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Abstract: Frequent sequences (or temporal associations) mining is a very important topic within the temporal data mi-
ning area. Syntactic simplicity, combined with the dual characteristics (descriptive and predictive) of the
mined temporal patterns, allow the extraction of useful knowledge from dynamic domains, which are time-
varying in nature. Some of the most representative algorithms for mining sequential patterns or frequent
associations are Apriori-like algorithms and, therefore, they cannot handle numeric attributes or items. This
peculiarity makes it necessary to add a new process in the data preparation step, the discretization process.
An important fact is that, depending on the discretization technique used, the number and type of discovered
temporal patterns change dramatically. In this paper, we propose a method based on theShafer’s Theory of
Evidencethat uses two information measures proposed byYagerfor the quality evaluation of the extracted sets
of temporal patterns. From a practical point of view, the main goal is to select, for a given dataset, the best
discretization technique that leads to the discovery of useful knowledge. Nevertheless the underlying idea is
to propose a formal method for assessing the mined patterns, seen as a belief structure, in terms of certainty in
the information that represents. In this work, we also present a practical example, describing an application of
this proposal in the Intensive Care Burn Unit domain.

1 INTRODUCTION

Temporal data mining can be defined, in general
terms, as the activity of looking for interesting cor-
relations or patterns in large sets of data accumu-
lated for other purposes. It has the capability of mi-
ning activity, inferring associations of contextual and
temporal proximity, some of which may also indi-
cate a cause-effect association. This important sort
of knowledge can be overlooked when the temporal
dimension is ignored or treated as a simple numeric
attribute. There is a lot of work related to this area, in-
cluding those belonging to theAprori-like algorithms,
like sequential pattern mining or temporal association
rules mining, amongst other. A common feature of
theApriori-like algorithms is that they can not handle
databases with continuous attributes, requiring the ap-
plication of discretization techniques in the data pre-
processing step. Basically, the discretization tech-

niques consist of the partition of the numerical do-
main into a set of intervals, treating each interval as
a category. There are automatic discretization tech-
niques which find the partition that optimizes a given
evaluation function, and techniques that use expert
knowledge to divide the domain into several intervals.
In general, there is a large number of discretization
techniques, and their efficiency is often a bottleneck
in the knowledge discovery process. The problem
here is to select a good discretization method that, in
an efficient way, generates a discretized dataset from
which useful knowledge can be obtained. If we are
dealing with global data mining techniques, the ac-
curacy of the model can be a good proposal to se-
lect the best discretization technique. But, if we are
dealing with local methods, it is so difficult to as-
sess the quality of the discovered knowledge. The
usually huge number of mined patterns, a number
which depends both on the user-defined parameters
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of the algorithm and the used discretization method,
makes it virtually impossible to objectively evaluate
the outcome. It becomes necessary, therefore, a for-
mal method for evaluating mined (temporal) associ-
ations, which resulted in a value that indicates the
quality of the discovered knowledge. In this paper,
we propose to use a method to assess the quality of
mined frequent sequences based on the combined use
of two uncertainty measures, the entropy and speci-
ficity, both defined in (Yager, 1981) in the setting of
the Theory of Evidence. Once the set of associations
is prepared (normalizing the associated frequency dis-
tribution), we treat it as a body of evidence. From the
Theory of Evidence point of view, data mining is seen
as an evidence-based agent. But, from the data min-
ing point of view, the treatment of sets of frequent
associations as bodies of evidence allowing the use
of the information measures to quantify the quality of
the discovered knowledge. Specifically, we propose a
quality index based on the distance of the pair formed
by the entropy and non-specificity measures with re-
gard to the situation of total certainty.For the empiri-
cal evaluation of the proposed method, we have used
a dataset belonging to the medical domain, in partic-
ular, to the Intensive Care Burn Unit domain, special-
ized in the treatment of patients with severe burns.

