
INTEGRATING REASONING ABOUT ACTIONS AND BAYESIAN
NETWORKS

Yves Martin1 and Michael Thielscher2

1 SAP AG, SAP Research CEC Dresden, Chemnitzer Strasse 48, 01187 Dresden, Germany
2 Artifical Intelligence Institute, Technische Universität Dresden, 01062 Dresden, Germany

Keywords: Knowledge representation and reasoning.

Abstract: According to the paradigm of Cognitive Robotics (Reiter, 2001a), intelligent, autonomous agents interacting
with an incompletely known world need to reason logically about the effects of their actions and sensor infor-
mation they acquire over time. In realistic settings, both the effect of actions and sensor data are subject to
errors. A cognitive agent can cope with these uncertainties by maintaining probabilistic beliefs about the state
of world. In this paper, we show a formalism to represent probabilistic beliefs about states of the world and
how these beliefs change in the course of actions. Additionally, we propose an extension to a logic program-
ming framework, the agent programming language FLUX, to actually infer this probabilistic knowledge for
agents. Using associated Bayesian networks allows the agents to maintain a single and compact probabilistic
knowledge state throughout the execution of an action sequence.

1 INTRODUCTION

One of the most challenging and promising goals of
Artificial Intelligence research is the design of au-
tonomous agents, including robots, that solve com-
plex tasks in a dynamic world. Achieving a high de-
gree of autonomy in partially known environments
requires the high-level cognitive capability of repre-
sentation and reasoning. In realistic settings, both
the effectors and the sensors of agents will be sub-
ject to uncertainty. The agent can only hold a degree
of belief about the actual state of the world. Subse-
quent measurements may then help to decrease the
degree of uncertainty. In this paper, we introduce a
representational formalism —based on thefluent cal-
culus (Thielscher, 1999)— and a computational ap-
proach to represent and compute the inferences re-
quired to update an agent’s beliefs about the world
in accordance with the effects of the various actions it
performs.

In order to represent the probability of possible
states of an agent’s environment in fluent calculus, in
this paper we generalize the axiomatization of knowl-
edge of an agent (Thielscher, 2000) and its beliefs (Jin
and Thielscher, 2004), respectively, by introducing a
new function PState. This function assigns a prob-
ability to each state. This is accompanied by a tran-
sition probability, which denotes the likelihood of a

new state relative to a specific action performed in the
preceding state. The probabilistic update from one
state to the next can then be defined just like stan-
dard Bayesian update. While this approach is similar
to (Bacchus et al., 1999), our notion of state probabil-
ity allows for evaluating the likelihood of state prop-
erties directly in the updated state.

To actually infer new knowledge and reason about
the execution of actions, we use logic programming
in the agent programming language FLUX, which
is based on our representation formalism, the fluent
calculus. In FLUX, atomic properties of states can
likewise be evaluated directly wrt. a so-called FLUX
knowledge state. This (incomplete) state represents
the set of all states considered possible by the agent.
From a computational perspective, this is of course
the only practical way as it avoids literally computing
with every possible state (Thielscher, 2005a). In this
paper, we extend FLUX so as to represent the afore-
mentioned notion of state probability without losing
the merits of having to cope with only one knowl-
edge state rather than all possible states. To achieve
this, we associate a Bayesian network with such a
knowledge state. The relationships of the nodes in
such a network denote probabilistic (causal) links be-
tween fluents introduced through the execution of ac-
tions. Using the contextual variable elimination al-
gorithm (Poole and Zhang, 2003), we can infer and

298
Martin Y. and Thielscher M. (2010).
INTEGRATING REASONING ABOUT ACTIONS AND BAYESIAN NETWORKS.
In Proceedings of the 2nd International Conference on Agents and Artificial Intelligence - Artificial Intelligence, pages 298-304
DOI: 10.5220/0002724602980304
Copyright c© SciTePress

update the probabilities of properties after the execu-
tion of (non-)sensing actions. The associated network
is updated, too, in order to maintain a compact repre-
sentation which allows for efficient inferences. In this
way, we only have to encode the (relatively few, in
a modular domain) local dependencies between prop-
erties of the state in the Bayesian network instead of
representing the global state space. This contrasts our
method to approaches in (Reiter, 2001a; Grosskreutz
and Lakemeyer, 2000), where each possible state is
represented by a different sequence of actions, and
searching through the resulting state space can lead
to intolerable computation times.

