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Abstract: Maintenance is going through to major changes in a lot of activity fields where the current maintenance 
strategy must adjust to the new requirements. The aeronautics industry belongs to one these activity fields 
which are trying to carry out important changes around its maintenance strategy. It needs to minimize the 
cost for the maintenance support and to increase its operational reliability and availability (avoiding delays, 
cancellations, etc) which would lead to a further decrease in costs. However, to support this change, it 
requires transforming the traditional corrective maintenance practice of “fail and fix” to “prevent and 
predict”. The aim of this article is to show the usefulness and the benefits of innovative techniques such as 
Bayesian Networks to support an intelligent function “decision support”, the basis for the new type of 
maintenance strategy based on prediction and prognosis. It helps to achieve a maximum optimization of 
resources and operational availability while minimizing economic costs, and replaces the current 
maintenance carried out in the aircraft industry up to now. 

1 INTRODUCTION 

Today’s maintenance is going through major 
changes practically in all of its activity fields. In 
aeronautics industry, the need involves minimize the 
maintenance support and increase efficiency of the 
process. All airlines are striving for reduce the cost 
of aircraft maintenance while ensuring aircraft 
reliability and availability (eliminating delays and 
cancellations) with new technologies initiatives. But 
although there are more and more novel 
maintenance solutions, it is still unscheduled process 
and it remains a significant problem. 

For example, the current decision support in 
aircraft maintenance is limited to a GO or NO-GO 
decision for the aircraft next flight based on a pre 
flight check of certain components of the aircraft. 
This check is part of the ‘Maintenance Execution’ 
which takes care of on-aircraft and off-aircraft 
maintenance, and includes all checks executed in the 
hangar. Usually, the pre flight check is based on an 
assessment of the Maintenance Minimum 
Equipment List (MMEL) for relevant items. It 
means that the decision support is a reactive process, 
focused on unscheduled (trouble shooting) or 
deferred  maintenance  activities,  which  involves a  

 
Figure 1: Not detected failures at early stage could be 
cause a delay or cancellations in the next flight, impacting 
directly into the operational planning of the aircraft/fleet. 

high percentage of direct operating cost in aircraft 
maintenance (Fig.1). 

Prognostic Health Management (PHM) systems 
are working to overcome this problem by integrating 
all the condition monitoring, health assessment and 
prognostics into an open modular architecture and 
then further supporting the operator by adding 
intelligent decision support tools. 

The new decision support presented in this paper 
includes the “operational support” unit (Fig. 2) and 
adds a proactive function to the actual maintenance 
procedure, where GO and NO-GO decision will be 
supported by aircraft health assessment. 
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On top of “operational support”, the “operational 
risk assessment” concept appears: an extended 
function of the operational support for calculating 
and evaluating the operational risk for aircraft and 
fleet operation. It creates or reshapes the long-term 
maintenance plan based on aircraft conditional view, 
as well as it evaluates the impact of virtual 
maintenance plan on alternative future operational 
scenarios and provides quantified operational risk 
indicators for further decision support. 

 
Figure 2: Operational support. 

Conditional View module is the first module of 
“operational support” and it will provide remaining 
useful life (RUL) estimated (with their associated 
confidence level) in real operation time. Conditional 
View provides a basis for operational risk 
estimation, along with other sources of information 
such as operational constraints, economic/safety 
information, etc. 

2 CONDITIONAL VIEW MODEL 
ISSUES 

Conditional View generates an operational view of 
the aircraft taking into account component health 
status and remaining useful life and updating this 
data with specific information concerning future 
usage of the aircraft that can be derived from 
operational plan. 

In order to develop the Conditional View model, 
several issues must be taken into account. First, as 
expressed in (Byington, 2002), there are basically 
three types of information that may be the basis of 
the RUL prediction in prognostic approaches: 

 Statistical models: knowledge based just on 
failure probabilities coupling with expert 
judgments (reliability data). 

 Physical or mathematical models: 
knowledge based on parameters and 
connections between them to study 
complex system behaviour. This type of 
model is validated physically at test-
benches. 

 Models based on condition or performance 
monitoring: normally knowledge based on 
the identification of partial information 
(condition data) with the model that allows 
deriving incomplete models of the 
degradation of monitored systems.  