The rest of this paper is organized as follows.
Section 2 introduces the notation and basic defini-
tions necessaries to define the problem. Section 3 in-
troduces the theoretical foundations of the proposed
method for evaluating sets of frequent event-based se-
quences. Section 4 describes and empirical evaluation
with a real dataset belonging to the medical domain.
Conclusions and future works as finally drawn in Sec-
tion 5.

2 THE PROBLEM DEFINITION

Frequent sequence mining is an extension of theApri-
ori algorithm (Agrawal et al., 1993) and, therefore,
the mining process is iterative in nature and performs
a levelwise search. It is based on thedownward clo-
sure property, which states that every subset of a fre-
quent sequence is also frequent (and also, it is true
that every superset of a non-frequent sequence is non-
frequent). Starting with the dataset, the first step fo-
cuses on the extraction of all the frequent events (se-
quences of length 1), and then the process continues
generating the set of patterns of lengthk from the set
of frequent patterns ofk− 1 length. Next, we will
introduce the notation and basic definitions for speci-
fying in detail the main goal of the proposal.

Definition 1 (Event). An event (e) is defined as the
pair (te,t), or simply tet , where te is the type event
and t is the time instant of its occurrence. The events
are things that happen in the real world, and they usu-
ally represent the dynamic aspect of the world. In our
case, an event is related to the fact that a certain type
event occurs at a given point-based instant.

Definition 2 (Event-based Sequence).
A sequence (S) is defined as an ordered set of events,
that is, S= {e0,e1, . . . ,ek−1}, where∀i < j, ei < ej .
Obviously,|S|= k.

This sort of sequence is defined by a quantitative treat-
ment of time. Nevertheless, the sequential patterns
are qualitative temporal sequences although, with a
simple transformation, they can be expressed as in the
Definition 2.

Example 1 Let S be a qualitative sequence (or a se-
quential pattern), such that Sql = {ab→ cd → a}.
The→ symbol denotes the “after than” temporal re-
lation. This sequence can be rewritten using a quan-
titative notation in the form Sqn = {a0,b0,c1,d1,a2}.
In general, for i> 0 and j > i, Sql generates a fa-
mily of equivalent quantitative sequences defined as
S∗qn = {a0,b0,ci ,di ,a j}.

Given a datasetD, the goal of temporal sequence
mining is to determine all the frequent sequences that
show the temporal regularities in it.

Definition 3 (Temporal Data Mining Algorithm).
In our paper, a temporal data mining algorithm, de-
noted as TDM, is an Apriori-like algorithm that ex-
tracts a set of frequent temporal associations (also
called temporal patterns, sequences or even event-
based sequences) characterized by a frequency dis-
tribution. Each frequency value indicates the number
of objects that match the corresponding pattern.

The term frequent is related to the fact that every
frequency value associated with a pattern will be al-
ways greater than or equal to a user-defined parameter
calledminimum support(denoted asms). Depending
on the sort of algorithm, another user-defined param-
eter can bemaxspan, which indicates the maximal
temporal distance among events that comprise a se-
quence. Examples ofTDM algorithms of our interest
are mainlyGSP(Srikant and Agrawal, 1996),SPADE
(Zaki, 2001), andTSET−Miner (an improved se-
quential version of the intertransactional algorithm
presented in (Guil et al., 2004)). The two first al-
gorithms are designed for mining sequential patterns.
The latter are designed for extracting a special type
of pattern, called event-based sequences. However,
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as shown above, the sequential pattern can be rep-
resented as an event-based sequence, placing all the
three algorithms as viable alternatives in this paper.

Definition 4 (Sequences Base). Let B S be the to-
tal number of frequent sequences extracted by TDM,
that is,B S = {Si}, where Si is a frequent sequence.
B S is characterized by a frequency distribution f=
{ fi}, such that fi = f req(Si). We propose to normal-
ize the distribution f , obtainingf = { f i}, such that
f i = fi

∑i fi
.

