
DEVELOPING A FLEXIBLE ELECTRONIC PATIENT RECORD AS
A WEB OF ACTIVE DOCUMENTS

Federico Cabitza and Giovanni Zorzato
Università degli Studi di Milano-Bicocca, Viale Sarca 336, Milan, Italy

Keywords: Active documents, Webs of active documents, Electronic patient record, Didgets.

Abstract: In this paper, we discuss the architecture of WOAD, a design-oriented framework that we proposed to enact a
bottom-up and document-centered approach to the development of Electronic Patient Records. We provide the
essential elements of WOAD: the concept of Active Document, Didget, Template and Mechanism. Then we
summarize the observational studies that inspired its development and that gave the preliminary user feedback
for its validation by means of the deployment of ProDoc, a WOAD-compliant patient record. We then illustrate
the core implementation details of the WOAD architecture, as it has been deployed in ProDoc.

1 MOTIVATIONS AND
BACKGROUND

In the last five years, our research has focused on the
analysis of the Electronic Patient Records (EPR) used
in specific hospitals of our region and on the design
of innovative EPRs that could improve user experi-
ence, compliance to hospital and regional healthcare
policies, data quality and patient safety. To gain the
necessary knowledge on the EPRs used in the con-
sidered settings, and to get user feedback on what
needs these applications met (or failed to met), we un-
dertook approximately 150 hours of general observa-
tions, user shadowing and interviews with practition-
ers in five departments of three from the main hospi-
tals in Northern Italy. In this ethnographic work, we
could recognize most of the unintended shortcomings
of ICT reported by other important works (e.g., (Ash
et al., 2004; Campbell et al., 2006)), especially prob-
lems related to workflow inclusion in daily practice
and paper persistence. The former issue regarded al-
terations in work dynamics and ergonomic shortcom-
ings in EPR interfaces that we often saw contribut-
ing in eliciting bad emotions and frustration in prac-
titioners; the latter issue regarded the observation that
practitioners kept using a sort of parallel paper-based
record for utilitarian reasons, as original and informal
data entry that is compiled before the electronic coun-
terpart and as pocket-size and foldable proxy of the
screenshots of their EPR. In particular, some practi-

tioners we interviewed told us that the precise struc-
ture of their paper-based forms was often the outcome
of a long-lasting stratification of consolidated work
practices, agreements and compromises reached be-
tween clinicians and administrative staff, and local
conventions conceived for a more effective and less
time-consuming charting. Allegedly, two advantages
of traditional forms over electronic ones are lost with
the digitization of paper-based patient records: i) high
flexibility and easiness in customizing and modify-
ing the template of official paper-based forms; in fact,
these forms were usually prints of electronic docu-
ments that were created with regular word processors
and that, once intended modifications had been ac-
cepted by the hospital management, could be modi-
fied just in seconds; ii) high flexibility in document
use, i.e., in being free to use whatever document of
the record at need without being forced to follow any
predefined flow of work: in fact, new forms could be
created and adopted in daily practice with no strain
and without the need to upset usual practice, as could
likely happen, e.g., when new forms have to be filled
in either to gather new data for clinical research, to
comply with new accreditation standards, or new du-
ties about informed consent.

As first results of this long-term project, we con-
ceived the design-oriented framework, WOAD (Cab-
itza and Simone, 2009), and developed the first
WOAD-compliant application, ProDoc; this is a pro-
totypical documental application that we customized
for the hospital domain as a highly flexible EPR (Cab-

46
Cabitza F. and Zorzato G. (2010).
DEVELOPING A FLEXIBLE ELECTRONIC PATIENT RECORD AS A WEB OF ACTIVE DOCUMENTS.
In Proceedings of the Third International Conference on Health Informatics, pages 46-53
DOI: 10.5220/0002721500460053
Copyright c© SciTePress



Figure 1: The Panel Data of the ProDoc application system.
The prototype presented in (Cabitza et al. 2009b) supported
also PDFs to allow for rich visual annotation of documents.

