIGHT MODEL FOR REPRESENTING AND REASONING WITH TEMPORAL INFORMATION IN
BIOMEDICAL ONTOLOGIES

93

treated as a pattern specification for the query. The
prefix sqwrl is conventionally used for SQWRL
built-ins. The core built-in defined by SQWRL is
sqwrl:select. This built-in takes one or more
arguments, which are typically variables used in the
antecedent of a rule, and builds an internal table
using the arguments as the columns of the table. For
example, the earlier rule to determine trial-eligible
patients can be rewritten as a query as follows:

Patient(?p) ^ hasTreatment(?p, ?t) ^
hasDrug(?t, DDI) ^
temporal:hasValidTime(?t, ?tVT) ^
temporal:before(?tVT, “1999”)
→ sqwrl:select(?p)

This query will return a table with one column
listing all patients that have completed a DDI drug
therapy before 1999.

4.2 More Advanced Queries

Operators to construct and manipulate sets are
provided by SQWRL to provide more advanced
querying functionality. A built-in called
sqwrl:makeSet is provided to construct a set. Its
basic form is:
swqrl:makeSet(<set>, <element>)

The first argument of this set construction operator
specifies the set to be constructed and the second
specifies the element to be added to the set. This
built-in will construct a single set for a particular
query and will place all supplied elements into the
set. Operators like sqwrl:isEmpty, sqwrl:size,
sqwrl:union, and sqwrl:difference can then be
applied to the resulting sets. SQWRL provides an
additional clause to contain these set construction
and manipulation operators. This clause comes at the
end of the standard pattern specification and is
separated from it using the ° character. For example,
a query to list the number of patient in an ontology
can be written:

Patient(?p) °
sqwrl:makeSet(?s, ?p) ^ sqwrl:size(?n, ?s)
→ sqwrl:select(?n)

Additional query features such as negation and
disjunction can then be provided by set operators.
For example, a query to list the number of non DDI
drugs in an ontology can be written:

Drug(?d) °
sqwrl:makeSet(?sd, ?d) ^
sqwrl:makeSet(?sddi, DDI) ^
sqwrl:difference(?snonddi, ?sd, ?sddi) ^
sqwrl:size(?n, ?snonddi) → sqwrl:select(?n)

These types of set operators support some fairly
basic functionality. Additional set construction
operators are required to allow more complex
queries that support grouping of related sets of
entities. This additional expressivity is supplied in
SQWRL by grouped sets. These sets are partitioned
by a group of arguments. This group is specified in a
set grouping operator. The form of this grouping is:

sqwrl:makeSet(<set> , <element>) ^
sqwrl:groupBy(<set>, <group>)

This group can contain one or more entities. This
grouping mechanism is analogous to GROUP BY
clause in SQL.

For example, the construction of a set of
treatments for each patient can be written:

Patient(?p) ^ hasTreatment(?p, ?t) °
sqwrl:makeSet(?s, ?t) ^
sqwrl:groupBy(?s, ?p)

Here, sets will be constructed for each patient and all
treatments for a patient will be added to that
patient’s set.

More complex groupings will have multiple
grouping entities. For example, to make a set of the
start times of each patient’s treatment the set
construction operator must be supplied with both
patient and treatment grouping arguments:

Patient(?p) ^ hasTreatment(?p, ?t) ^
temporal:hasValidTime(?t, ?vt) ^
temporal:hasStartTime(?bt, ?start) °
sqwrl:makeSet(?s, ?start)
sqwrl:groupBy(?s, ?p, ?t)

Here, a set will be constructed for each patient and
treatment combination and all the start times for that
combination will be added to the set.

Ordinal selection or aggregation operators can
then be applied to a set if its elements are numeric or
have a natural ordering. These operators include
sqwrl:min, sqwrl:max, sqwrl:avg, and so on. For
example, a query to return the time of the first
treatment for each patient can be written:

Patient(?p) ^ hasTreatment(?p, ?t) ^
temporal:hasValidTime(?d, ?vt) ^
temporal:hasStartTime(?vt, ?start) °
sqwrl:makeSet(?s, ?start) ^
sqwrl:groupBy(?s, ?p, ?t) ^
sqwrl:min(?first, ?s) ^
temporal:equals(?first, ?start)
→ sqwrl:select(?p, ?start)

The result will be a list of patients together with the
time of the first treatment for each patient.

