
A GENERAL DIALOGUE MANAGEMENT MODEL FOR
DYNAMIC-DOMAIN EXPERT SYSTEMS WITH NATURAL

LANGUAGE INTERFACES

Justyna Walkowska
Department of Computer Linguistics and Artificial Intelligence, Faculty of Mathematics and Computer Science

Adam Mickiewicz University, ul. Umultowska 87, 61-614 Poznań, Poland

Keywords: Natural language processing, Natural language interfaces, Conversational agents, Dialogue management.

Abstract: This paper describes a dialogue management model for a dynamic-domain multi-agent expert system with
natural language competence. The solutions presented in this paper have been derived in the design and
implementation process of Polint-112-SMS, an expert system to be used by security officers overseeing
public events (e.g. concerts, football games). This paper presents a modular system architecture and
explains the dialogue-oriented features of the modules. The presented problems and solutions include:
unification of data obtained from different users, detecting and solving contradictions, pairing questions and
answers in an asynchronous mode of communication, deciding when and how to contact the users to obtain
more data. The model has been applied in practise and a number of tests have been performed, the results of
which are also summarized herein.

1 INTRODUCTION

This paper presents the dialogue-oriented algorithms
and solutions derived in the process of design and
implementation of Polint-112-SMS (Vetulani et al.,
2008), a multi-agent expert system with natural
language interface designed to help security officers
during mass-event surveillance. It describes the
universal aspects of the applied solutions
(independent from language, programming
language, and the system’s domain of operation) that
can be applied in a number of expert systems. The
model is based on a modular system architecture and
describes the mechanisms that support:

 the exchange of questions and answers between
the system and a number of human agents,

 incomplete textual data at system’s input (inter-
sentence anaphora, omissions),

 ambiguous information,
 contradictory information,
 time management,
 merging of the obtained data.

Polint-112-SMS, the system that motivated this

research accepts SMS messages written in Polish.
The constraint of receiving textual input is not very

strong: the model can be applied in speech-based
systems too, provided a sufficiently efficient speech-
to-text tool exists for a given language.

The system has been subjected to evaluation in a
series of field experiments with the participation of
security experts. The results of the evaluation are
summarized at the end of this paper.

2 SYSTEM ARCHITECTURE

The presented model assumes a modular system
architecture. The communication flow between the
modules is outlined in figure 1. The roles of the
modules are described below.

Figure 1: Overall system architecture.

74
Walkowska J. (2010).
A GENERAL DIALOGUE MANAGEMENT MODEL FOR DYNAMIC-DOMAIN EXPERT SYSTEMS WITH NATURAL LANGUAGE INTERFACES.
In Proceedings of the 2nd International Conference on Agents and Artificial Intelligence - Artificial Intelligence, pages 74-81
DOI: 10.5220/0002728200740081
Copyright c© SciTePress

The understanding module’s task is to transform
the textual data into data structures understood by
the core of the system, i.e. by the dialogue manager
and the reasoning module. The structures and the
method of their creation are described in detail in
3.1.

The dialogue manager will also be described in
greater detail in the following section. It is the
middleman between the human agents and the
system’s fact database. It is responsible for obtaining
complete information from the agents and for
serving to them the data they ask for.

The reasoning module receives the information
processed by the dialogue manager. It unifies data
coming from different informers and detects
contradictions in the system’s image of the world,
stored in the knowledge database. It is responsible
for updating the dynamic data.

The knowledge database is used to store two
types of information: the current state of the world,
introduced by the informing agents during system
operation, and the initial knowledge, describing (if
known) the action setting, the map and so on.

The visualizer is an optional module that can be
connected to the knowledge database in order to
present the data in an additional mode. It is
particularly useful in dynamic situations similar to
the original Polint-112-SMS domain, where the
security commander is able to assess the situation at
one glance and to adjust their decisions to the
current state of the world.

3 DIALOGUE STRATEGY

Grosz and Sidner (1986) name three distinct but
interacting discourse components: the linguistic
structure, the structure of intentions, and the
attentional state.