itza et al., 2009b) to address the two requirements
above mentioned. In fact, ProDoc allows practition-
ers to build, customize and use a graphical interface
for data entry and retrieval that closely resembles the
look and feel of their usual paper-based artifacts so as
to mimic the typical interaction with paper forms (see
Figure 1). In fact, what in regular EPRs is usually a set
of masks to (and views from) the underlying DB, in
ProDoc it is a set of persistent documents and forms.
Therefore, ProDoc allows users to natively treat and
use data in the very terms of the documents they pro-
gressively compile. Moreover, ProDoc embeds user-
defined active process maps that allows users to get
access to any part of the documentation out of any
rigid workflow while being aware of the intended flow
of activities as it has been defined locally on the basis
of practitioners’ consensus.

In the next section, we summarize the essential el-
ements of WOAD that underlay the development of
ProDoc, i.e., the concept of Active Document, Web
of Active Documents and Mechanism. Then, in Sec-
tion 3 we discuss in more details the WOAD architec-
ture, as it has been deployed in ProDoc, and we illus-
trate a typical user interaction scenario using ProDoc
(see ). Conclusions summarize the main advantages
of the WOAD framework in the design of EPRs and
outline future lines of research.

2 WEBS OF ACTIVE
DOCUMENTS

WOAD is a design-oriented framework grounded on
the concept of active document (see Figure 2). Each
Active Document (AD) can be seen as composed
by a “passive” part, i.e., a content container with
a specific structure, and an “active” part, i.e., some
executable code that provides the passive part with

context-aware behaviors. In WOAD, the former part
includes the computable definition (i.e., the schema)
of modular and scalable data structures, which we call
didgets (from ‘documental widgets’); didgets can be
used and reused to build different document templates
(where only their topological arrangement changes)
that share the same groups of data for different pur-
poses and needs. On the other hand, the active part
of an AD is composed by a set of (one or more)
executable and modular constructs, which we called
mechanisms; mechanisms are specialized ’if-then’
statements defined over the didgets and their content
that can be executed by a WOAD-compliant appli-
cation (like ProDoc) in order to exhibit document-
centered behaviors according to their current data.
The seminal idea of an “active documental artifact”
was first proposed in (Divitini and Simone, 2000) to
refer to data structures capable of assuming an active
role in mediating information exchange and coordina-
tion among cooperative actors. The most notable re-
search on active documents is the Placeless Document
Project developed at PARC (Dourish et al., 2000).
Placeless documents are documents that are managed
according to their properties, i.e. sort of metadata that
both describe the document’s content and carry the
code to implement elementary functionalities of doc-
ument management (e.g., automatic backup, logging,
transmission). In the WOAD framework, we extend
this idea by considering any document and form that
practitioners are supposed to fill in and consult in their
daily practice as parts of an interconnected document
system, i.e., what we call a Web of Active Documents,
WoAD. WoADs can be highly customized in differ-
ent domains and application settings to exhibit active
behaviors that support users e.g., in keeping track of

Figure 2: Relationships between WOAD concepts through
an UML entity diagram.

DEVELOPING A FLEXIBLE ELECTRONIC PATIENT RECORD AS A WEB OF ACTIVE DOCUMENTS

47



the patient’s illness trajectory, improving the quality
of the information exchanged in shift handoffs and
patient handovers, enabling activity- and time-related
information retrieval and coordinating collaborative
tasks (as e.g., order handling). Accordingly in our
case study, we conceived of any single form, record or
document used to enter and retrieve clinical data from
the patient record (e.g., a therapy prescription sheet)
as a single AD that is endowed by local behaviors and
is bound to other ADs by means of reactive mecha-
nisms that characterize a specific WoAD. In what fol-
lows, we consider in some more details both the pas-
sive part of ADs (i.e., didgets and templates in Sec-
tion 2.1) and their active parts (i.e., mechanisms, in
Section 2.2).

2.1 Didgets and Templates

With reference to Figure 3, in WOAD, each document
is composed by: i) a set of didgets that are spatially ar-
ranged according to a specific document template (see
’Document Template’ in Figure 2); ii) sets of data i.e.,
the document content, that are associated with the did-
gets contained in the template (see ’Didget Content’
in Figure 2).