HEALTHINF 2010 - International Conference on Health Informatics

94

These set operations can be used with the
temporal valid-time model to construct complex
temporal queries. Consider, for example, the
following query from the HIV domain:

List the average viral loads of all patients over
two 4-day windows starting 12 and 24 days after
initiation of a new treatment. Order those results by
the maximum average viral load of the first window.
Assume each patient has treatment and laboratory
properties modeled as facts using the valid-time
model, with laboratory value timestamps stored as
valid instants and treatment intervals stores as valid
intervals. The query can then be expressed as:

Patient(?p) ^ hasTreatment(?p, ?t) ^
hasValidTime(?t,?tvt) ^
temporal:start(?tvt, ?b) ^
temporal:add(?w1Start, ?b, 12, days) ^
temporal:add(?w1End, ?b, 14, days) ^
temporal:add(?w2Start, ?b, 24, days) ^
temporal:add(?w2End, ?b, 28, days) ^
hasLab(?p, ?l1) ^ hasViralLoad(?l1, ?vl1) ^
temporal:hasValidTime (?l1, ?lvt1) ^
temporal:hasTime(?lvt1, ?l1t) ^
hasLab(?p, ?l2) ^ hasViralLoad(?l2, ?vl2) ^
temporal:hasValidTime (?l2, ?lvt2) ^
temporal:hasTime(?lvt2, ?l2t) ^
temporal:contains(?w1Start ,?w1End, ?l1t) ^
temporal:contains(?w2Start, ?w2End, ?l2t) °
sqwrl:makeSet(?sw1, ?vl1) ^
sqwrl:groupBy(?sw1, ?p, ?t) ^
sqwrl:makeSet(?sw2,?vl2) ^
sqwrl:groupBy(?sw2, ?p, ?t) ^
sqwrl:avg(?avl1, ?sw1) ^
sqwrl:avg(?avl2, ?sw2) →
sqwrl:select(?p, ?t, ?avl1, ?avl2) ^
sqwrl:orderBy(?avl1)

This query first extracts each treatment's baseline
time and then calculates the two windows after that
baseline, finds the viral loads that occur during those
two windows, inserts each of them into distinct sets,
and then calculates the average viral load values for
each of those sets. It then orders the results by the
average viral load of the first temporal window. The
result will be a list of patients and their treatments
together with the average viral loads during the two
windows after the start of each treatment.

As can be seen, these queries can quickly become
complex. In most cases, however, a combination of
rules and queries can be combined to incrementally
generate intermediate results as successively higher
levels of abstraction so that the final query can be
considerably shorter. These intermediate results can
also be reused by other rules and queries.

4.3 Set-based Temporal Queries

Even more advanced temporal querying capabilities

are typically required by many systems. In addition
to support for basic interval manipulations, many
queries will need more complex selection of results.
For example, queries such as “List the first three
doses of the drug DDI” or “Return the most recent
dose of the drug DDI” are common. An additional
approach to simplifying these types of temporal
queries is to directly support the manipulation of
temporal facts in set operations. Instead of just
supporting standard OWL entities such as classes,
properties, individuals, and data values, these sets
can natively understand the interval-based valid-time
model underlying the facts placed in the set. They
can thus support more powerful selection operators
on temporal results, providing operations such as
earliest, latest and so on.

We have extended the temporal built-in library to
support these types of sets. The temporal library now
supports the same set of construction and
manipulation operators as the SQWRL library but
allows only temporal facts to be placed in these sets.
Additional temporal set operators, such as
temporal:first, temporal:firstN,

temporal:last, temporal:lastN, temporal:nth,
and so on, are also provided. Operators applied to
these temporal sets consider the interval-based
semantics of the entities contained in the sets. So, if
two sets are merged, for example, intervals
belonging to value-equivalent entities are merged, a
process known as coalescing (Bohlen et al., 1996).
The standard Allen temporal operators can also be
applied to sets, thus facilitating queries such as
“Were all DDI prescriptions before all AZT
prescriptions?”

Consider, for example, a query to return the very
first treatment for each patient in an ontology
together with drug and dosage information.
Assuming that each patient has a treatment property
that holds a treatment class containing drug and
dosage information and that is modeled as a
temporal fact using the temporal ontology, the query
can then be expressed:

Patient(?p) ^ hasTreatment(?p, ?tr) ^
hasDrug(?tr, ?drug) ^
hasDose(?tr, ?dose) °
temporal:makeSet(?trs, ?tr) ^
temporal:groupBy(?trs, ?p) ^
temporal:first(?ftr, ?trs) ^
temporal:equals(?ftr, ?tr) →
sqwrl:select(?p, ?tr, ?drug, ?dose)

A query to return the first three DDI treatments for
each patient together with dosage information for
those treatments can be written:

