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Abstract: Planning and scheduling for agents operating in heterogeneous, multi-agent environments is governed by the
nature of the environment and the interactions between agents. Significant efficiency and capability gains can
be attained by employing planning and scheduling mechanisms that are tailored to particular agent roles. This
paper presents such a framework for a global sensor web that operates as a two-level hierarchy, where the
mission level coordinates complex tasks globally and the resource level coordinates the operation of subtasks
on individual sensor networks. We describe important challenges in coordinating among agents employing
two different planning and scheduling methods and develop a coordination solution for this framework. Ex-
perimental results validate the benefits of employing guided, context-sensitive coordination of planning and
scheduling in such sensor web systems.

1 INTRODUCTION abstraction to avoid computational intractability, and
(2) theresource levelwhere operations within a lo-
In large-scale, distributed, multi-agent systems cal sensor network are coordinated and controlled us-
(MAS) that span multiple domains of agent operation, ing planning and scheduling methods that operate in
choosing a single planning and scheduling mecha- dynamic, uncertain and resource constrained environ-
nism for all agents may be inefficient and impractical. ments. Therefore agents at these different levels of
For example, NASAs Earth Science Vision calls for the system operate in different contexts imply differ-
the development of a global sensor web that provides ent planning and scheduling requirements.
coordinated access to sensor network resources forre- MACRO achieves efficient and effective au-
search and resolution of Earth science issues (Hilde-tonomous planning by employing hierarchical task
brand et al., 2004). This global sensor web must se- network planning with distributed scheduling at the
lect and coordinate an appropriate subset of hetero-mission level and decision theoretic planning with re-
geneous, distributed sensors and computational re-source constraint propagation scheduling at the re-
sources for user tasks that often require collaborationsource level. Developing such an agent architec-
among multiple constituent sensor networks. Com- ture, however, also presents challenges in coordinat-
plex task execution with resource constraints and time ing among the agents . In particular, employing differ-
deadlines presents planning, scheduling, and coordi-ent planning and scheduling mechanisms at the mis-
nation issues at multiple levels of the sensor web. sion and resource levels requires an appropriate trans-
Our Multi-agent Architecture for Coordinated Re- lation of the task, plan, and schedule representations
sponsive Observation®ACRO) platform provides  between levels. It also requires a coordination mech-
a powerful computational infrastructure for deploy- anism for deciding when to exchange information be-
ing, configuring, and operating large sensor webs with tween levels during plan execution.
many constituent sensor networks (Suri et al., 2007).  The remainder of the paper is organized as fol-
MACRO is structured as a two-level agent hierar- lows: Section 2 outlines the key capabilities pro-
chy: (1) themission level where global coordina- vided by the MACRO agent framework; Section 3
tion across sensor networks is achieved and planningsummarizes the planning and scheduling coordination
and scheduling is handled at an appropriate level of challenges and the solutions we developed for this
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paper; Section 4 evaluates experimental results thatsensor networks. The TAMS representation also al-
show the reduction in communication and computa- lows the specification of discrete probability distribu-
tion achieved by using MACRO's guided, context- tions for task/subtask characteristics including poten-
sensitive coordination mechanism for planning and tial outcome quality and duration (Lesser et al., 2004).
scheduling; Section 5 compares our work with related ~ To coordinate and schedule TAEMS tasks across
research; and Section 6 presents concluding remarkssensor networks, MACRO mission agents employ the

Generalized Partial Global PlanninlGPGP) (Lesser

et al., 2004) coordination mechanism, which works
2 OVERVIEW OF MACRO in conjunction with a planning and scheduling mech-
anism that can generate an appropriate task decompo-
sition and schedule from a TAEMS task tree. For this
purpose, MACRO mission agents empl®esign-
To-Criteria (DTC) (Wagner and Lesser, 2001) plan-
ning/scheduling, which has successfully been used in
conjunction with GPGP coordination (Lesser et al.,
2004). DTC scheduling is a soft real-time, heuristic
approach to solving the combinatorial problem of op-
timally decomposing and scheduling a TAEMS task.
DTC is particularly suited to the MACRO mission-

To provide global coordination of the sensor web, the
MACRO mission level is comprised dfoker agents
user agentsandmission agentsBroker agents act as
the intelligent system infrastructure, providing match-
maker services, aggregating relevant domain informa-
tion, tracking system performance, and mediating al-
location negotiations (Kinnebrew, 2009). User agents
generate the high-level tasks and are typically inter-
faces to mission scientists and wrappers for legacy level because it can optimize plans and schedules
systemsé.g.we_ather modeling applications) that can ased on user-provided criteria, such as minimizing
;qutrlﬁsrtez)ﬁgggg?sn;: isr?dn:;())é%Z%:;Fi;ﬁﬁm%ssmnexecmion time or maximizing expected quality.
achieves its allocated tasks with the resources avail-
able in its sensor network.