A didget is defined as a coherent group of form
elements, e.g., input fields, iconic elements, buttons,
that can be positioned in one or more documents of
a WoAD. These elements are gathered together at de-
sign time because they relate to either the same ab-
stract data type (e.g., the patient), the same work ac-
tivity (e.g., drug prescription), or even the same por-
tion of a paper-based artifact, e.g., a table in a record.

Each didget is defined in terms of i) a content
model (i.e., data types, constraints, ranges), ii) a lay-
out model (i.e., how it is displayed at the user in-
terface in default of other information) and iii) a set
of rendering functions, i.e., executable code that can
be interpreted by a client application (e.g., a web
browser) to change how the didget’s elements and
data are displayed. These models build up what we
call a didget schema (see Figure 2). Users can place
a didget (schema) in any position of a document tem-
plate and thus create a structure of that didget (see
Figure 3). A didget structure can be reused in any
other document of the same WoAD, so that it consti-
tutes a sort of distributed “entry point” to the same
set of data (i.e., the content of the same didget struc-
ture). When a user puts a didget structure in a cer-
tain position of a document template, she can specify
whether the associated group of elements must appear
only once in the document (and exactly there) or if
users can add more (didget) content (see Figure 2) in
that structure in tight succession (much like multiple

rows in a table) to allow for extemporaneous needs
for additional room for data that are not predictable
at document design time. For instance, a template of
the Anamnesis form can contain a didget to record the
examinations previously undertaken by the patient. If
the didget has been defined as “multiple”, this means
that if a physician needs to record more than one ex-
amination for a patient into an Anamnesis form doc-
ument, she can add how many rows (i.e., examina-
tions) she needs and all of them will be stored into
the didget. Didgets hold all the data that users feed
into them into a permanent memory, time-stamp these
data, allow to distinguish between (logically) elimi-
nated, provisional and consolidated data and display
these latter data in a last-in-first-out fashion: in this
way, users can get access to the whole history of data
imputation for any single didget.

Users can create the templates they need by means
of the AD Template Editor (ADTE). This is an edi-
tor intended to enable users to create document tem-
plates through a graphical interface by picking up spe-
cific didget schema from a palette of predefined ones
and placing them in the draft template in a what-you-
see-is-what-you-get manner. Didget schemas can be
domain-independent (e.g., regular text-boxes, check-
boxes, identification fields) or domain-dependent,
e.g., a group of data fields that is related to the iden-
tification of patients, or related to drug prescription,
like drug name, dosage, administration way and the
like. Domain-dependent didget schemas are usually
defined by business analysts in cooperation with ex-
pert users of the application field and made avail-
able to users by a standard palette in the ADTE. The
ADTE also provides a second palette containing the
didget structures that have already been created in the
same WoAD. Users can use this palette in order to
reuse the same didgets in different templates. More-
over, users can use the ADTE to define new didget
schemas in terms of both the content model (e.g., data
fields with their type) and the layout model, i.e., its
visual aspect. In addition, the ADTE allows to de-
fine the specific rendering procedures of a didget (see
c in Figure 3) in terms of Javascript functions, which
can affect user interaction with the single didget in
each document embedding it by enabling advanced
features of text formatting and document rendering.
For instance, for a certain didget, users can define a
rendering procedure that displays a balloon contain-
ing some information regarding a specified field of the
didget (the purpose of these procedures will be clear
after reading Section 2.2).

Once a template has been defined, users can be-
gin use the documents that are built on that template.
In fact, a WOAD document is generated by coupling

HEALTHINF 2010 - International Conference on Health Informatics

48



Figure 3: A graphical representation of the components of an Active Document.