From the set of all frequent sequences, in this paper,
we are interested only in the maximal ones. A maxi-
mal sequence is a frequent sequence that has no fre-
quent super-sequences. In this way, the mining pro-
cess is done in a more efficient way, obtaining an in-
teresting sequences base that shows the temporal reg-
ularities presented in the dataset. Once the sequences
base is extracted, the next step is its evaluation and in-
terpretation. These tasks are designed with the aim to
discover useful knowledge, and usually they are per-
formed by the expert. However, this is a very hard
process and rarely can be done due to the huge amount
of frequent sequences that are often discovered. The
problem is compounded if, instead of evaluating one
sequences base, the expert must evaluate a set of se-
quences bases obtained by varying the parameters of
the algorithms for preprocessing the datasets. In this
case, the evaluation process must be carried out in
parallel for each of the mined bases, thus having a
much more complicated problem. If the expert must
compare two (or more) sequences bases to determine
which one is the better for obtaining useful knowl-
edge, what method should he/she follow? Is better
a base with more patterns, or else the base with the
longest patterns? Does not affect the structure and
frequency of the patterns to the quality of information
that they represent? On an experimental basis, we
can determine the best base obtaining, for each one,
a classification model and studying its accuracy. But,
several problems arises from this approach. On the
one hand, there is no single method to obtain a classi-
fication model from a set of sequences. What is more,
in the case of temporal classification models, its gene-
ration from temporal patterns is still a open (and very
interesting) problem. On the other hand, and assum-
ing that it is possible to obtain a suitable model from
each base, this evaluation method is time-consuming
and it must be done using a trial-error method of prob-
lem solving. So, it seems interesting to study a formal
method of evaluation that indicates us the quality of
the base without having to generate any later model,
that is, a formal method that determines the degree of
certainty of a sequences base from the structure and

frequency of each sequence in it. And, precisely, this
is the main goal of the next section.

3 MEASURING THE CERTAINTY
OF MINED SEQUENCES

Starting with a sequence base characterized by a nor-
malized frequency distribution, our goal here is to in-
troduce the information measures that will enable us
to achieve its quality in terms of certainty in the e-
vidence. In (Yager, 1981), the author introduces the
concepts of entropy (from the probabilistic frame-
work) and specificity (from the possibilistic frame-
work), in the framework of Shafer’s theory. Both in-
formation measures of uncertainty provide comple-
mentary measures of the quality of a body of evi-
dence. With this proposal,Yagerextend theTheory of
Evidence of Shafer(also known asDempster-Shafer
Theory), developed for modeling complex systems.

In the next section, a brief summary of the
Shafer’s Theory of Evidence is introduced. Next, the
section concludes with the proposed method, defining
the measures and setting their goals.

3.1 Shafer’s Theory of Evidence

The Shafer’s Theory of Evidence is based on a spe-
cial fuzzy measure calledbelief measure. Beliefs can
be assigned to propositions to express the uncertainty
associated to them being discerned. Given a finite
universal setU (the frame of discernment), the be-
liefs are usually computed based on a density function
m : 2U → [0,1], calledbasic probability assignment
(bpa):

m( /0) = 0,and ∑
A⊆U

m(A) = 1. (1)

m(A) represents the belief exactly committed to the
set A. If m(A) > 0, thenA is called afocal element.
The set of focal elements constitute a core:

F = {A⊆ U : m(A) > 0}. (2)

The core and its associate bpa define abody of evi-
dence, from where a belief functionBel : 2U → [0,1]
is defined:

Bel(A) = ∑
B|B⊆A

m(B). (3)

From any given measureBel, a dual measure,Pl :
2U → [0,1] can be defined:

Pl(A) = ∑
B|B∩A 6= /0

m(B). (4)

It can be verified (Shafer, 1976) that the functions
Bel and Pl are, respectively a possibility (or neces-
sity) measure if and only if the focal elements from
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a nested or consonant set, that is, if it can be ordered
in such a way that each set is contained within the
next. It that case, the associated belief and plausibil-
ity measures posses the following properties. For all
A, B∈ 2U ,

Bel(A∩B) = N(A∩B) = min[Bel(A),Bel(B)], (5)

and

Pl(A∪B) = Π(A∪B) = max[Pl(A),Pl(B)], (6)

whereN andΠ are the necessity and possibility mea-
sures, respectively. If all the focal elements are sin-
gletons, that is,A = ω, whereω ∈ U , then:

Bel(A) = Pr(A) = Pl(A) (7)

wherePr(A) is the probability of A. In general terms,

Bel(A) ≤ Pr(A) ≤ Pl(A). (8)

A significant aspect of Shafer’s structure is the ability
to represent in this common framework various dif-
ferent types of uncertainty, that is, probabilistic and
possibilistic uncertainty.