The linguistic structure describes the sequence of
discourse utterances. In our case the incoming
information is in the textual form, originally in the
form of SMS messages. One message can contain
one or more sentences, with the premise that the
sentence do not have to be complete. Unlike in many
expert or conversational systems, it is not
compulsory for the human user to answer all
questions asked by the system, nor do they have to
answer the questions in exactly the order they have
been asked. It is one of the tasks of the dialogue
manager (described further in this paper) to connect
the respective questions and answers.

The list of possible user intentions in
communication with the dynamic-domain expert

system is limited by the functional requirements.
The human agents may:

 introduce to the system new data about the state
of the world,

 ask the system for confirmation of facts,
 ask the system value questions to obtain

specific data,
 ask the system to inform them every time new

information of a specified type arrives.

It is the task of the understanding module to

detect the intentions, based on the syntax (indicative,
imperative, interrogative) and the use of meta-
predicates (Inform me when...).

As for the attentional state, the dialogue manager
does not explicitly cut the dialogue into segments
with the same attention scope. Instead, each time a
decision on this matter is needed (mostly when an
anaphoric reference occurs) it applies algorithms
(presented below) finding the most probable target.

The remaining parts of this section describes the
strategies and methods used by the dialogue
manager and the reasoning module to respond to the
users’ needs.

3.1 Frame Completion

One of the most universal data structures for natural-
language-based systems is the syntactic frame (or its
variation) proposed by Fillmore (Fillmore, 1982). To
create such frames the understanding module needs
a dictionary (especially in highly inflected
languages) and an ontology. The most complete
solution is probably to combine a WordNet-like
(Fellbaum, 1998; Vossen, 2002) ontology, very
convenient for processing nouns and adjectives
(although it may contain verbs too), with a verb
ontology like FrameNet (Baker et al., 1998). The use
of ontologies not only allows for the creation of
correct data structures, but also plays a role in
disambiguation: when multiple meanings of a given
noun are found in the dictionary/ontology, a number
of them can be excluded based on the verb’s
semantic constraints. The understanding module
only works on sentence level and is ignorant of the
discourse attentional state (as described in (Grosz,
Sidner, 1986)). It detects the occurrence of inter-
sentence referring expressions, but without looking
for their targets. In some cases, like yes/no or
proper-name answers, it creates data structures
simpler than frames.

The frame (from now on referred to as object)
obtained from the user’s sentence is sent to the

A GENERAL DIALOGUE MANAGEMENT MODEL FOR DYNAMIC-DOMAIN EXPERT SYSTEMS WITH
NATURAL LANGUAGE INTERFACES

75

dialogue manager. Let us consider the following
example:

X bije się z Y na stadionie.

(X is in a fight with Y in the stadium.)
The understanding module should translates the

sentence to an object similar to the one below (all
examples are given in the LogTalk notation, native
of the original Polint-112-SMS system).

obj25:fight
performer(0.9)=obj22:person
 pseudonym(0.4)=Y
performer(0.9)=obj12:person
 pseudonym(0.4)=X
localization(1) = obj23:localization
 space_rel(0)=in
 space_rel_arg(1)=obj24:stadium

Information about time and sender has been
removed to clarify the listing. The understanding
module created a fight object that has two filled
attributes: performer (filled with two different
person object values) and localization. The
attributes that are not filled are not shown in the
listing. Attribute values may be either atomic values
(names X and Y or relation name in) or objects
(person, localization, stadium). The numbers
in parenthesis are attribute priorities, whose meaning
is described below. Every attribute is defined as
follows:

attrdef(Name,Type,Priority,Arity)

Type may be either atomic or a hierarchy class
(e.g. person), Arity may be either one or many,
depending on whether the attribute may have
multiple values. Each attribute is given a priority
value, defining the importance of this information in
the object.

Having received the parsing result the dialogue
manager performs the following operations:

 chooses the most probable semantic
interpretation (irrelevant in this example as
only one interpretation has been produced, see
3.6),

 updates the sender’s profile and session
information (see 3.5),

 checks if the received data may represent an
answer to one of the previously asked
questions (see 3.2),

 tries to merge the object with other objects in
the sender’s session (see 3.4),

 checks whether the reasoning module possesses
more information about this object (e.g. the
name and surname of a person with a given

pseudonym, or information that the supposed
pseudonym is in fact the person’s surname) ,

 decides whether the sender should be asked to
provide more data concerning the incoming
object.