the document template, which is associated with a set
of didget structures and provides the topological in-
formation for their displaying, with the content of its
didget structures that is related to the specific docu-
ment associated to a specific patient. In other words,
every different document that is based on the same
template (i.e., that is associated with the same did-
get structures provided by the template) represents an
instance of the document template for a specific pa-
tient. This means that users can create new documents
according to their needs and local practices. For in-
stance, doctors could want to have only one docu-
ment for each template be associated with a single
patients, as in the case of the Anamnesis form, which
reports all the past clinical information through multi-
ple didgets that allow for multiple values; conversely,
doctors could also want to associate many documents
based on the same template with the same patient, as
in the case of the clinical diary: this is a case where
physicians create a new document every day during
the patient’s stay to organize their clinical annotations
in a time-oriented fashion. In both cases, data are
recorded in the “content didget” associated with the
didget structures contained in the templates (see Fig-
ure 3). In the former case (one document for tem-
plate with multiple didgets for each patient), doctors
can minimize the dispersion of data across different
documents and rely on a single “place” to consult; in
the latter case (multiple documents for one template
for each patient) they can have the didget content be
partitioned according to some policy (e.g., the stay’s
length) and each partition be associated with a dif-
ferent document so as to organize the patient record
as they were used to in paper-based folders. In ei-
ther cases, it is noteworthy that the content of all the

documents that are based on the same template refers
to the same data structures, i.e., the didget structures
that are contained in the template itself: this guaran-
tees WOAD-compliant applications can process data
as efficiently as in EPRs based on a traditional DBMS,
while allowing a higher flexibility in document use
as stated above. Currently, didget schemas are rep-
resented using an XForms-like1 syntax. Once a user
has built a didget schema, the ADTE exports it as an
XForms form. This contains the XML description of
the data model of the didget (see a in Figure 3), and
also defines its layout model in XHTML (see b in Fig-
ure 3). A document template is an XML description
of the specific didget structures that it contains.

2.2 Mechanisms in the WOAD
Framework

As said in Section 2, ADs are coupled to sets of
WOAD mechanisms that make them “active” and
proactive with respect to their content. Mechanisms
are rules defined at level of didget structures, i.e., they
refer to didgets put in one or more document tem-
plates and are triggered according to the didgets con-
tent. These if-then constructs can be expressed in any
rule-based language (for which an interpreter can be
integrated to a WOAD architecture) but we also pro-
posed an abstract denotational language to facilitate
their definition by users with little or no experience
in programming (see the WOAD language presented
in (Cabitza and Simone, 2009)). Mechanisms repre-
sent conditions over the didgets’ content in their an-
tecedents (or if parts), and trigger simple actions ex-

1http://www.w3.org/TR/xforms/

DEVELOPING A FLEXIBLE ELECTRONIC PATIENT RECORD AS A WEB OF ACTIVE DOCUMENTS

49



pressed in their consequents (or then parts) whenever
these conditions are met. Mechanisms’ antecedents
can contain conditions defined over one or more did-
gets; in this case, they can refer to didgets that are
associated with either only one document template or
many document templates of the same WoAD. Mech-
anisms are triggered by human interaction with docu-
ments: any application behavior for which a program-
ming interface is available can be associated to the
mechanism’s consequent. Accordingly, we classify
mechanisms (to rationalize their design) according to
what they do on the document content: we then dis-
tinguish between mechanisms that (i) modify the con-
tent, e.g., to edit or correct values in data fields; (ii)
modify content’s attributes and metadata, e.g., times-
tamps, status flags, urgency attributes; (iii) act on
the content, e.g., print (parts of) it, check its quality,
validate it, consolidate it (e.g., by digital signature);
(iv) transmit the content from one system to another
through a communication medium, e.g., by email; (v)
route documents and build flows of work, e.g., by al-
lowing users link documents of the same WoAD to
each other to easily open a document from another, or
by allowing users to open/compile certain (portions
of) documents only after that also other (portions of)
documents have been compiled (and corresponding
tasks performed); (vi) change the content’s appear-
ance, e.g., by changing the background color or the
font style. This last kind of mechanisms act by means
of the rendering functions defined at level of didget
(see c in Figure 3)and have been object of our recent
research on how to improve the ways users access
and use document content and on how the content can
be displayed to make it more “meaningful”. In fact,
as researchers active in the field of CSCW, we agree
with (Pratt et al., 2004) that EPRs should embed spe-
cific functionalities to help practitioners be aware of
interdependencies between their work and the activi-
ties of others to get an understanding of the collabo-
rative context for their own activity (Dourish and Bel-
lotti, 1992). To this aim, in (Cabitza et al., 2009a) we
proposed the concept of Awareness Promoting Infor-
mation (API), i.e., any annotation, graphical clue, af-
fordance, textual style and indication that could make
actors aware of something closely related to the con-
text of reading and writing. The execution of mecha-
nisms can then be seen as a process of API generation,
i.e., an operation by which the affordance and appear-
ance of documents and their content is modified, and
possibly additional information (e.g., a message) is
conveyed to the user in order to make her aware of
some condition in the context of document use.