Given this, it is a key point to achieve an 
appropriate confidence levels. This task involves 
two main sources of uncertainties that should be 
quantified to improve and adapt RUL predictions: 

 Original RUL estimations (at current time) 
are normally set up as part of laboratory 
work including mathematical, physical 
and/or statistical modelling together with an 
expert criterion. As a result of uncertainties 
included in the model (data incompleteness, 
model incompleteness…) there is an 
uncertainty addition to every RUL 
prediction (Díez, 2000). 

 RUL predictions (at future time) based on 
the prediction of the RUL assuming input 
parameters on the model took from 
expected usage. 

 
Figure 3: Confidence loss. 

These two sources of uncertainty are translated 
into confidence loss and it depends on the window 
of the prediction. Figure 3 shows how confidence 
bounds increase over the time as well as the 
confidence loss. 

Adaptation and knowledge update is another 
change relates to the need to keep Conditional View 
updated. Once there is a knowledge based system 
(from experience or historical data), there exist 
many motivations for learning and knowledge 
changing, as it explains in (Gilabert, 2006). 
Conditional View performs an adaptive prognosis 
based on fleet feedback. Initially, prognosis will be 
based on an initial model to predict the RUL with 
the limits of warning, but it will be improved 
(adapted) as more knowledge (concerning with 
degradation trends, or with relations between aircraft 
usage and degradation) is available. Conditional 
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view uses fleet feedback such as fleet statistics and 
operational usage to compare aircraft degradation 
patterns against initial RUL degradation pattern. 

According to the characteristics, Conditional 
View should be use technologies that provide 
accurate estimation for degradation and reliability 
models, abilities to include confidence information 
as part of estimation, to link usage-based 
information as part of the input information 
(influence factors) of the models and to re-assess 
and modify models from feedback information. 

The next sections show Conditional View 
techniques for the aircraft’s brake wear prediction 
(#UC1: Brake Wear – based on Bayesian Networks). 
The basis of Bayesian Networks will be explained in 
previous sections. 

3 BAYESIAN NETWORKS 
OVERVIEW 

Bayesian Network (BN) is a model representation 
for reasoning under uncertainty. Formally, its 
representation is a directed acyclic graph (DAG) 
where each node represents a random variable and 
edges represent (often causal) dependence relations 
among them. Thus, each variable represents a unique 
event or hypothesis, it has a finite set of mutually 
exclusive states: X={x1, … , xn} and there must be a 
state for each possible value and their conditional 
probabilities.  

If the variable is discrete, the conditional 
probabilities distribution (CPD) is represented as a 
conditional probabilities table (CPT), which gives 
the probability that the node takes on each of its 
different states for each combination of the states of 
its parents. Figure 4 shows an example, in which all 
the nodes are discrete and binary (with two possible 
values, denoted by T=true and F=false). There are 
two events which could cause that C3=T: C1=T or 
C2=T. Also, when it C2=T, the C1 usually does not 
turned on.  

Otherwise, if the variable is continuous, the table 
specifies Gaussian (normal) distribution function by 
its mean and variance parameters rather than a CPT. 
Continuous node has associated a single Gaussian 
distribution function for each configuration of its 
discrete parents’ states and the mean is linearly 
dependent on the states of its continuous parents 
(Fig. 5).  

 
Figure 4: Bayesian Network (discrete nodes).  

 
Figure 5: Bayesian Network (discrete & continuous 
nodes).  

In order to specify Bayesian Network and fully 
represent the joint probability distribution to take 
advantage of this paradigm for uncertain knowledge 
representation, it is necessary to build a model 
(structure and parameters of the network) and 
specify for each node X the a-priori probability 
distribution for X conditional upon X's parents. 
Firstly, there are three main ways for building the 
structure of a BN: 

 By hand: the structure is modelled by an 
expert in the domain. 

 Learning Bayesian network structure from 
a data base of cases. There are basically 
two approaches: algorithms based on 
relations of conditional independence and 
algorithms based on the definition of a 
metric and the search for the structure that 
optimize this metric (score+search). 
However, there are also hybrid methods 
which are a mixture of both 
approximations.  