As seen in the example above, all frame
attributes have priorities (with defined initial values
that can be changed online during the system’s
operation if necessary). To check whether a question
should be formulated and sent back to the human
agent, the dialogue manager calculates the highest
priority value of an empty frame attribute slot
(excluding the slots that have already been question
topics). In case of nested objects the priorities (with
values ranging from 0 to 1) are multiplied. In the
above example, if the frame person had an empty
slot surname with priority 0.8, the final priority
value of the slot would be 0.9*0.8=0.72. Finally
the dialogue manager checks if the maximum
priority value is higher than the compulsory attribute
threshold value. If so, it creates a question object
(marking the slot that is the topic of the question)
and passes it to the text generator, responsible also
for sending the information to the user.

Regardless of the final decision, the received
object is always sent to the reasoning module.

3.2 Answers and Questions

The exchange of questions and answers in this
dialogue model is asynchronous. The questions do
not need to be answered in the same order they have
been asked, and answering them is not compulsory.
The informer is allowed to introduce to the system
new data before attempting to answer a question.
One of the reasons for allowing this asynchronicity
was the original system’s channel of
communication, that is SMS messages. Early
experiments (Walkowska, 2009) proved that it often
happens that the informing agent receives a question
while typing an unrelated message. The most
commonly observed agent’s behaviour is to finish
typing the message, send it, and only then read the
received one (and eventually answer it).

Five types of question/answer pairs are possible
in the system:

 the user’s question for confirmation and the
system’s immediate answer (yes/no),

 the user’s question for value and the system’s
immediate answer (text generated from a list
of encountered values or information about
lack of data),

 the system’s yes/no question and the user’s
answer,

ICAART 2010 - 2nd International Conference on Agents and Artificial Intelligence

76

 the system’s value question and the user’s
answer,

 the system’s question without an answer.

3.2.1 User’s Value Questions

There is no question/answer pairing problem when
the question are asked by the agents. The parser
transforms the question to the very same form of
objects (frames) that normal sentences are
transformed, marking the sentence type as
interrogative and (with value questions) the attribute
that is the topic of the question. Let us consider the
following question example:

Gdzie jest X?
(Where is X?)

The understanding module creates the following
object:

question(obj28, [localization])
obj28:person

pseudonym(0.4)=X

[localization] is the path to the attribute that
is the topic of the question. The dialogue manager
fills the questions when it is possible (e.g. solving
anaphoric references as described in 3.3) and passes
them to the reasoning module. The reasoning
module translates the incoming object into a set of
queries allowing it to find all possible answers.
Simplifying a bit, the knowledge database is
searched for objects that have the same (or unifiable)
values in all attributes that the template (question)
object has, but that also have a defined value in the
attribute marked as the question topic. All such
objects (if any) are passed back to the dialogue
manager and the text generator.

3.2.2 User’s Confirmation Questions

Confirmation questions (Are there any fights in
sector A?) are very similar, but there is no
additional-filled-attribute constraint. All matching
objects are passed to the text generator. The answer
to such questions may either be no or yes. In the
latter case the textual representation of the
encountered objects is also sent to the asking agent.

3.2.3 System’s Value Questions

When the dialogue manager decides to ask a
question (as described in 3.1) it saves the
information in its memory. The stored data include:
the informer’s ID, the question object, the path to the
slot that is the topic of the question, the time of

asking the question, the number of messages
exchanged with the agent since asking the question.
the information whether the question is a yes/no
question, and the information whether the agent has
answered.

If there are unanswered questions in the dialogue
manager’s memory, the module checks all incoming
messages for the possibility of being answers. Each
received object is treated as potential answer for
which a question has to be found.

The dialogue manager obtains a list of all
unanswered questions that have been asked to the
given human agent. Depending on system settings it
may decide to reject the questions that have been
asked too recently (and in some channels of
communication, like SMS messages, it is not
possible to create an answer so quickly).