The rest of the paper is organized as follows: In
the next section, we briefly review the fluent calculus
and extend it with the notions of state probability and
probabilistic state update axioms. In Section 3, we
give a brief introduction to FLUX and then show how
to associate a Bayesian network to a FLUX knowl-
edge state and to efficiently infer the updates. A sum-
mary and discussion on related and future work con-
cludes the paper in Section 4.

2 REPRESENTING
PROBABILISTIC KNOWLEDGE
IN THE FLUENT CALCULUS

2.1 The Basic Fluent Calculus

Fluent calculus uses atomic properties of states, called
fluents, to represent the internal structure of the do-
main. Fluents are represented as terms of sortFLUENT

and, semantically speaking, a state is the collection
of all fluents that hold in a situation. Formally, every
term of sortFLUENT is also of sortSTATE, and if z1,z2

are states, then so isz1◦z2 . A fluent is defined to hold
in a state just in case it is contained in it:

Holds(f : FLUENT,z : STATE)
def
= (∃z′)z= f ◦z′

The foundational axioms of the fluent calculus (see,
e.g., (Thielscher, 2005b)) ensure that, essentially,
states are interpreted as non-nested sets of fluents.
The termState(s : SIT) denotes the state at a situation,
where a situation is the sequence of actions that has
been performed by the agent. The special constant
S0 denotes the initial situation and the constructor
Do(a,s) then maps an actiona and a situations to the
situation after the performance of the action.State(s :
SIT) allows to define the expressionHolds(f ,s : SIT)

as an abbreviation forHolds(f ,State(s)) . The basic
fluent calculus thus allows to represent incomplete
knowledge of a situation by means of standard first-
order logic.

The use of states in the fluent calculus allow the
fundamental frame problem to be solved on the basis
of an axiomatic characterization of two functions,−

and +, for removal and addition of sub-states. Due to
lack of space, we omit the details and just mention the
following result of how the fundamental frame prob-
lem is solved in the basic fluent calculus (Thielscher,
2005b):

Proposition 1.Let z2 = z1−z−+z+ , then the foundational
axioms of the fluent calculus entail1

Holds(f ,z2) ≡ Holds(f ,z+)∨
[Holds(f ,z1)∧¬Holds(f ,z−)]

So-called state update axioms define the effects of
doing an actiona in situation s by specifying the
difference between the state of the successor situa-
tion Do(a,s) and the state of the preceding situations
and allow to infer from an incomplete specification
what follows of a resulting situation.

2.2 State Probability

In (Thielscher, 2000), the basic fluent calculus
has been extended by an explicit representation of
both the knowledge of an agent and the effect of
knowledge-producing actions. A different extension
has been developed in (Jin and Thielscher, 2004) for
representing beliefs of an agent. In this paper, we
generalize these two approaches by a representation
of the probability (any real-valued number from the
interval [0,1]) of a state in a situation. For this we
introduce the function

PState: SIT× STATE 7→ [0,1]

A foundational domain constraint stipulates that the
state probabilities add up to 1 in every situation:2

∑
z

PState(s,z) = 1

As an example, consider a domain with the only flu-
ents Fragile(x) and Broken(x) where x ∈ {Vase,Box}
and fluentsFragile(x) and Broken(x) shall denote the
property of an object to be fragile and broken, respec-
tively, along with the following axiomatization of the
probability distribution at the initial situationS0 :

(∃x)Holds(Broken(x),z) ⊃ PState(S0,z) = 0
Holds(Fragile(Vase),z)∧¬(∃x)Holds(Broken(x),z) ⊃

PState(S0,z) = 0.4
(1)

1Throughout the paper, free variables are assumed to be
universally quantified.

2For the sake of simplicity, we assume discrete probabil-
ity distributions, which allows to sum over possible states;
otherwise, an integral must be used.