3.2 Specificity and Entropy

The concept of information measures has been en-
tirely renewed by investigations in the setting of mo-
dern theories of uncertainty like Fuzzy Sets, Possibil-
ity Theory, and Shafer’s theory of evidence. An im-
portant aspect is that all of these theories, although
they have a different approach than the probability
theory, they are quite related. The new types of gener-
alized information measures enable several facets of
uncertainty to be discriminated, modeled, and mea-
sured. LetB (U ) be the set of normal bodies of ev-
idence onU (m( /0) = 0). An information measure
will be any mappingf : B (U ) → [0,+∞) (the non-
negative real line)(Dubois and Prade, 1999).f sup-
posedly depends on both the core (F ) of the body of
evidence to which it applies, and its associated bpa
(m). f pertains to some property of bodies of evidence
and assesses the extent to which it is satisfied. In the
paper (Dubois and Prade, 1999), the authors study
three different measures in the general framework of
evidence theory, corresponding to different proper-
ties of bodies of evidence: measures of imprecision,
dissonance and confusion. However, in this paper,
we only take into account two particular measures of
imprecision and dissonance, the specificity and en-
tropy (respectively), because, asYagerpointed, the
combination of them is a good approach to measure
the quality of a particular body of evidence.Initially,
Yager introduced the concept of specificity (Yager,
1981), as an amount that estimates the precision of a

fuzzy set. Later, the author (Yager, 1983) andDubois
and Prade(Dubois and Prade, 1985), extend the con-
cept to deal with bodies of evidence, defining the
measure of specificity (Sp) of a body of evidence as:

Sp(m) = ∑
A⊆U

m(A)

|A|
. (9)

|A| denotes the number of elements of the setA, that
is, the cardinality ofA. It is easy to see that 1−Sp(m)
is a measure of imprecision, related to the concept of
non-specificity. We will denote this imprecision value
asJm, that is,Jm = 1−Sp(m). Also, in (Yager, 1983),
the author extends the Shannon entropy to bodies of
evidence, considering the following expression where
ln is the Naperian natural logarithm (it is possible to
uselog2 instead ofln as well):

Em(m) = − ∑
A⊆U

m(A)ln(Pl(A)). (10)

Pl(A) is the plausibility ofA, and ln(Pl(A)) can be
interpreted in terms of Shafer’s weight of conflict. As
the Shannon entropy,Em(m) is a measure of discor-
dance associated with de body of evidence.

In the ideal situation, where no uncertainty is pre-
sented in the body of evidence,Em(m) = Jm(m) = 0.
This is the key point of the proposed method for mea-
suring the certainty associated with a belief structure.
Em provides a measure of the dissonance of the evi-
dence, whereasJm provides a measure of the disper-
sion of the belief. So, the lower theEm, the more
consistentthe evidence and, the lowerJm (the higher
Sp), the lessdiverse. For certainty, we want lowEm
andSm measures. So, by using a combination of both
measures, we can have a good indication of the qua-
lity of evidence. For measuring this indicator (Q (m),
denoting quality), we propose the inverse of the Eu-
clidean distance between the pair (Em,Jm) and the pair
(0,0), that is:

Q (m) =
1

√

(Em)2 +(Jm)2
. (11)