Next, the dialogue manager tests whether it is
possible to unify (see 3.4) the potential question and
answer pair. If it is possible, it checks (preferably
without performing the actual, costly unification,
only checking the required paths) if the result of
unification has a defined value in the attribute that is
the topic of the question. Questions that do not
satisfy this constraint are rejected.

If at this moment there are questions left, the
dialogue manager chooses the most recent question.
The question and answer objects are merged and the
question is marked as answered. The resulting object
is sent to the reasoning module.

If two similar objects have been passed at once
by the parser (resulting from parsing the same
sentence/message), and the first one turned out to be
an answer to a question, the dialogue manager
checks if both values may be merged into the
question object. Consider the following dialogue
example:

System: Jakie przedmioty posiada X?
(What objects does X possess?)

Agent: Czerwony plecak, nóż.
 (A red backpack, a knife).

The code below presents: the question object, the
two incoming potential-answer objects, the resulting
object in which the required [article] path is
filled with two object values.

question(obj100, [article])
obj100:person
pseudonym(0.4)=X

obj110:article
name(1)=plecak:1
colour(1)=obj120:colour

 name(0)=czerwony

A GENERAL DIALOGUE MANAGEMENT MODEL FOR DYNAMIC-DOMAIN EXPERT SYSTEMS WITH
NATURAL LANGUAGE INTERFACES

77

obj130:article
name(1)=nóż:1

obj100:person
pseudonym(0.4)=X
article(0.1)=obj130:article

 name(1)=nóż:1
article(0.1)=obj110:article

 name(1)=plecak:1
 colour(1)=obj120:colour
 name(0)=czerwony:1

There are cases in which the dictionary and ontology
used by the understanding module are not enough,
and the module has to let a simple text string in to
the system. A common case are proper-name
answers: answers with only the names of the
entities.

If the dialogue manager receives a proper-name
string, it checks whether it has asked for data that
can be answered in this way. If so, there are two
possibilities:

 it is enough to paste the string as the question
object’s attribute value,

 an object needs to be created (e.g. a person
object with a given pseudonym, surname etc.)
and this object has to be merged into the
question object.

When question and answer objects are merged,
the procedure described in 3.1 is applied.

3.2.4 System’s Confirmation Questions

The system asks confirmation questions only in one
case: when it encounters contradictory data and
wants the responsible agents to confirm or deny their
versions. However, there is a group of questions that
are not asked to confirm anything, but still the
answer to them is yes or no. The group consists of
binary questions, asked when the system needs to
fill a binary attribute (Does X have a beard?).

The method applied by the dialogue manager to
pair yes/no answers with their questions is very
simple: the ‘too recent’ questions (as described in
3.2.3) are rejected, and then the newest yes/no
question is chosen.

The method may seem error-prone, but corpus
studies (Walkowska, 2009) prove that the agents,
while trying to be as concise as possible, easily
recognize ‘dangerous’ portions of dialogue that can
lead to ambiguities. If for some reason the system
asked two yes/no questions very close to each other
it is probable that the agent will answer ‘Yes, X has
a beard.’ or ‘X has a beard.’ instead of just ‘Yes’.

3.2.5 Unanswered System’s Questions

It may happen, and it is allowed in the dialoguing
system’s model, that human agents do not answer
some of the questions they have been asked. They
may be unaware of the fact of asking the question
(problems with communication, noise, too many
messages) or they may decide not to answer it,
especially when they do not know the answer and
sending a message is too costly.

The dialogue manager does not wait infinitely
for an answer. After a set amount of time it assumes
that the user is not going to answer a question. The
question is then marked as answered, even though
the corresponding object attribute remains empty.
The procedure described in 3.1 is applied to check if
there are more empty attribute slots worth asking
for.

The dialogue manager executes the same
behaviour after receiving an I don’t know answer.

The mechanism applied when the unanswered
question concerns a contradiction in the knowledge
database is described in 3.6.

3.3 Anaphora

Anaphoric references are present in many languages,
but the methods of detecting them differ. It is
assumed here that the understanding module,
working on sentence level, is able to properly
recognize the intra-sentence references, as in:

Mężczyzna, który wszedł do sektora 5, ma wąsy.
(The man that entered sector 5 has a moustache.)