INTEGRATING REASONING ABOUT ACTIONS AND BAYESIAN NETWORKS

299

Based on the representation of a probability distribu-
tion for a situations, we can define the likelihood of
a fluent f to hold in s as follows:3

Bel(f ,s)
def
= ∑

{z|Holds(f ,z)}

PState(s,z)

For example, axioms (1) imply
Bel(Broken(Vase),S0) = 0 and Bel(Fragile(Vase),S0) =

0.8.4 The exact degree of belief inFragile(Box) is
unknown, but it follows from the axiomatization that
0.4≤ Bel(Fragile(Box),S0) ≤ 0.6.5 Macro Bel(φ,s) can
be straightforwardly extended to the definition of
the likelihood of more complex fluent formulasφ to
hold in a situations.

2.3 Probabilistic State Update Axioms

The solution to the frame problem can be extended
to the fluent calculus with probabilities if the Markov
assumption holds, that is, the (possibly noisy) effects
of an action are independent of previous actions. The
general probabilistic state update axiom is as follows:

PState(Do(a,s),z′) = ∑
z

PState(s,z) ·P(z,a,z′)

whereP(z,a,z′) is the probability that executinga in
state z results in statez′ . The state transition prob-
ability does not need to be specified for every single
state, instead a succinct, factorized representation is
sufficient. In order to facilitate a mapping to FLUX
later on, we introduce the functionCase(s,z′) in the
specification of probabilistic effects. Each different
“case” of an actionA(~x) executed in situations will
be assigned a different number. A general effect spec-
ification for a noisy actionA(~x) is of the form,

(∃~y1)
(Φ1(z) ⊃ (z′ = z−z−1 +z+

1 ⊃
P(z,a,z′) = p1∧Case(s,z′) = 1)∧ . . .∧
(z′ = z−z−k +z+

k ⊃
P(z,a,z′) = pk ∧Case(s,z′) = k))

∧ . . .∧
(∃~yn, j) (Φn(z) ⊃ . . .

3For the possibility of an infinite number of possible
states the summations can be defined using a second-order
formula. For the definition, a fluent calculus axiomatization
with axiom schemata is used in order to have only countable
many infinite states.

4To see why, note that with the additional fluent
Fragile(Box) there are four states with probability greater
zero and exactly two of them satisfy the condition of the
second implication in (1). Our approach would also allow
for the direct specification ofBel(Fragile(Vase),S0) = 0.8
instead of the second implication in (1). Together with the
first implication in (1) this specification would imply the
same conclusions regarding the belief of fluentFragile .

5This can be seen from the fact that there is a state
with probability 0.4 in whichFragile(Box) does not hold,
and also a state with probability 0.4 in whichFragile(Box)
does hold.

where Φi(z) is a state formula inz with free vari-
ables amongz,~x,~yi ; and p1, . . . , pk are probability
values. We require that the conditionsΦi(z) are ex-
haustive and mutually exclusive for each actionA(~x) .
From our foundational axiom it follows additionally
that within each condition the probabilitiespi sum to
1. As an example, consider the following effect spec-
ification for a noisy variant of aDrop action:

[Holds(Fragile(x),z) ⊃
(z′ = z−Fragile(x)+Broken(x) ⊃

P(z,Drop(x),z′) = 0.9∧Case(s,z′) = 1)
∧(z′ = z⊃ P(z′,Drop(x),z′) = 0.1∧Case(s,z′) = 2)]

∧
[¬Holds(Fragile(x),z) ⊃
(z′ = z⊃ P(z′,Drop(x),z′) = 1.0∧Case(s,z′) = 3)]

Put in words, if x is fragile, then it will break with
a probability of 0.9, otherwise the state, or more pre-
cisely the probability distribution, remains the same.
Applied to the axiomatization of the initial probabil-
ity distribution specified in (1), the probabilistic state
update axioms entails, withS1 = Do(Drop(Vase),S0) ,6

¬Holds(Fragile(Vase),z′)∧
[Holds(Broken(x),z′) ≡ x = Vase]
⊃ PState(S1,z′) = 0.36

Since all other states containingBroken(Vase) have
probability 0, and because there are two states satis-
fying the condition of the implication above, it fol-
lows that Bel(Broken(Vase),S1) = 0.72. Due to space
limitations, we omit the other probabilities.