In order to decline the requirements that physi-
cians explicitly expressed in terms of mechanisms,

we co-defined with some of their key representatives
mechanisms that: could check the correctness of liq-
uid balance values and correct them if necessary (type
iii and i); that could mark some values filled in by
nurses during a night shift as provisional until the doc-
tor on duty officially double checks them and signs
the form (type ii); that could allow practitioners cor-
rect a datum without eliminating the previous value
for legal concerns (type ii); that could produce offi-
cial reports printing only parts of the record’s con-
tent (even distributed across different documents) ac-
cording to values filled in in specific fields, e.g., the
treatment indication, the kind of procedure (type iii);
that could prevent users from opening an operation
record if the informed consent and the surgery assess-
ment record have not been duly compiled and signed
(type v); that could send a copy of an examination re-
quest form to the laboratory as soon as all the neces-
sary fields have been filled in and that could send the
discharge letter to the family doctor once the hospital
stay has been officially closed (both of type iv); and
lastly, that would remind practitioners to compile liq-
uid intakes values at regular intervals and that would
check that blood examination requests are compiled
within noon and raise due alerts if this is not the case
so that results can be returned by the end of the day
(both of type vi).

3 INTERACTION WITH THE
WOAD ARCHITECTURE

In this section, we describe the components of the
WOAD architecture (see Figure 4), whose conceptual
architecture has been presented in (Cabitza and Si-
mone, 2009), and illustrate how these interact when
users are involved in the basic operations of read-
ing and writing an active document, respectively (see
Figure 5). We also provide some details about the
current implementation of the WOAD components in
ProDoc. For our description, we assume that a tem-
plate has been created through the ADTE and stored
in the Template Manager. This is a component that
gives both to the ADTE and the main application
shared access to templates. When a user asks for a
certain document from a specific patient record e.g.,
a drug prescription form, through the GUI of the ap-
plication (see step 1 in Figure 5), the request is taken
by the Layout Engine. This is a standard component
that renders active documents, thus allowing the user
to interact with them and communicate with the appli-
cation. Currently, the Layout Engine can be any reg-
ular Internet browser that either supports XForms at
client side (like Gecko) or natively supports the output

HEALTHINF 2010 - International Conference on Health Informatics

50



Figure 4: An UML component diagram of the WOAD architecture underlying the ProDoc implementation.

flow produced by an XForms processor at server side
(i.e., support the full standards of HTML, CSS and
Javascript). The Layout Engine forwards the request
to the Document Manager (see 2 in Figure 5) which is
the main component of any application based on the
WOAD architecture. The Document Manager builds
the (passive) document (see Section 2.1) coupling a
template with the content related to the document that
has been requested by the user in step 1. In addition,
the Document Manager provides the data structure on
which the application works on the basis of mecha-
nisms (see Section 2.2). To these aims, the Document
Manager is divided into two subcomponents: the Did-
get Manager and the Document Builder. The Did-
get Manager creates and keeps the didget structures
of a WoAD (see Section 2.1) in its working memory
and maintains them synchronized with the Document
Data Repository (see Figure 4), which is any com-
ponent that provides data persistence features, e.g.,
a DBMS. In our current implementation, the Didget
Manager is a java class that both loads the content of
didgets’ structures into correspondent sets of objects,
and serializes these objects into the Document Data
Repository.