It is the understanding module’s task to carry on the
information that the man in sector 5 and the man
with the moustache are in fact the same person.

The presence of inter-sentence backward
anaphoric references can be detected by observing:
articles (in the languages in which they exist, Polish
not being one of them), pronouns, sentence subject
omissions, cue words and others (Dunin-Keplicz,
1983, Walkowska, 2009). In this model, the parser is
responsible for informing the dialogue manager that
there is such reference, and the dialogue manager
has to find the target. Let us investigate the
following basic example of a message received from
an agent:

Uderzył X.
[He] hit X.

Here is the corresponding object:
obj192:battery
patient(0.9)=obj192:person

ICAART 2010 - 2nd International Conference on Agents and Artificial Intelligence

78

 pseudonym(0.4)=X
performer(1)=obj191:person(ref)

The dialogue manager has to decide which one
of the objects in the given agent’s session is
referenced as obj191. To do so, it retrieves all
objects from the agent’s session and rates them,
awarding points for: time proximity, frame class
concordance (classes close in the hierarchy), nesting
concordance (in the example, a session person
object will be given more points if it is also nested in
a battery object), role concordance
(active/passive, in the above case it is performer
versus patient), and content concordance (if, what
seems to happen rarely, the reference object contains
data). Finally the object with the highest score is
chosen. If there is more than one object that has been
awarded the maximum score, the most recently
modified (newest) object is chosen. It is merged with
the reference object. If no similar objects are found
in the session, the dialogue manager ignores the
reference.

3.4 Data Unification

The unification and merging of data is not a
dialoguing feature, but as the word unifiable appears
often in this paper, a short explanation is in order.

Apart from some special-case rules, the idea is as
follows. Two frame objects are unifiable if:

 they are objects of the same class, or one of the
classes is a specialization of the other
(person/policeman),

 the one-value attributes, if filled, contain
identical or unifiable (for nested objects) data,

 the multiple-value attributes do not contain
implicitly opposite values (e.g. the same
value, but negated in one of the objects).

It is important to note that the word ‘identical’ in

the above list has been used for clarity reasons. In
fact, a more advanced checking mechanism is
applied even for atomic values. In particular, the
ontology is consulted for values being ontology
items in order to detect synonyms or a
hyponym/hypernym pair.

3.5 Informer Profiles

A number of users are allowed to contact the system
to feed or retrieve data. The system does not need to
know the list of agents in advance, but it has to be
able to identify them (e.g. by means of their phone
numbers, IP addresses – depending on the channel of
communication) in order to manage the dialogues

properly. The system may treat the users equally, but
it does not have to. Some user data may be
introduced in advance, for example if many users are
allowed to ask for information, but only a smaller
subgroup can introduce data. The system can also
collect online statistics: the number of sent
messages, the percentage of answered question, the
average answer delay time, and so on, and use them
to better adapt the dialogue to each agent.

3.6 Contradictions

One of the consequences of allowing multiple users
to introduce information to the system is the
possibility of data contradictions. There are two
types of such contradictions: contradictions caused
by one agent and contradictions in data introduced
be two different people. In the former case, the
system simply overwrites the data with newer
values, assuming the situation has changed or the
agent corrected themselves. In the latter, the system
(the reasoning module, as the dialogue manager only
works on one-dialogue levels) performs a more
complicated action.

When the reasoning module detects a
contradiction in data coming from two different
agents (e.g. the differences in the physical
description of a person), it temporarily sets the
newest data as valid. Then it prepares two version of
the information and sends it (through the dialogue
manager and text generator) to the agents
responsible for the clash. They are presented both
versions and are asked to confirm whether they are
still convinced of theirs. The table below presents
the possible scenarios. New is the answer of the
agent responsible for the newer (current) version,
Old is the other agent’s answer. It is the task of the
dialogue manager to properly assign the yes/no
answer to the contradiction question and pass it on to
the reasoning module, but it is the latter that
performs the operations on contradictory data.

Table 1: Possible contradiction scenarios.