The effect of (possibly noisy) sensing actions is
represented in the probabilistic fluent calculus as stan-
dard Bayesian update (the details have to be omitted).

3 INFERRING PROBABILISTIC
KNOWLEDGE IN FLUX

Our logical specification presented above exhibits
nice properties, like e.g., the factorized representa-
tion. We now describe our computational approach,
where we keep these advantages and are able to in-
fer the result of executing action sequences always
using only a single and compact probabilistic knowl-
edge state.

3.1 The Basic Fluent Calculus Executor

The fluent calculus executor (FLUX) is an agent pro-
gramming language which is formally grounded in

6To verify the resulting probability values, the reader
may calculate the updated probability for each of the four
possible states in situationS0 in which no instance of
Broken(x) holds.

ICAART 2010 - 2nd International Conference on Agents and Artificial Intelligence

300

the theory of the fluent calculus and has been for-
mulated as Constraint Logic Program (for details see
(Thielscher, 2005a)). The incomplete knowledge that
an agent has of the state of its environment, is encoded
in FLUX by open lists (i.e., lists with a variable tail)
of fluents. These lists are accompanied by constraints
for negated or disjunctive state knowledge, as well as
for variable range restrictions.

Just like in the fluent calculus, the effects of ac-
tions are encoded as state update axioms. For this
purpose, the auxiliary predicateupdate(Z1,P,N,Z2)
has been defined in FLUX, whose semantics is given
by the fluent calculus update equationZ2= (Z1−N)+

P . On this basis, the agent programmer can eas-
ily implement the individual, domain-dependent up-
date axioms by clauses which define the predicate
state_update(Z1,A,Z2,S), where the last argumentS
denotes the returned sensing value. This parameter
can be empty for non-sensing actions.

The foundational predicates for knowledge in
FLUX have been carefully designed in such a way
that every condition can be immediately evaluated in
the current state while allowing for efficient constraint
solving without the need to represent every possible
state in FLUX. Instead, one knowledge state suffices
(Thielscher, 2005a).

3.2 Adding Probability to FLUX

Existing FLUX constraints are not sufficient to de-
fine arbitrary probabilistic dependencies among flu-
ents. In order to encode both the probability of state
properties to hold as in Section 2.2 and probabilistic
state updates as in Section 2.3, probabilistic (causal)
relations between fluents must be contained in the
encoding of the knowledge of an agent. To achieve
this while retaining the computational advantages of
knowledge states in FLUX, we associate a Bayesian
network, which has possibly disconnected subgraphs,
to such a state and define a FLUX probabilistic state
as:

Definition 1. A FLUX probabilistic statepz is a list

[f1 : p1, . . . , fn : pn|z1]

of pairwise different fluents(n ≥ 0) , each with its
corresponding probability, along with a Bayesian net-
work associated toz1 . This network represent condi-
tional probabilities between the fluents. �

Bayesian networks are an efficient way to represent
(conditional) independence between variables (Pearl,
1988). Since we only have to encode the (relatively
few, in a modular domain) local dependencies be-
tween fluents in a FLUX probabilistic state, we can
avoid the need for an explicit representation of the

global state space. To denote the conditional proba-
bility tables (CPTs) in our network, we actually use
decision trees in our implementation. Decision trees
can often avoid the local exponential representation
of CPTs. For the moment, we make the following re-
strictions for the encoding in FLUX, which we would
like to lift in the future:7

1. We are only using ground fluents in the networks.
To arrive at ground fluents from a given domain
description, we ground out all variables.8

2. We assume only finitely many possible states. For
continuous values we would employ discretiza-
tion.

Given the above restrictions and a situation, we
can give a mappingτ from the full joint probability
distribution over possible states in the fluent calculus
to a FLUX probabilistic state: Given a situations, the
function π(z) : STATE → [0,1] with (∀z)(PState(s,z) =

π(z)) defines an full joint probability over all possi-
ble statesz in s. The probability is defined over
the literals contained in the possible state:π(z) =

P(l1∧ . . .∧ ln) with l i = fi if Holds(fi ,z) and l i =¬ fi if
¬Holds(fi ,z) . By the product rule, the functionπ can
also be written as:π(z) = P(l1|l2∧ . . .∧ ln) · . . .P(l i |l i+1∧