A LIGHTWEIGHT MODEL FOR REPRESENTING AND REASONING WITH TEMPORAL INFORMATION IN
BIOMEDICAL ONTOLOGIES

95

Patient(?p) ^ hasTreatment(?p, ?tr) ^
hasDrug(?tr, DDI) ^
hasDose(?tr, ?dose) °
temporal:makeSet(?trs, ?tr) ^
temporal:groupBy(?trs, ?p) ^
temporal:firstN(?f3tr, ?trs, 3) ^
temporal:equals(?f3tr, ?tr) →
sqwrl:select(?p, DDI, ?dose)

Here, the temporal:firstN built-in is used to select
the first three treatments from a each patient’s
treatment set.

A query to return the most recent DDI treatment
for each patient together with dosage information
can be written:

Patient(?p) ^ hasTreatment(?p, ?tr) ^
hasDrug(?tr, DDI) ^
hasDose(?tr, ?dose) °
temporal:makeSet(?trs, ?tr) ^
temporal:groupBy(?trs, ?p) ^
temporal:last(?ltr, ?trs) ^
temporal:equals(?ltr, ?tr) →
sqwrl:select(?p, DDI, ?dose)

Here, the temporal:last built-in is used to select
the most recent treatment from each patient’s
treatment set.

As can be seen from these examples, natively
supporting the valid time-model in sets can permit
expressive yet relatively concise temporal queries.

5 CONCLUSIONS

We described a lightweight yet expressive temporal
model that can be used to encode the temporal
dimension of biomedical data in OWL ontologies.
This model is designed to be integrated with existing
ontologies without requiring redesign of those
ontologies. It facilitates the consistent representation
of temporal information in those ontologies, thus
allowing standardized approaches to performing
temporal reasoning and temporal queries on these
ontologies. Using the rule language SWRL and the
SWRL-based OWL query language SQWRL we
show how knowledge-level temporal rules and
queries can be constructed on the information
contained in these ontologies. In particular, we show
that extending SQWRL with set operators that can
be directly applied to data described using the
temporal model provides a high degree of
expressivity.

We used an initial version of the temporal valid-
time model described here to encode the temporal
information collected during a national clinical trials
project (O’Connor et al., 2009). As mentioned, we
developed a temporal constraint language on top of

this model. Other researchers have reported using
our model in a hypertension management
application to identify patients who satisfy a set of
evidence-based criteria for quality improvement
potential (Mabotuwana et al., 2009). We are
currently using the updated model with the recent
set-based SQWRL extensions to reason with breast
cancer image annotation for tumor assessment (Levy
et al., 2009).

A possible shortcoming of our approach is that
all temporal information in a source ontology must
be transformed to conform to the valid-time model.
This mapping process can be time consuming and
typically requires considerable domain expertise.
However, if principled temporal reasoning
mechanisms are to be applied to temporal
information, some sort of mapping process to
regularize the information is nearly always required,
irrespective of the final reasoning processes. An
additional possible shortcoming is that complex
temporal rules and queries can become difficult to
maintain and extend as the number of them
increases. We are developing rule management tools
to tackle this problem (Hassanpour at al., 2009).

The methodologies and tools described in this
paper aim to enhance the ability of software
developers and investigators to encode critical forms
of deductive biomedical knowledge in their
applications. This knowledge can be represented
directly in domain ontologies thus facilitating much
higher level analyses than would be possible with
lower level techniques. Ultimately, working at the
knowledge level will enable investigators to make
better sense of the large numbers of complex
temporal patterns that characterize dynamic and
causal phenomena in medicine and biology.

The ontologies and tools mentioned in this paper
are freely available as an open-source plug-ins to the
Protégé-OWL ontology development environment
(Knublauch et al., 2004).

ACKNOWLEDGEMENTS

This research was supported in part by grant
1R01LM009607 from the National Library of
Medicine.

REFERENCES

Allen, J.F., 1983. Maintaining knowledge about temporal
intervals, Communications of the ACM, 26(11).

HEALTHINF 2010 - International Conference on Health Informatics

96

Berners-Lee, T., Hendler, J. and Lassila, O., 2001.The
Semantic Web, Scientific American, pp. 35-43.

Bohlen, M.H., Snodgrass, R.T., Soo, M.D., 1996.
Coalescing in temporal databases. Proceedings of the
International Conference on Very Large Databases,
Mumbai, India, pp. 180-191.

Das, A.K. and Musen, M.A., 1994. A temporal query
system for protocol-directed decision support,
Methods of Information in Medicine, 33: 358-370.