As the representative of an entire sensor network, Ex nt theoreading Activation Partial
a mission agent straddles the boundary between the GOWRUCN'S Vg preading Activation artia

mission and resource levels. At the resource level, Order PIanner(SA-I_DOP) _(_Kmnebrew et al., 2(.)07)’
mission agents divide tasks among tec agents which generates high utility, scheduled, pa_rtlal or-
each of which controls a set of computational/sensor der plalrlls tha:] respect local resourcehcc_)nlstrgmts. SA-
resources within a sensor network and is supported byPOP s the exec agents tq use their |m|tgq com-
additional domain-specific agents. An exec agent also putatlo_nal resources tc_) maximize ex_pected Ut'l.'ty for
employs services for planning, scheduling, allocation, achieving local goals in the dynamic, uncertain en-

and resource management of the hardware under itsvwonments at the resource level. Moreover, SA-

control. These services are shared with any support—POP provides incremental re-planning/re-scheduling

ing agents under its direction, providing a centralized ;hci[tiginaﬂgIcﬁgvcrei\;lsr’r?o?gheexdlialﬁgivrt)elarr(]as ?:r:'nr:g (/arxe_
control and environmental awareness for its set of re- . p . P €-pla 9
sources scheduling at the mission level. In conjunction with

SA-POP, exec agents also employ Besource Allo-
cation and Control EnginéRACE) (Shankaran et al.,
2007) for resource allocation and management to
o meet scheduled deadlines and required quality of ser-
At the mission level of a sensor web MAS, user e (QoS) parameters for deployed applications and
tasks and scheduled plans spanning multiple sensof,5rqware-based actions.

networks have a high degree of complexity. Hi- First-principles planning (Blum and Furst, 1997)
erarchical analysis helps deal with this complexity, gnq scheduling with SA-POP requires a set of goal
both for problem/task representation by domain ex- ¢4ngitions that correspond to the desired outcome.
perts and for coordinated planning and scheduling These goal conditions are specified as desired en-
among multiple agents. MACRO combines the OGC \ironmental and system conditions with associated
SensorML (Botts et al., 2007) representation of sen- jity values and time deadlines. Given these goal
sors and data processing with thesk Analysis, En-  ¢onditions, SA-POP uses current/expected conditions

vironment Modeling, and SimulatioREMS hierar- 4 generate a scheduled plan of high expected util-
chically decomposable task representation (Horling ity (Kinnebrew et al., 2007).

et al., 1999) for multi-agent planning and schedul-
ing. This combination provides standardized descrip-
tions of task/subtask requirements and effects across

2.2 MACRO ResourcelLeve

2.1 MACRO Mission Leve
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Figure 1: Planning/Scheduling Representations in MACRO.

3 MACRO COORDINATION will be executed. Although current conditions and
other exec agent plans provide most of this informa-
As described in Section 2.1, mission agents must ef- tion, other expected conditions may be the result of
ficiently generate and coordinate plans and schedulesmethods assigned to other exec agents in the mission
provided by the TAMS task decomposition trees and agent’s current plani.e., other methods thagnable
criteria-directed scheduling. As shown in Figure 1, the method in question by satisfying some of its pre-
the leaves of a TAEMS task tree amethodswhich conditions).
in standard TAEMS usage can be directly executed by Solution — Cross-references in Task/Goal Mod-
the agent. In MACRO, however, mission agents must eling. Domain experts €.g, scientists and engi-
communicate these methods to their exec agents forneers who design and deploy the sensor network)
resource-level planning/scheduling and actual execu-use MACRO'’s domain-specific modeling language
tion. (based on GME (Karsai et al., 2003)) to specify
At the resource level, the decision-theoretic, the TAMS task tree for a mission agent. In this
first-principles planning and constraint-propagation model, T/EMS methods are associated with neces-
scheduling is efficiently performed by SA-POP for sary resource-level preconditions and goal conditions,
achievement ofoalsin the dynamic sensor network which in turn are represented in the action network
environment shown in Figure 1. Effectively employ- model employed by the exec agent and SA-POP.
ing both representations and forms of planning and Moreover, the domain expert can automatically derive
scheduling presents multiple challenges for coordina- method distributions for duration and outcome in this

tion between MACRO mission and exec agents. model by providing potential initial condition settings
(with an associated probability) to SA-POP, which
3.1 Trandation: Top-Down produces scheduled plans and summarizes their prob-