3.3 Evaluation of a Sequence Base

Let B S be the sequences base, formed by a set of
frequent sequences,B S = {Si},1≤ i ≤ |B S |, mined
from a dataset. And letf be the normalized frequency
distribution associated withB S . A frequent sequence
is an ordered set of events. LetE be the set of all
the frequent events present in the base. Making a syn-
tactic correspondence with the basic elements of the
Theory of Evidence, we obtain that the pair(B S ,m)
is a body of evidence, whereB S is the core (formed
by the set of focal elementsSi ⊆ E ), and f is the
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basic probability assignment. In this case,E is the
frame of discernment. Once this correspondence is
established, the evaluation of the set of mined pat-
terns would be carried out by the method described in
the previous section, that is, using the functionQ(m)
defined in Equation 11. In general terms, this mea-
sure adds additional information to the expert on the
quality of the sequences base. But, in particular, in
this paper, theQ(m) function (specificallyQ( f )) will
be used to compare objectively three set of frequent
patterns mined from a dataset belonging to a medical
domain, which has been discretized using three differ-
ent discretization methods. LetTDM be an Apriori-
like temporal data mining algorithm, and letD be a
dataset. A special feature ofTDM is that it can not
handle numerical attributes. SinceD contains con-
tinuous attributes, very common in real datasets, it
will be require a discretization method to obtain a
dataset with only nominal attributes. Letd1,d2,d3
be three different discretization methods that gener-
ate three different datasets,D1 = d1(D), D2 = d2(D),
andD3 = d3(D). The execution of the algorithm on
each of the datasets (TDM(Di)) will results in three
different sequences bases, denoted asB S Di , each one
characterized by a normalized frequency distribution
f i . In order to compare the three discretization meth-
ods and determine which one provides information
with less uncertainty, we propose the use of theQ( f i)
function, such that the best method is the one that gen-
erates a base with the highest value ofQ. For a more
complete assessment, in the empirical evaluation we
will use also three different values for the minimum
support parameter of theTDM algorithm.

4 EMPIRICAL EVALUATION

From a practical point of view, we have carried out an
empirical evaluation using a preprocessed dataset that
represents the evolution of 363 patients in an Inten-
sive Care Burn Unit (ICBU) between 1992 and 2002.
The original database stores, for each patient, a lot of
clinical parameters such as age, presence of inhalation
injury, the extent and depth of the burn, the necessity
of early mechanical ventilation, and the patient sta-
tus int its last day of stay in the Unit, among others.
However, in the construction of the dataset, we only
take into account the temporal parameters, which in-
dicate the evolution of the patients during the resusci-
tation phase (first 2 days) and during the stabilization
phase (3 following days). Incomings, diuresis, fluid
balance, acid base balance (pH, bicarbonate, base ex-
cess) and other variables help to define objectives and
to assess the evolution and treatment response. For

each of these temporal variables, we used three dif-
ferent discretization methods (calledd1, d2, andd3,
respectively). The first one (d1) is based on clinical
criteria and uses the knowledge previously defined in
the domain. A second discretization method (d2) can
be based on the usual interpretation of mean value
and standard deviation. In statistics, the mean is a
central value around which the rest of the values are
spread. When the distance of an element to the mean
is greater than two standard deviations it should be
carefully looked at because it may be a potential out-
lier. We have made a similar distinction defining nor-
mal values those in a interval of one standard devi-
ation around the mean, slightly high or slightly low
values those within two standard deviations around
the mean, and high or low values for those whose dis-
tance to the mean is greater than two standard devia-
tions. This discretization method is the one that ge-
nerates the highest number of patterns, since it does
not consider the domain values (that can be arbitrary
in the dataset) but the values found in the data and
therefore most of them should be found in the “nor-
mal” interval if they are distributed around the mean.
In the last method (d3), we used an entropy-based in-
formation gain with respect the output variable. The
information gain is equal to the total entropy for an
attribute if for each of the attribute values a unique
classification can be made for the output variable.