On the other hand, the Document Builder builds
an empty form on the basis of a template and fills in it
with the (passive) content associated with the specific
document requested by the user. The current Docu-
ment Builder is a java class that creates an Xforms
form by joining the schemas of the didget structures
contained in a template and associates didgets’ con-
tent with it (see Figure 2). With reference to Figure 5,
the Document Manager retrieves the document tem-
plate of the requested document from the Template
Manager (steps 3a and 4a) and associates it with the
correspondent didgets’ content provided by the Doc-
ument Data Repository (steps 3b and 4b) in order to
build up the requested document. As soon as the Doc-

ument Manager gets the document content, it interacts
with the Mechanism Interpreter (step 5b) to execute
the WOAD mechanisms associated with all the did-
gets (structures) included in the document. To this
aim, the Mechanism Interpreter checks the WOAD
mechanisms against the document content provided
by the Document Manager, activates the mechanisms
whose antecedents are satisfied by the didgets’ con-
tent and then selects those to execute according to a
resolution strategy based on specificity and current-
ness (Forgy, 1982). The mechanisms’ consequents
contain instructions that either modify data or build
specific metadata to be associated to the document
(e.g., metadata that prevent data from being modi-
fied or metadata that change the appearance of cer-
tain values). This association metadata-document is
performed by the Markup Tagger; this component re-
ceives both the (passive part of the) document that has
been created by the Document Manager (step 5a), and
the metadata that has been produced by the Mech-
anism Interpreter (step 6), and then it translates the
metadata either into appropriate rendering attributes
(e.g., stylesheet classes) or into calls to rendering pro-
cedures (see c in Figure 3). For instance, if the Mech-
anisms Interpreter has associated a didget text field
with the metadata <editable>false</editable>, the
Markup Tagger translates it into the HTML attribute
“disabled” so that the Layout Engine cannot receive
user input for that element. In the current implemen-
tation, the Mechanisms Interpreter is based on JBoss
Drools2 and mechanisms are translated into rules that
are checked against the didget objects built by the
Didget Manager; the Markup Tagger is a java class
that embeds javascript code into the Xforms form in
order to call the rendering procedures or to modify
the style attributes of the XHTML page of the docu-
ment. The output of the Markup Tagger is then the

2http://jboss.org/drools/

DEVELOPING A FLEXIBLE ELECTRONIC PATIENT RECORD AS A WEB OF ACTIVE DOCUMENTS

51



Figure 5: An UML sequence diagram of the typical user interaction with ProDoc.

active document: this presents the requested content
with the layout specified by the corresponding tem-
plate and displays additional information according
to the metadata. The active document is sent to the
Layout Engine (step 7) which finally displays it to the
user (step 8).

On the way round, when a user modifies an ac-
tive document (step 9 in Figure 5), the Layout En-
gine sends the single modifications of the content to
the Document Manager (step 10). As a consequence,
the document (i.e., its didgets) will be automatically
re-processed by the Mechanisms Interpreter (step 11)
that constantly monitors all the WoAD didgets. In
this way, every data change can be immediately cap-
tured and processed by the application logic that is
formalized in the mechanisms that fit the current con-
text best. To this aim, the Mechanisms Interpreter
directly interacts with the Document Manager in or-
der to commit the instructions that update the content
(step 12). Finally, the Document Manager stores the
documents’ updates into the Data Repository for the
sake of data persistence (step 13).

4 CONCLUSIONS AND FUTURE
WORK

Summarizing, in this paper we have illustrated the
concept of Active Document within the WOAD
framework: an AD is composed by reusable and mod-
ular “field nuggets”, called didgets, and it is made
active by modular interpretable code, called mecha-
nisms, that trigger behaviors according to the context.
This modularity and the accentuated separation of
information-related and functional needs (addressed
by specific didgets and mechanisms in the passive and
active part of a document, respectively) is what makes
a web of interconnected ADs a suitable electronic doc-
ument platform that can be reused in different work
settings and maintained over time to flexibly address
ever changing users’ needs. To the present moment,
the WOAD framework encompasses (i) a conceptual
model and architecture that represent the main enti-
ties and relationships involved in collaborative work
mediated by complex document systems; (ii) a deno-
tational language by which to express reactive mech-
anisms in an abstract and platform-independent way
(presented in (Cabitza and Simone, 2009); (iii) a set of
software components that supports users by means of
active documents i.e., electronic documents (in XML
format) that exhibit collaboration-oriented behaviors

HEALTHINF 2010 - International Conference on Health Informatics

52



proactively with respect to the context of work (see
Figure 4); iv) a couple of prototypical applications to
facilitate users in building their document templates
and active mechanisms: namely an active document
template editor and a mechanism editor.