ability of success, expected duration, and resource us-
Problem. For an exec agent to implement a TEMS age.
method, the mission agent must translate it into the  Instead of directly executing a method, the mis-
goal format used by SA-POP. SA-POP goals include sion agent uses the encoded translation informa-
one or more goal conditions with associated utility tion from the model to provide a goal to the exec
values and time deadlines. To plan for a goal accu- agent. This top-down translation is shown by the mis-
rately, SA-POP requires knowledge of expected sys- sion agent to exec agent information transfer in Fig-
tem and environmental conditions at the time the plan ure 2. The mission agent awards overall task utility to
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Figure 2: Planning/Scheduling Translation in MACRO.

methods based on the quality aggregation functions plan and its corresponding method. To improve the
(QAFs) and expected quality in the TEMS task tree. efficiency of future criteria-directed scheduling and to
In the chosen decomposition of the TAEMS task trigger appropriate mission-level re-scheduling, infor-
tree, parents with a QAF that requires execution of mation about the exec agent’s plan must be commu-
all child subtasks/methods pass the full parent utility nicated to the mission agent.
to each child, while QAFs that allow any subset of Solution — Summarize Resource-level Plans. In-
children pass a percentage of parent utility based onstead of providing the complete resource-level plan
the child’s percentage of total expected quality for the to the mission agent (whose format is ill-suited to
parent. For example, a task with an overall utility of its planning and scheduling capabilities), a MACRO
100 that is decomposed into two subtasks of expectedexec agent summarizes its plan by providing relevant
quality 3 and 7 with a sum QAF would assign util- information only, including (1) expected duration, (2)
ity of 30 and 70, respectively, to its subtasks. Future probability of achieving the goal, and (3) average
work will investigate more advanced methods of re- and maximum resource usage over expected execu-
ward assignment in the decomposition of TEMS task tion. The mission agent uses these values to update

trees. method parameters with more accurate information,
based on the resource-level planning and scheduling
3.2 Trangdation: Bottom-Up for the current and expected environmental/system

conditions. The updated method parameters allow the

Problem. Another important challenge is codifying Mission agent to more effectively perform any further
the bottom-up translation between SA-POP plans andPlanning and scheduling for its task(s).

TAEMS method parameters. Standard TAEMS meth-

ods includea priori probability distributions for dura- 3.3 Context-Sensitive Updates

tion and outcome quality, which are used during ini-

tial criteria-directed scheduling by the mission agent. Problem. In addition to translating between the mis-
After an exec agent plans to achieve a goal, the re-sion and exec agent planning/scheduling representa-
sultant scheduled plan may imply significantly dif- tions, MACRO agents must also decidéento up-
ferent probability distributions for the corresponding date and communicate the translated information. In
method. Similarly, as a plan is being executed by particular, during execution of exec agent plans, de-
the exec agent, there may be further changes to theviations may occurd.g, differences between actual
expected duration or probability of outcomes for the and expected duration of actions). Only some vari-
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ations, however, will impact the rest of the mission- ' Finished Early
level plan—or other plans—in a manner that would

be of interest to the mission agent.
A3 A5 Time Window

Solution — Leverage Mission-level Task Context. E[T]:6s | €T 3s === -
Given the hierarchical relationship between mission A[T]: 95 | AlTI3s |_Finished Late 7

and exec agents, the top-down decision to ComMmu- (" &~ 45 Y = TAg T (" m
nicate (.e, when the mission agent should com- E[T): 10s | E[T]: 8s [ E[T]: 55 } E[T): 14s
A[T]:4s
~ -

municate information to an exec agent) is relatively | * A[Tl:9s . A[Tl:8s {_A[T]:8s A[T]: 165

straightforward. Specifically, whenever a new task is

decomposed/scheduled or method parameters in the | | | | | |J

plan are changed by re-planning/re-scheduling, the 3* 39 46s >4s 70s 74
mission agent communicates the new or revised goals Deadline: 75s
(translated from the methods) to the assigned execrigure 3: A Resource-level Plan (Critical Path High-
agents. lighted).

For bottom-up updates, however, an exec agent
can use its knowledge of a mission agent’s overall
goals/interests to guide its decision of when to com-
municate. Without mission agent guidance, an exec
agent would be forced to communicate on a peri-
odic basis or whenever the execution deviates from
the scheduled plan, which may happen frequently in
a dynamic sensor network environment. When task-
ing an exec agent with a goal, therefore, the MACRO
mission agents also provide guidance and contextual
information, such as the optimization criteria for the
related task. Knowledge of the optimization criteria
allows the exec agent to configure SA-POP’s planning
and scheduling to prefer plans based on that criteria.