Old New System’s reaction
-/no -/no/yes Leave the current (new) version.
yes -/no Restore the previous version.
yes yes Set the version of the agent with

higher credibility. If credibility
values are equal, or are unknown,
keep the new version.

An alternative solution for the situation with two
yes (I am sure) answers is to un-merge the objects
coming from the two agents, assuming they are not
really talking about the same entity.

A GENERAL DIALOGUE MANAGEMENT MODEL FOR DYNAMIC-DOMAIN EXPERT SYSTEMS WITH
NATURAL LANGUAGE INTERFACES

79

The credibility value mentioned in the table may
be a part of the informer profile. It may be provided
at system’s initialization and/or calculated online
(e.g. lowered every time the agent’s data causes an
unresolved contradiction).

3.7 Time Management

As the paper describes a dynamic expert system,
some decisions about time management have to be
explained. The knowledge database has to contains
facts about the current situation. Two questions need
to be posed here:

 Should the system also ‘remember’ information
that has become obsolete?

 If nobody informs about the expiration of some
data, when should the system conclude they
are obsolete?

The decision about remembering obsolete
information depends on the system’s definition. If it
has to answer questions about facts from the past,
the information has to be kept. In this case the older
objects (frames) can be transferred to a different data
pool or simply be marked as expired. Old attribute
values may be kept as values with negative certainty
together with the time they expired or were
overwritten. If this solution is applied (as in Polint-
112-SMS), the expired values should not be taken
into consideration when counting the number of
values of an attribute (so an attribute whose
definition only allows one value may have 0 or 1
normal value and an unlimited number of expired
values).

If there are types of data (frames) that can expire
in a dynamic situation, it is the reasoning module’s
task to make the correct decisions. It may apply
rules according to which a frame of a given type
(e.g. a frame representing a dynamic event, like a
fight) is automatically expired by an internal thread
when nobody has mentioned it for a given amount of
time. It might also decide to ask the agents
responsible for introducing the possibly-expired data
for confirmation.

3.8 Desambiguation

There are situations in which the understanding
module cannot decide on the proper semantic
interpretation of a sentence. In some cases the
semantic requirements of a frame are not enough to
choose the correct meaning of a word. The module
then proposes more than one interpretation to the
dialogue manager. Depending on the importance of
disambiguation (in a security expert system setting:

both possible meanings are insignificant articles, or
one of the meanings is a dangerous weapon) the
dialogue manager may decide to ask for clarification
(e.g. presenting other words from the same WordNet
synset) or to wait for more information.

Another ambiguous case is that of short answers
to system’s questions. Short, proper-name answers
are described in 3.2.3. However, it is not always
possible for the parser to decide that the string it has
received at its input is a proper-name answer. Some
proper names, like nicknames and pseudonyms,
often consist of common nouns or adjectives. The
understanding module, operating at the level of one
sentence, is unable to reach a conclusion when it is
presented a one-word string that is present in the
dictionary or ontology. Because of this, it creates
two (or possibly more) possible interpretations. The
dialogue manager chooses the correct one, checking
the dialogue history (Does this information make
sense when combined with other data?) and the
questions asked to the given informer (Can the
proper-name interpretation be an answer to one of
the questions?).

4 EVALUATION

Polint-112-SMS, the expert system that originated
this research, is functional and has been subjected to
different series of tests and field experiments. All
data exchanges between the users and the system
have been saved and analysed, and additionally the
users (including security professionals) have been
asked to assess their experience of working with the
system.

The system has been generally described as
‘useful’, but two interesting conclusions have been
drawn after the analysis of the dialogues and user
surveys. The first one is that there are some
situations that change so rapidly that the users are
not able to keep describing them. If, however, they
do send the information, even after an event
occurred, the system may still be used to recreate the
event sequence. The other one is that the system
must not ask too many questions, because they may
become annoying for a user who cannot answer
them all on time. The implementation conclusion is
as follows: the frame attribute priorities have to be
chosen carefully not to flood the agent with too
many questions. Limits might be introduced on a
number of questions that the system is allowed to
send in a given amount of time. In some cases it
might be advisable for the system to risk slight

ICAART 2010 - 2nd International Conference on Agents and Artificial Intelligence

80

errors in processing but keep from asking for
confirmation or disambiguation of facts.