. . .∧ ln) . . . ·P(ln) . From a given functionπ(z) we can
induce a FLUX probabilistic state by letting,9

τ(π(z)) = [f1 : p1, . . . , fn : pn|z1]

where everypi = ∑{z|Holds(fi ,z)} π(z) , the conditional
probabilitiesP(l1|l2∧ . . .∧ ln), . . . ,P(l i |l i+1∧ . . .∧ ln), . . .
are represented by the network associated toz1 , and
the marginal probability of literalP(l i) = P(pi) if l i
is true and otherwiseP(l i) = 1−P(pi) . The literals
in π(z) are ordered in an alphabetic order before the
mapping to avoid cycles in the network.

To answer queries to a Bayesian network, we use
a variant of the well-known variable elimination (VE)
algorithm, the contextual VE algorithm (Poole and
Zhang, 2003). This algorithm works with so-called
confactors which can be seen as branches of a deci-
sion tree. Due to lack of space, we have to omit the
details here.

7For the sake of easier exposition in this paper, we as-
sume complete information about the probabilities of the
possible states. We can handle incompletely specified prob-
abilistic state knowledge using intervals.

8In the fluent calculus axiomatization, we use an appro-
priate domain closure axiom and restrict the number of ob-
jects to finitely many.

9It is also possible to give a mappingτ−1 .

INTEGRATING REASONING ABOUT ACTIONS AND BAYESIAN NETWORKS

301

3.3 Probabilistic State Update in FLUX

As already noted in (Boutillier et al., 1999), a
Bayesian net representation is equivalent in expres-
sive power to a general stationary transition matrix
model. We use so-called two-stage Bayesian net-
works (2TBN) for the representation of our actions in
FLUX, where there are pre-action variables and cor-
responding post-action variables. Directed arcs be-
tween those types of variables indicate probabilistic
dependencies. Every 2TBN has a natural interpreta-
tion as a stationary Markov chain, where the condi-
tional distributions in the network are state-transition
probabilities and the marginal distributions are initial
state distributions. Furthermore, if a network repre-
senting an action contains a case node to distinguish
the individual conditional outcomes of an action as
defined in Section 2.3, it suffices to have a 2TBN
without any arcs between the post-action variables
(Boutillier et al., 1999).

State updates for non-sensing10 actions in FLUX
require updates of the 2TBN. The probabilistic effect
specifications in the fluent calculus (see Section 2.3)
contain all necessary information to construct in a
general way an equivalent 2TBN representation:

1. The probabilities of all the cases have to be in-
ferred and represented in a case node in the net-
work. These probabilities depend only on the con-
ditions Φi and can easily be represented by a de-
cision tree. The value is given by the state transi-
tion probabilitiesP(z,a,z′) .

2. The probability of every post-action variable now
only depend on the case and (possibly) on whether
its corresponding pre-action variable was true or
false. Once the case is known, this deterministic
effect can also be represented by a decision tree.

As an example, recall the noisy variant of the
Drop(x) action defined in Section 2.3, which, if in-
stantiated by{x/Vase} in situation S0 , gives rise to
the net depicted in Figure 1. The initial probabili-
ties for the fluentsBroken(Vase) and Fragile(Vase) are
given as in the example initial situationS0 . For this
example situation, the induced initial FLUX prob-
abilistic state does not have to contain any initial
Bayesian network as an independence between the
fluents is assumed. In general, there may be a network
with initial conditional probabilities between the flu-
ents.

Since we do forward reasoning for probabilistic
projection and for planning, the dependencies of the

10Sensing actions do not change the network structure,
they only update the likelihood of fluents according to stan-
dard Baysian update.

�
�

�

FV

�
�

�

BV

�
�

�

FV’

�
�

�

BV’

��
��

C

P(FV)
0.8

P(BV)
0.0

@
@

@@R

�
�

�
�	

A
A
AAU ?

FV
t f

1:0.9
2:0.1
3:0.0

1:0.0
2:0.0
3:1.0

R	
C
@

@R
��	 ?