In addition to optimization criteria, the mission
agent can specify acceptable deviations (in either di-
rection), success probability, expected utility, dura-
tion, and resource usage of an executing plan. This
information provides the exec agent with guidance
on thecontextfor the corresponding method in the
mission agent’s plan, which allows the agent to more
intelligently determine when to update its scheduled
plan and provide the revised summary to the mission
agent. Specifically, during execution of a plan, the
exec agent will only re-plan and re-schedule if the ex-
pected utility falls below, or if the duration surpasses,
specified thresholds. When other thresholds are ex-
ceeded, the exec agent simply communicates updated
summaly information to the mission agent. 4 COORDINATION RESULTS

Figure 3 shows the execution of the resource-level _ ) o
plan from Section 3.2. To demonstrate the benefit of | NiS Section presents the results of mission and exec
the guidance/context provided by the mission agent, agent coordination through the simulated execution qf
we focus on deviations of action duration from ex- randomly-generated resource-level plans with a vari-
pected duration in the critical pathi.€, the linked ety of dpratlon dlstrllbutlons for actions. TheS(_e re-
sequence of actions that requires the longest time toSUlts validate our claims that MACRO's use of guided,
complete). Although the planning and scheduling in context-sensitive coor_dm_auon in pIanmng/s_cheduIlr_]g
MACRO does not rely on identification of the critical €&n reduce communication and computation, while
path, such a path(s) always exist, and it constrains the_St'” providing relevant information in a timely fash-
expected completion time of the plan. 1on.

Without the context provided by duration thresh-

olds, the exec agent would have no knowledge of what
deviations were important to the mission agent and
would have to communicate updates based on each
deviation. It would recalculate its schedule every time
an action did not complete with exactly its expected
duration. It would also transmit the new expected du-
ration of the plan either with every recalculation or at
least every time an action finished outside of its sched-
uled end window (either before or after that window).

The example execution in Figure 3 shows a typi-
cal case in which the mission agent provides an over-
threshold on duration equal to the difference between
the expected end-time of the plan and the original
deadline. In other words, the mission agent is only in-
terested in changes to the resource-level schedule that
would result in its finishing later than the deadline. In
this example, the exec agent would have to re-plan/re-
schedule only when execution of action A6 goes be-
yond its scheduled end window. Without the appro-
priate contexti(e., the duration threshold), the exec
agent would have also had to unnecessarily recalcu-
late or re-plan/re-schedule three times (after comple-
tion of Al, A4, and A3) and communicate unneces-
sary updates twice (after A1 and A4).

188



COORDINATION OF PLANNING AND SCHEDULING TECHNIQUES FOR A DISTRIBUTED, MULTI-LEVEL,
MULTI-AGENT SYSTEM

4.1 Experimental Design overhead. After a critical path action’s end window is
exceeded, execution of further actions will continue
to exceed action end windows. Re-planning reduces

Our experiments simulate a scheduled, partial-order . o
this possibility.

plan generated by SA-POP for an exec agent at the
resource level of MACRO. These plans include a set .
of actions with expected start and end time windows, 4.2 EXperimental Results
as well as ordering links. For these experiments, we
only simulate cases in which a valid plan can be gen- Each experimental run included 10,000 trials with the
erated. given parameter settings. In each trial, a seriepf (
One experimental parameter is the variability of actions formed the critical path, and each action had
actual durations for actions, which requires differ- an expected duration of 100 seconds. Using the cho-
ent probability distributions parameterized by a sigma sen distribution, random values are generated that cor-
value. The experiments included both uniform dis- respond to actual execution times. The number of up-
tributions and Gaussian (Normal) distributions. The dates and messages are calculated using those values.
uniform distributions showed the same trends ob-
served in the Gaussian distributions (results are omit- 4.2.1  Investigating Critical Path L ength
ted due to the length constraints). The action duration
distributions have a mean of 100 seconds and “low” These experiments were performed under the assump-
and “high” variance scenarios providing a 95% like- tion that the mission agent simply requires a method
lihood (for the Gaussian) that durations are within 25 to be completed by the provided deadline and should
seconds or 75 seconds of the mean, respectively. only be notified if the expected execution time will
Another experimental variable is the length of the €xceed that deadline. The threshold value is therefore
critical path. The distributions provide all actions Set to the difference between the deadline and the ex-
with an expected duration of 100 seconds. The ex- pected duration of the plan. This threshold is varied
pected time for completion of the plan therefore de- in the experiments between 0 and 200 seconds in 5
pends solely on the number of actions in the critical second increments.

path.