ACKNOWLEDGEMENTS

This work has been supported by Polish Ministry of
Science and Higher Education, grant R00 028 02
(within the Polish Platform for Homeland Security).

Polint-112-SMS design and implementation
team is comprised of Zygmunt Vetulani (chief),
Piotr Kubacki, Marek Kubis, Jacek Marciniak,
Tomasz Obrębski, Jędrzej Osiński, Justyna
Walkowska, and Krzysztof Witalewski.

REFERENCES

Baker, C. F., Fillmore, C. J., Lowe, J.B., 1998. The
Berkeley FrameNet Project. In Proceedings of
COLING-ACL’98 (pp. 86-90), Montréal: Association
for Computational Linguistics.

Blaylock, N., Allen, J., 2005. A Collaborative Problem-
Solving Model of Dialogue. In Dybkjær, L., Minker,
W. (Eds.) Proceedings of the SIGdial Workshop on
Discourse and Dialog (pp. 200-211), Lisbon:
Association for Computational Linguistics.

Dunin-Keplicz, B., 1983. Towards better understanding of
anaphora. In Proceedings of 1st Conference of the
European Chapter of ACL, E-ACL’83 (pp. 139-143),
Pisa: Association for Computational Linguistics.

Fairon, C., Paumier, S., 2006. A translated corpus of
30,000 French SMS. In Proceedings of LREC 2006,
Genova.

Fellbaum, C. D., 1998. WordNet: An Electronic Lexical
Database. MIT Press, Cambridge, MA.

Fillmore, C.J., 1982. Frame semantics. In Linguistics in
the Morning Calm (pp. 111-137). Seoul, Hanshin
Publishing Co.

Grosz, B. J., Sidner, C. L., 1986. Attention, Intentions and
the Structure of Discourse. In Computational
Linguistics, 12(3), 175-204.

Milward, D., Beveridge, M., 2003. Ontology-based
dialogue systems. In 3rd Workshop on Knowledge and
Reasoning in Practical Dialogue Systems IJCAI03
(pp. 9-18), Cambridge, MA: MIT Press.

Minker, W., Bennacef, S., 2004. Speech and Human-
Machine Dialogue. The Kluwer International Series in
Engineering and Computer Science. Massachusetts:
Kluwer Academic Publishers.

 Vetulani, Z., 2002. Question answering system for Polish
POLINT and its language resources. In Proceedings of
the Question Answering - Strategy and Resources
Workshop, LREC 2002, Las Palmas de Gran Canaria.

Vetulani, Z., Marciniak, J., 2000. Corpus Based
Methodology in the Study and Design of Systems with
Emulated Linguistic Competence. In Christodoulakis,

D. N. (Ed.), Natural Language Processing - NLP2000,
Second International Conference Proceedings (pp.
346-357), Lecture Notes in Artificial Intelligence
1835. Springer Verlag.

Vetulani, Z., Marciniak, J., Konieczka, P., Walkowska, J.,
2008. An SMS-based System Architecture (Logical
Model) To Support Management of Information
Exchange in Emergency Situations. POLINT-112-
SMS project. In Intelligent Information Processing IV.
5th IFIP International Conference on Intelligent
Information Processing (pp. 240-253). Springer
Boston.

Vossen, P. (ed.), 2002. EuroWordNet General Document,
Version 3 (Final) , University of Amsterdam.

Walkowska, J. 2009., Gathering and Analysis of a Corpus
of Polish SMS Dialogues. In Kłopotek, M. A.,
Przepiórkowski, A., Wierzchoń, S. T., Trojanowski,
K. (Eds.), Challenging Problems of Science. Computer
Science. Recent Advances in Intelligent Information
Systems (pp. 145-157). Academic Publishing House
EXIT, Warsaw.

A GENERAL DIALOGUE MANAGEMENT MODEL FOR DYNAMIC-DOMAIN EXPERT SYSTEMS WITH
NATURAL LANGUAGE INTERFACES

81