 Mixture of the previous ways. 
Secondly, a-priori probability distribution for each 
node can be obtained from: 

 Expert criterion and experience, where not 
data is needed.  

 From statistical data used to estimate the 
probability distribution in each node. 

 Mixed approach between expert criterion 
and statistic. 

Advanced information about Bayesian Network 
learning can be found in (Dietterich, 1999) and 
(Neapolitan, 2004). 
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Moreover, Bayesian Network can be used to 
answer probabilistic queries. For example, the 
network can be used to find out updated knowledge 
of the state of a subset of variables when other 
variables (the evidence variables) are observed. In 
(Fig. 5), the model can answer what is the 
probability of C2=T, given C3=T by using 
conditional probability formula:  
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In the same way, the model showed in (Fig. 6) gives 
a conditional Gaussian distribution function for each 
of the states of C1:  
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This process of computing the posterior 
distribution of variables given evidence is called 
probabilistic inference and it is useful in different 
situations like diagnostic (abductive reasoning) and 
prediction (or deductive reasoning). Introduction to 
inference and advanced inference for Bayesian 
Networks is available in (Dietterich, 1999).  

As an example, for the brake wear, the use case 
that will be presented in the next section, Figure 6 
represents probabilistic inference computed by 
HUGIN software (http://www.hugin.com) after 
giving evidences (emphasized in red). The model 
consists of four nodes that represent aircraft weight, 
landing velocity, brake operation during landing and 
brake wear degradation. Brake wear degradation 
changes depending on the values for the first three 
variables (evidences).  

Notice that for the evidence: (aircraft 
weight=(148825-inf]; landing velocity=(55.5307-
58.36295], 

 
Figure 6: Bayesian Network inference (aircraft weight= 
(-inf-117915]; landing velocity=(-inf-30.4738], brake 
operation=true).  

brake operation=true), the brake wear degradation 
value would be higher than for the evidence shown 
by the Figure 6 because aircraft weight and landing 
velocity have an influence on brake wear 
degradation; the higher weight and velocity values, 
the higher the degradation. 

Eventually, the join probability distribution 
(global model) is specified through marginal and 
conditional distributions (local models) taking into 
account conditional independence relations amongst 
the nodes and its parents. This modularity provides 
an easy maintenance and reduces the number of 
parameters necessary to specify the global model. 
This way, the estimation of the parameters is easier, 
there is a reduction of the storing needs and the 
inference is more efficient. 

Furthermore, Bayesian Network is very useful 
because it is adaptable. It is possible to build an 
initial network with a limited knowledge in a 
domain and increase it as new knowledge becomes 
available. But the most significant issue is that it is 
possible to learn from experience, that is, Bayesian 
Networks can refine (conditional) probabilities 
specified amongst the states of the nodes by taking 
into account real observations. For example, 
following with the former example, if we fix the 
values for aircraft weight, landing velocity, brake 
use operation, and we also fix the real value for 
brake degradation for the values we have used, the 
net has the capability of propagating and changing 
its conditional probabilities, adapting these to the 
newly established knowledge.  

Bayesian Networks have some advantages over 
other techniques (Byington, 2002) (Goode, 1999) as 
explained in this section: 

 They can manage causalities and 
uncertainties. 

 They are an effective technique for solving 
diagnostic and prediction problems in 
situations where knowledge comes from 
different sources because they are able to 
mix a priori knowledge and experimental 
knowledge. 

 There are efficient algorithms for 
estimating its structure and its a-priori 
probability distributions.  

 It provides with adaptation process in order 
to redefine conditional probabilities from 
experience (i.e. evidences).  

 Its representation of knowledge is graphical 
and intuitive. 

Bayesian Network is being implemented 
extensively for different domains. In medicine, it is 
used for medical diagnosis such as prostate cancer, 
benign prostate hyperplasia, for screening cervical 
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cancer or liver disorders (Onisko, 1998). They are 
used for medical prognosis as well, attempting to 
predict the future state of the patient with the 
evidence we have (symptoms, signs, laboratory test 
results, etc) and the treatment (Sierra, 1998). BNs 
are also applied in fields as robotic localization and 
in the area of mobile robotics (Lazkano, 2007). 
Industrial maintenance has evolved from condition 
based maintenance to predictive maintenance thanks 
to new technologies as BNs, being able to support 
the decision process on fault diagnosis and 
troubleshooting based on the faults prediction for 
non-critical machinery such as elevators and 
machine tools (Gilabert, 2006). But there are lots of 
references in the literature about the application of 
BNs in other fields of application: sensor validation 
(Ibargüengoytia, 2006), reliability analysis of 
Systems (Doguc, 2009), detection of broken rail for 
railway infrastructure (Oukhellou, 2008), diagnosis 
of radio access networks of cellular Systems (Barco, 
2009), etc. 