The final experimental variable is the time thresh-
old provided by the mission agent in MACRO  * O o830 - 09453
context-sensitive coordination, which determineshow % Re=1
far actions can surpass their expected end times be- % 2 B MACRO Thresh = 5
fore the mission agent must be notified for potential 2 ,, b
mission-level rg-planning and r.e-sgheduling. To as- §°15 MACRO Thresh - 508
sess computation and communication overhead of the = y=03142x - 1.2183
coordination mechanism, we employed random gen-  * o e
eration of plans across a range of parameters rather ° M e aa
than using a few example problems. These experi- o /# R?=0.9654
ments do not assess the quality or utility of plans or 0 10 20 30 40

. . 5 K’ Length of the Critical Path
potential plan changes during coordination. MACRO

coordination will not result in any degradation of plan Figure 4. The effect of critical path length with selected
quality in comparison to the baseline coordination, thresholds with alow variance Gaussian.
however, since plan and schedule information that
triggers mission-level re-planning and re-scheduling Figure 4 shows the information from the mission
is provided by both MACRO coordination mechanism agent results in significantly less computation and
and the baseline mechanism at the same time. communication than the baseline condition for all but
Since these experiments employ randomly- the smallest of critical paths The linear trend suggests
generated plans to cover a range of potential applica-that in the worst case.€., a tight threshold/deadline),
tions, they do not allow changes to resource-level or MACRO sends about half as many messages as the
mission-level plans during execution. Whenever an baseline machanism. As the threshold increases,
action execution exceeded its scheduled end window,MACRO performs even better, whereas the baseline
the schedule was updated and communicated to theperformance does not change.
mission agent, but no changes to the plan or threshold A comparison of the low variance action duration
were made. Without re-planning, the MACRO distribution in Figure 4 to a high variance one in Fig-
coordination overhead is an over-estimate of the real ure 5 shows that with the smallest thresholds a ratio
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Figure 5: The effect of critical path length with selected
thresholds with a high variance Gaussian.

of approximately 1 update per 2 actions in the critical

path is required for both distributions. The 1:2 ra-

tio is thus an approximate upper limit on the average
number of updates required in MACRO, even when
re-planning and re-scheduling is not possible.

The baseline mechanism shows a slight, relative
improvementin the high variance case, but MACRO’s
context-sensitive coordination still requires far fewer
updates. However, the number of updates required
in MACRO with different thresholds are much closer
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in the high variance case than the low variance case.
This result suggests that when action durations are _
less certain, the critical path length is significantly /
more important than the threshold, because even large

thresholds can be exceeded by a series of actions that
begins with an unexpectedly long-running action.
5 RELATED WORK

' 100 1
\ ~MACRO Thresho

igure 7: The effect of Slack with selected critical paths on
high variance Gaussian.

4.2.2 Investigating Time Thresholds

MACROQ’s approach to planning and scheduling
builds upon and extends a significant body of
related work. At the mission level, MACRO
agents employ Design-To-Criteria (DTC) plan-
‘ning/scheduling (Wagner and Lesser, 2001) operating
on an augmented TAMS task tree to efficiently op-

h Its sh h he threshold | timize for relevant criteria in generating a scheduled
These results show that as the threshold increases 5 14 perform assigned subtasks. At the resource

the number of MACRO updates decreases. Figure 6, level, exec agents employ SA-POP (Kinnebrew et al.,

;hqwsi g sht_eep |n|C§|aI decrease WIh'Ch Ievr(]als ohff.k;)uall- 2007) for decision-theoretic planning with constraint-
itatively, this trend occurs since longer thresholds al- 005 ation scheduling.

y a great q 9 PAALE. s rmation at an appropriate abstraction level and at
Extreme variation, however, from expected durations ; . .
the right time. The translation from resource-level

can occur and will still require some updates, even I ission-level h h
with relatively large thresholds. These results also P.anS t0 mission-level met od parameters has some
show, that even when uncertaiﬁt of action duration similarities to research that uses plan summary in-

’ y formation to coordinate between agents employing

et ool " +TN planing .9, (Clement and Duriee, 1999
coordination overhead Clement and Durfee, 2000)). MACRO mission and
' exec agents, however, emplalfferent representa-
tions for planning and scheduling. Moreover, the re-

Figure 6 and Figure 7 show the trends in communi-
cation and computation with respect to the duration
threshold. The baseline results are not included in
these figures because they do not use of the thresh
old value, therefore, they would produce a horizontal
line close to the number of actions in the critical path.
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