The first vertical application system to be based on
a WOAD architecture is ProDoc: built as a proof-of-
concept and prototypical electronic patient record, it
has provided first feedback from key users and pre-
liminary validation from the field of work, as pre-
sented in (Cabitza et al., 2009b). In this paper, we
have presented the core implementation choices we
undertook for the first deployment of ProDoc, based
on JBoss Drools (for the mechanism interpreter) and
XForms (for the document manager); we also pro-
vided some examples of WOAD mechanisms in the
hospital domain to give evidence of the advantage
that a modular and rule-based approach can give over
more traditional approaches that define functionalities
at compile-time through an entity-driven requirement
analysis and then achieve post-hoc flexibility through
mere configuration facilities.

Users stressed the requirement of being supported
in defining and maintaining their own data structures
and associated behaviors without the heavy involve-
ment of ICT practitioners (mainly to reduce costs and
times of intervention). For this reason, our research
agenda aims to build one single application that could
integrate user-friendly functionalities to build active
documents also in a visual and intuitive way. More-
over, we plan to propose a design-oriented method-
ology to assist IT practitioners in planning and per-
forming digitization programmes of paper-based pa-
tient records in a bottom-up and document-centered
fashion, in order to minimize the impact of the main
unintended shortcomings of ICT programmes in the
healthcare domain reported in the specialist litera-
ture (Campbell et al., 2006).

REFERENCES

Ash, J. S., Berg, M., and Coiera, E. (2004). Some un-
intended consequences of information technology in
health care: The nature of patient care information
system-related errors. Journal of the American Medi-
cal Informatics Association, 11:104–112.

Cabitza, F. and Simone, C. (2009). WOAD: A framework to
enable the end-user development of coordination ori-
ented functionalities. Journal of Organizational and
End User Computing, 22(1).

Cabitza, F., Simone, C., and Sarini, M. (2009a). Leverag-
ing coordinative conventions to promote collaboration
awareness. Computer Supported Cooperative Work,
18:301–330.

Cabitza, F., Simone, C., and Zorzato, G. (2009b). ProDoc:
an electronic patient record to foster process-oriented
practices. In ECSW’09. Vienna, Austria, September
9-11, 2009. Springer.

Campbell, E. M., Sittig, D. F., and et al., J. S. A. (2006).
Types of unintended consequences related to comput-
erized provider order entry. Journal of the Amer-
ican Medical Informatics Association 13 Number,
13(5):547–556.

Divitini, M. and Simone, C. (2000). Supporting different di-
mensions of adaptability in workflow modeling. Com-
puter Supported Cooperative Work, 9(3):365–397.

Dourish, P. and Bellotti, V. (1992). Awareness and coor-
dination in shared workspaces. In CSCW’92, pages
107–114, New York, NY, USA. ACM Press.

Dourish, P., Edwards, W. K., LaMarca, A., Lamping, J.,
Petersen, K., Salisbury, M., Terry, D. B., and Thorn-
ton, J. (2000). Extending document management sys-
tems with user-specific active properties. ACM Trans-
actions on Information Systems, 18(2):140–170.

Forgy, C. L. (1982). Rete: A fast algorithm for the many
pattern / many object pattern match problem. Artificial
Intelligence, 19(1):17–37.

Pratt, W., Reddy, M. C., McDonald, D. W., Tarczy-
Hornoch, P., and Gennari, J. H. (2004). Incorporat-
ing ideas from computer-supported cooperative work.
Journal of Biomedical Informatics, 37(2):128–137.

DEVELOPING A FLEXIBLE ELECTRONIC PATIENT RECORD AS A WEB OF ACTIVE DOCUMENTS

53