4 CONDITIONAL VIEW: BRAKE 
WEAR DEGRADATION BASED 
ON BAYESIAN NETWORKS 

Currently, the estimation of brake wear degradation 
in aeronautics is performed through a physical 
model. It was been developed by British Aerospace 
Systems using tests data from Airbus UK and it is 
based on the following input parameters: 

 Aircraft weight 
 Landing velocity 
 Brake operation during landing 
 Flap position  
 Initial brake temperature 

Besides using physical model to make 
estimations about brake wear degradation, it may be 
possible use Standard Degradation or Simple 
Extrapolation as models. Standard Degradation uses 
‘standard landing’ wear rate taken as the mean wear 
rate based on the experience (0.1mm), whereas 
Simple Extrapolation attempts to predict future 
brake wear degradation by relying on real data from 
historical data. We propose two novel models based 
on a Bayesian Network: PhysicalBN & OpBN. 

PhysicalBN model takes into account the most 
influencing parameters on the degradation 
estimation used by the physical model: aircraft 
weight (MassWeight), landing velocity (V_Init) and 
brake operation during landing (BrakeUse). It was 
built from expert criterion to determine the structure 
of the net and from a statistical analysis of the data 

estimated by the physical model (developed by 
British Aerospace Systems) from 3000 samples 
randomly generated in order to estimate the 
probabilities of each parameter. Figure 7 represents 
PhysicalBN and shows the information behind the 
main nodes corresponding with the variables 
mentioned and their influence on brake wear 
degradation.  

 
Figure 7: Bayesian Network (HUGIN researcher 6.8). 

PhysicalBN model has some advantages against 
the physical model, Standard Degradation or Simple 
Extrapolation: 

 Causalities and probabilities can be 
established by an expert criterion and 
statistical analysis from test- benches of the 
physical model. 

 The model predicts approximately 0.11mm 
wear degradation per flight when there is 
no information about future conditions for 
aircraft weight, landing velocity and brake 
operation during the landing. So, it 
simulates well the physical model standard 
wear rate. 

 The model associates brake wear 
degradation prediction with a confidence 
level of 95%. 

However, brake wear degradation may change 
substantially depending on flight conditions. A key 
issue to highlight is to fit the prognosis modelling to 
the available information. This information is not the 
same for each case, as can be operational plan 
information, historical lifetime measurements, trends 
or distributions about the components’ behaviour, 
etc.  

There is important information into an 
operational plan that may be used to predict 
degradation parameters. Operational flight plan may 
be determine the value of the degradation parameters 
and it can be known in advanced. For instance, 
aircraft weight typically depends on flight distance, 
since the longer the distance the more extra fuel 
should be loaded on the aircraft for dealing with odd 
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situations, more passengers, more freight, etc. Table 
1 shows an operational plan:  

Table 1: Operational plan. 

FlightNo. Route Flight 
distance 
(hours) 

Check 
date 

Wear 

AF0011 CDG-DEL 12 -  
AF0012 DEL-CDG 12 06/01/2008 105.451 

… … … …  
… … … …  

AF348 BOM-
CDG 

12 -  

AF349 CDG-NRT 19 04/02/2008 62.747 
… … … …  

 
Airport 

code 
Runway 
length 

Runway 
condition 

Weather 
 

CDG 3600 Good Wet 90% 
DEL 3810 Fair Dry 80% 
… … … … … 

BOM 3445 Fair Dry 95% 

The fact is that for the PhysicalBN is not 
possible to have aircraft weight, landing velocity and 
brake operation parameters a priori, and their values 
are not available before the flight in order to predict 
brake wear degradation. But Bayesian Network 
structure allows configure causal relations between 
operational plan features and PhysicalBN model 
inputs affected. Thus, a second Bayesian Network 
model (OpBN) is used for explaining the influence 
of ‘operational plan parameters’ in the original 
model input nodes. The original PhysicalBN is 
structurally expanded with the new information 
coming from the operational plan and OpBN appears 
the following way (Fig. 8): 