Goldstein, M.K., Coleman, R.W., Tu, S.W., O'Connor,
M.J., Martins, S.B., Lavori, P.W., Shilpak, M.G.,
Oddone, E.Z., Advani, A., Gholami, P., Hoffman,
B.B., Shankar, R.D., Musen, M.A., 2004. Translating
research into practice: organizational issues in
implementing automated decision support for
hypertension in three medical centres. Journal of the
American Medical Informatics Association, 11(5):
368-376.

Hassanpour, S., O'Connor, M.J., Das, A.K., 2009.
Exploration of SWRL rule bases through visualization,
paraphrasing, and categorization of rules.
International RuleML Symposium on Rule Interchange
and Applications, Las Vegas, NV, Springer-Verlag,
LNCS 5858, pp. 246–261.

Hobbs, J. R. and Pan, F., 2004. An ontology of time for
the Semantic Web. ACM Transactions on Asian
Language Processing (TALIP): Special issue on
Temporal Information Processing, 3(1): 66-85.

Horrocks I., Patel-Schneider, P.F., Boley, H., Tabet, S.,
Grosof, B., Dean, M., 2004. SWRL: a Semantic Web
rule language combining OWL and RuleML. W3C.

Hripcsak, G., Ludemann, P., Allan Pryor, T., Wigertz,
O.B., Clayton, P., 1994. Rationale for the Arden
Syntax. Computers and Biomedical Research, 27:
291-324.

Knublauch, H., Fergerson, R.W., Noy, N.F., Musen, M.A.,
2004. The Protégé OWL Plugin: An open
development environment for semantic web
applications, Third International Semantic Web
Conference, Hiroshima, Japan, pp. 229-243.

Levy, M., O'Connor, M.J., Rubin, D.L., 2009. Semantic
reasoning with image annotations for tumor
assessment. AMIA Annual Symposium, San Francisco,
CA.

Mabotuwana, T., Warren, J., 2009. An ontology-based
approach to enhance querying capabilities of general
practice medicine for better management of
hypertension. Artificial Intelligence in Medicine,
47(2): 87-103.

Nguyen, J.H., Shahar, Y., Tu, S.W., Das, A.K., and
Musen, M.A., 1999. Integration of temporal reasoning
and temporal data maintenance into a reusable
database mediator to answer abstract, time-Oriented
queries: the Tzolkin System, Journal of Intelligent
Information Systems, 13(1/2): 121-145.

O'Connor, M.J., Tu, S.W., and Musen, M.A., 2002. The
Chronus II temporal database mediator, AMIA Annual
Symposium, San Antonio, TX, pp. 567-571.

O'Connor, M.J., Shankar, R.D., Parrish, D.B., Das, A.K.,
2009. Knowledge-data integration for temporal

reasoning in a clinical trial system, International
Journal of Medical Informatics, 78(1): S77-S85.

O'Connor, M.J. and Das, A.K., 2009. SQWRL: a query
language for OWL. OWL: Experiences and Directions
(OWLED), Fifth International Workshop, Chantilly,
VA.

Shahar, Y. and Musen, M.A., 1993. RÉSUMÉ: a
temporal-abstraction system for patient monitoring.
Computers and Biomedical Research, 26: 255-273.

Shahar, Y., 1999. Timing is everything: temporal
reasoning and temporal data maintenance in medicine,
Seventh Joint European Conference on Artificial
Itelligence in Medicine and Medical Decision
Making), Aalborg, Denmark.

Sim, S.K., Song, M.Y., Kim, C., Yea, S.J., Jang, H.C., and
Lee, K.C., 2008.Temporal ontology language for
representing and reasoning interval-based temporal
knowledge, LNCS 5367, pp. 31–45.

Snodgrass, R.T., 1995. The TSQL2 Temporal Query
Language, Boston, MA: Kluwer.

Snodgrass, R.T., Jensen C.S., Steiner, A., 1998.
Transitioning temporal support in TSQL2 to SQL3.
Temporal Databases: Research and Practice, pp. 150-
194.

SWRL Temporal Built-ins, 2009. Available at: http://
protege.cim3.net/cgi-bin/wiki.pl?SWRLTemporalBuiltIns

Wiederhold, G., 1981 Databases for healthcare. Lecture
Notes in Medical Informatics, Heidelberg, Germany,
Springer-Verlag.

XML Schema, 2009. http://
www.w3.org/TR/xmlschema11-1/

A LIGHTWEIGHT MODEL FOR REPRESENTING AND REASONING WITH TEMPORAL INFORMATION IN
BIOMEDICAL ONTOLOGIES

97