For each discretized dataset (Di), we have ob-
tained a set of maximal sequences using a version of a
temporal data mining algorithm designed for the ex-
traction of frequent sequences from datasets with a
time-stamped dimensional attribute. In the analysis
of the data, different values for the parameters of the
algorithm were set, in particular, maxspan to 5 days
(resuscitation and stabilization), and minimum sup-
port to 20%, 30%, and 50%. In total, 6 sets of fre-
quent sequences were extracted that, after the normal-
ization process, resulted in the generation of 6 nor-
malized sequences bases (denoted asB S Di

ms, whereDi
is the dataset obtained by the discretization technique
di , andms is the minimum support). In terms of the
Theory of Evidence, each normalized sequences base
corresponds to a body of evidence or belief structure,
and is the input of the evaluation method that we pro-
pose in this paper. Table 1 shows the results of the
proposed evaluation method. For each discretization
technique, and for each minimum support value, we
indicate in the table the entropy (Em) and the non-
specificity based measure (Jm), whereJm = 1−Sm,
andSm the specificity like measure, both proposed by
Yageras a quality indicator of a belief structure.

The Q parameter is the quality measure defined
in the Equation 11, that is, the inverse of the classi-
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Table 1:Em, Jm, andQ measures.

B S Di
ms Measures 20% 30% 50%

Em 0,4071 0,6294 1,0070
B S D1

ms Jm 0,7897 0,7311 0,6139
Q 1.1255 1.0366 0.8479
Em 0,0314 0,1252 0,4822

B S D2
ms Jm 0,8699 0,8314 0,7318

Q 1.1489 1.1895 1.1410
Em 0,1977 0,3774 0,7040

B S D3
ms Jm 0,8382 0,7851 0,6681

Q 1.1612 1.1480 1.0303

cal Euclidean distance between the pair (Em,Jm) and
the vector (0,0), which corresponds to the ideal situa-
tion where no uncertainty is presented in the body of
evidence. In our case, the best solution, in terms of
quality in the information presented in the patterns
(maximalQ), is the sequences baseBDD2

30%, that is,
the set of frequent maximal sequences obtained from
the dataset discretized by thed2 method (the statisti-
cal version) and with the minimum support parameter
set to 30%. Depending of the intervals extracted by
the discretization methods, the relationship between
minimum support and number of patterns varies sig-
nificantly. This variation correlates with a variation in
the measures of entropy and non-specificity so that a
decrease in the minimum support value involves a less
specific and less entropic set of patterns (see Table 1).
On the one hand, we are interested in the extraction of
sets of patterns with low entropy or, what is the same,
with less uncertainty. So, if we take this measure in-
dependently, we have that the best sequence base is
B S

D2
20%, which corresponds with the dataset with a

greater number of patterns. But, on the other hand,
we are also interested in the extraction of more spe-
cific sets of patterns and, in this case, it corresponds
to theB S D1

50% base, which has a smaller number of
patterns. Therefore, it is necessary to make a compro-
mise, taking into account the two measures together.
So, taking into account theQ measure, the less en-
tropic and more specific set of patterns is, precisely,
B S

D2
30%.

5 CONCLUSIONS AND FUTURE
WORK

In this paper we have presented a formal method for
evaluating the data mining results, that is, the set of
frequent patterns that shows the regularities presented
in a dataset. The method is based on the use of two

information measures proposed byYagerin the con-
text of the Shafer’s Theroy of Evidence. The pro-
posal involves the combined use of both measures, the
entropy-like measure (Em), and the (non)specificity-
like measure (Jm), to quantify the quality level (cer-
tainty) of bodies of evidence. Our approach is to treat
the whole mined patterns as a body of evidence. So,
it is possible to use information measures to provide
objective values that assist the experts in the evalua-
tion and the interpretation of the mined patterns and,
therefore, in the discovery of useful information from
data.

In the best of our knowledge, the treatment of the
mined patterns (characterized by its structure and fre-
quency distribution) as a body of evidence is a novel
approach that enable us to assess the information ex-
tracted by (temporal) data mining algorithms in a for-
mal way. In this paper, we only used two information
measures, but it is possible, and we propose this topic
as a future work, to use additional information mea-
sures proposed in the literature to characterize mined
bodies of evidence.
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