BV
R	

BV
R	t f t f

1
2

3

1.0

1.0 0.01.0 0.0

C
@

@R
��	 ?

1
2

3

0.0
0.01.0

Figure 1: The nodes FV, BV and C stand, respectively, for
Fragile(Vase) , Broken(Vase) and Case. The primed nodes
are the post-action variables.

fluents in the old state (pre-action) can be ignored af-
ter the execution of an action. Only the causal rela-
tions among the fluents in the new state (post-action)
need to be kept. In this way, the associated network
is kept small for the sake of efficient inferencing. To
obtain the reduced network, we have to compute the
conditional probabilities between the fluents in the
new state. This can be achieved using our imple-
mented contextual variable elimination algorithm and
appropriate fluent nodes of the new state as evidence
variables. The computation is possible as long as cy-
cles are avoided in the construction of the new, re-
duced network. The resulting network contains only
fluents of the new state. Furthermore, we can infer all
marginal probabilities for the nodes in the new net-
work. As the reduced network and the updated belief
of the fluents represent the same information about
the new state, we can now dispose of the old, initial
network. The resulting FLUX probabilistic state in-
cluding the updated network now determines a func-
tion PState(Do(a,s),z) which corresponds exactly to
the result of applying the general probabilistic state
update axiom of the fluent calculus as defined in Sec-
tion 2.3. As we use the contextual VE algorithm on
a network with possibly disconnected subgraphs, our
algorithm can have exponential time and space com-
plexity in the size of the network in the worst case.
Here, the size of the network is defined as the num-
ber of decision trees. In practice, as we always reduce
the network after each action and each of our agent’s
actions only affect few fluents in our application do-
mains, our algorithm can compute the necessary in-
ferences efficiently.

We can now answer the example query from Sec-
tion 2.3 in FLUX (here presented in standard Prolog
notation):11

11For the sake of simplicity in this paper, we show only
the inferences for the objectVasehere and assume a degree
of belief for Fragile(Box) of 0.5.

ICAART 2010 - 2nd International Conference on Agents and Artificial Intelligence

302

�� ��FV’ �� ��BV’

P(FV’)
0.08 FV’

t f

0.0 0.783
@@R��	

XXXXXXXz

Figure 2: NodeFragile(Vase) has causal influence on flu-
ent Broken(Vase) .

?- state_update(Z0,drop(vase),Z1,[]).
Belief in Z1 of fragile(vase) is 0.08
Belief in Z1 of broken(vase) is 0.72

The computed answer shows the expected likelihood
of the fluents and associates the new, reduced network
depicted in Figure 2 to stateZ1 and disposes the net-
work in Figure 1. This answer represents the same
function PState(S1,z) as in the fluent calculus with
S1 = Do(Drop(Vase),S0) .

Suppose, for example, that now the action
Drop(Vase) were executed a second time, leading to
the situationS2 = Do(Drop(Vase,Do(Drop(Vase),S0))),
then we would use the network in Figure 2 to infer
the updated probabilities forState(S2) . In this way,
the network can be reduced after any further applica-
tion of this action, so that we always obtain a network
containing no more than two nodes.

Soundness of the FLUX Encoding

As a consequence of the mappings described in Sec-
tions 3.2 and 3.3, we have the following correctness
result.
Proposition 2. For an arbitrary situation s , let
(∀z)(PState(s,z) = π1(z)) and the induced FLUX
probabilistic state beτ(π1(z)) . Let [α1, . . . ,αn] be a
sequence of ground actions where for every actionαi we
have a corresponding 2TBN representation obtained as
described above. Let the FLUX probabilistic stateτ(π(z))
be the result of computing with FLUX the state updates of
α1 until αn starting in the initial stateτ(π1(z)) . Then
from the fluent calculus axiomatization it follows:

(∀z)(PState(s,z) = π1(z)) ⊃
(∀z)(PState(Do([α1, . . . ,αn],s),z) = π2(z))

Proof Sketch: The proof is by induction onn .
If n = 0, then τ(π1(z)) = τ(π2(z)) . As no action

is executed, from the fluent calculus axiomatization it
follows that π1(z) = π2(z) .

Suppose the claim holds forn−1 . We are given
a FLUX probabilistic state and have to infer the ef-
fects of actionan . It is easy to verify that we can
transform both the probabilistic state and the action
an in a multiset of confactors. The correct contextual
variable elimination algorithm of (Poole and Zhang,
2003) can be employed to infer the answer to arbitrary
queries about probabilistic dependencies between the
random variables.

We restrict our attention to the post-action vari-
ables in the multiset of confactors and apply the

contextual variable elimination algorithm to compute
their marginal probabilities and the conditional prob-
abilities between them. The computed conditional
probabilities are again represented in FLUX by con-
factors. Only the result of these computations is inte-
grated into the new FLUX probabilistic stateτ(π2(z)) .

The state update of actionan was correctly com-
puted in FLUX and together with the induction hy-
pothesis this implies the claim.

4 CONCLUSIONS

We have presented a formalism and a logic program-
ming approach for agents to represent and reason
with probabilistic knowledge. Our computational ap-
proach combines knowledge states with Bayesian net-
works and allows to do all inferences with a single
such state rather than an explicit encoding of the en-
tire space of all possible states. For each projected ac-
tion execution, we only have to update the degree of
belief for the fluents involved in this action and those
fluents connected to the former within the same sub-
graph of the network. As we have a small Bayesian
network, this can be computed efficiently. Addition-
ally, we update the network to keep it small. We can
also express, and reason with, incompletely specified
state probabilities.

Other logic programming approaches for agent
programming, e.g., (Reiter, 2001b; Shanahan and
Witkowski, 2000), lack an explicit notion of a state.
Knowledge of the current state is represented indi-
rectly via the initial conditions and the actions which
the agent has performed up to now. As a consequence,
the entire history of actions is needed when evaluat-
ing a probability of a property in an agent program.
Moreover, the entire state space of all the resulting
states has to be considered when inferring probabil-
ities in (Reiter, 2001a; Grosskreutz and Lakemeyer,
2000; Baier and Pinto, 2003) or assessing plans in
(Kushmerick et al., 1995), which easily leads to long
computation times even for small examples.

Alternative approaches to combine reasoning
about actions and probability include (Pearl, 2000;
Tran and Baral, 2004; Gardiol and Kaelbling, 2004),
but they either cannot deal with action sequences, or
stay entirely within propositional logic, or cannot ex-
press uncertainty over the state probability distribu-
tion. Moreover, none of these approaches has been
embedded in a general agent programming language
like FLUX.

Decision theoretic regression with 2TBN and in-
fluence diagrams based on such networks (Boutillier
et al., 1999) are also concerned with expressing tem-

INTEGRATING REASONING ABOUT ACTIONS AND BAYESIAN NETWORKS

303

poral probabilistic dependencies. However, there are
some important differences to our approach. Except
for a preliminary treatment in (Boutilier and Poole,
1996), all the literature concerns only fully observ-
able MDPs while our approach represents POMDPs.
There is no notion of a precondition of an action in
(Boutillier et al., 1999). In our approach, we can de-
fine states for which certain actions in a future plan-
ning extension should not even be considered for se-
lection. While we inherit the representational and in-
ferential solution to the frame problem from the solu-
tion in the standard fluent calculus, using only 2TBN
as in (Boutillier et al., 1999) one must explicitly as-
sert that fluents unaffected by a specific action persist
in value, although the representational frame problem
(but not the inferential one) can be solved by auto-
mated assertions (Boutilier and Goldszmidt, 1996).

Our approach should be extended in future work
to allow for planning under uncertainty. To construct
plans which achieve a specific condition with a prob-
ability above a threshold, we could apply conditional
planning as defined in (Thielscher, 2005b) or use it-
erative planning with loops in the sense of (Levesque,
2005). It would also be possible to give plan skele-
tons in FLUX similar to (Grosskreutz and Lakemeyer,
2000), which can drastically reduce planning time.
The verification that a plan satisfies a goal with some
probability threshold can then be inferred efficiently
with our approach.

For additional future work, we intend to investi-
gate to which extent we can avoid grounding a first-
order knowledge state as much as possible and use a
first oder algorithm to query our Bayesian networks
(de Salvo Braz et al., 2007).

REFERENCES

Bacchus, F., Halpern, J., and Levesque, H. (1999). Reason-
ing about noisy sensors and effectors in the situation
calculus.Artificial Intelligence, 111(1–2):171–208.

Baier, J. A. and Pinto, J. (2003). Planning under uncer-
tainty as Golog programs.J. Exp. Theor. Artif. Intell.,
15(4):383–405.

Boutilier, C. and Goldszmidt, M. (1996). The frame prob-
lem and Bayesian network action representations. In
Proceedings of the Canadian Conference on Artificial
Intelligence (CSCSI).

Boutilier, C. and Poole, D. (1996). Computing optimal poli-
cies for partially observable decision processes using
compact representations. InProceedings of the 13-th
National Conference on Artificial Intelligence (AAAI),
pages 1168–1175, Portland, Oregon, USA.

Boutillier, C., Dean, T., and Hanks, S. (1999). Decision-
Theoretic Planning: Structural Assumptions and

Computational Leverage.Journal of Artificial Intel-
ligence Research, 11:1–94.

de Salvo Braz, R., Amir, E., and Roth, D. (2007). Lifted
first-order probabilistic inference. In Getoor, L. and
Taskar, B., editors,Introduction to Statistical Rela-
tional Learning. MIT Press.

Gardiol, N. H. and Kaelbling, L. P. (2004). Envelope-based
planning in relational MDPs. InAdvances in Neural
Information Processing Systems 16 (NIPS-03), Van-
couver, CA.

Grosskreutz, H. and Lakemeyer, G. (2000). Turning high-
level plans into robot programs in uncertain domains.
In Proceedings of the European Conference on Artifi-
cial Intelligence (ECAI).

Jin, Y. and Thielscher, M. (2004). Representing beliefs in
the fluent calculus. InProceedings of the European
Conference on Artificial Intelligence (ECAI), pages
823–827, Valencia, Spain. IOS Press.

Kushmerick, N., Hanks, S., and Weld, D. S. (1995). An
algorithm for probabilistic planning.Artificial Intelli-
gence, 76(1-2):239–286.

Levesque, H. (2005). Planning with loops. InProceedings
of the International Joint Conference on Artificial In-
telligence (IJCAI), Edinburgh, Scotland.

Pearl, J. (1988).Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference. Morgan Kauf-
mann, San Mateo, CA.

Pearl, J. (2000).Causality: Models, Reasoning, and Infer-
ence. Cambridge University Press.

Poole, D. and Zhang, N. L. (2003). Exploiting contextual
independence in probabilistic inference.Journal of
Artificial Intelligence Research, 18:263–313.

Reiter, R. (2001a).Knowledge in Action. MIT Press.

Reiter, R. (2001b). On knowledge-based programming with
sensing in the situation calculus.ACM Transactions
on Computational Logic, 2(4):433–457.

Shanahan, M. and Witkowski, M. (2000). High-level robot
control through logic. InProceedings of the Inter-
national Workshop on Agent Theories Architectures
and Languages (ATAL), volume 1986 ofLNCS, pages
104–121, Boston, MA. Springer.

Thielscher, M. (1999). From situation calculus to fluent cal-
culus: State update axioms as a solution to the infer-
ential frame problem.Artificial Intelligence, 111(1–
2):277–299.

Thielscher, M. (2000). Representing the knowledge of a
robot. InProceedings of the International Conference
on Principles of Knowledge Representation and Rea-
soning (KR), pages 109–120, Breckenridge, CO. Mor-
gan Kaufmann.

Thielscher, M. (2005a). FLUX: A logic programming
method for reasoning agents.Theory and Practice of
Logic Programming, 5(4–5):533–565.

Thielscher, M. (2005b).Reasoning Robots: The Art and
Science of Programming Robotic Agents, volume 33
of Applied Logic Series. Kluwer.

Tran, N. and Baral, C. (2004). Encoding probabilistic causal
model in probabilistic action language. InProceed-
ings of the 19-th National Conference on Artificial In-
telligence (AAAI), pages 305–310.

ICAART 2010 - 2nd International Conference on Agents and Artificial Intelligence

304