Now, it is possible to estimate real predictions 
concerning the values of the input parameters for the 
brake wear estimation at each future flight with 
certain assumptions:   

 FlightDistance represents hours of flight 
and it influences into the weight of the 
aircraft as it was explained before. 
RunwayLength symbolizes runway length 
and    both    landing   velocity   and   brake 
operation during the landing will be 
dependent on it. Being landing velocity 
smaller the shorter the length of the 
runway; and being less necessary the use of 
brakes as its length increases. 

 Weather is linked with runway condition. If 
the weather is rainy, then the runway surely 
will be wet, whereas if it is sunny, the 
runway will be dry. 

 
Figure 8: Bayesian Network with operational plan 
parameters. 

 RunwayCondition is the runway condition 
and the use of the brake operation during 
the landing will be dependent on it. If the 
runway is wet, then it is more probable that 
brake operation will be off during the 
landing. On the other hand, when the 
runway is dry, the use of brake operation 
during landing will be more probable.  

As result, brake wear can be calculated (in mm) 
and mapped onto an estimate of RUL (in mm or in 
nominal number of landings using ‘standard 
landing’ wear rate). But the RUL prediction (RUL 
update) error will increase during the computational 
process (Fig. 9), having an impact on the operational 
risk.  
The computational process of RUL prediction starts 
as expected usage which is what OpBN can really 
forecast (expected usage) linked to RUL estimation, 
and it relies on the past behaviour: 

 
Figure 9: Process of computing brake wear RUL. 
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In order to minimize this confidence loss, two issues 
are taken into account: 

1. Cumulative Variance and Confidence 
Levels. 

Assuming brake wear degradation follows a 
Gaussian distribution with a 95% of confidence 
level for each flight, and further assuming 
independence between flights, the loss/gain 
assessment of the confidence curve for a whole 
distribution is defined as follows by the addition 
of these Gaussian distributions: 
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where sd=σ  

2. Status Observation. 
After some flights (at time tj) there will be a 
check-in at the gate and the brake wear real 
degradation will be known. Both confidence 
levels and predicted brake wear degradation are 
fixed at the same value of real degradation. 
Then, it will retrieve 100% of confidence level. 
Figure 10 illustrates RUL prediction at time t0 
with confidence levels for the next 11 flights: 
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Figure 10: Results from prediction model. 

5 EVALUATION AND FUTURE 
ACTIONS 

Finally, to evaluate whether it is possible to build 
more accurate and adaptable model than the original, 
it is shows several results for the case of the brake 
wear.  

In order to evaluate the goodness of the 
PhysicalBN model, the error rate is calculated from 
a new dataset of 100 samples by means of MSE 
(mean squared error): 

00587.0))(ˆ(1))(ˆ,(
1

2 =−= ∑
=

n

i
ii yxf

n
xfyL  (7) 

The error of the model is not significant, 
however, it is necessary to evaluate the error for the 
computational process of RUL prediction showed in 
the Section 4 and compare it with the error of other 
algorithms such as the Standard Degradation or 
Simple Extrapolation. Table 2 represents the error 
rate for the brake wear degradation after some 
flights when there is a checking in an operational 
plan for 35 flights performed by the same aircraft:  

Table 2: Error rates. 

Landings 
after a 

checking 

Standard 
degradation 

Simple 
extrapolation 

PhysicalB
N 

3 -0.1243 -0.0465 0.1157 
12 -2.567 -1.2804 0.213 
20 -14.0901 -4.2572 0.099 

The difference between conventional models and 
Bayesian Network is evident. Standard Degradation 
and Simple Extrapolation have major error rate and 
they increase quickly over the time, whereas 
PhysicalBN which represents the physical model 
when data is available improves the results and 
unlike conventional models it does not perform 
estimations superior to the real degradation. But 
PhysicalBN does not fit with the prognosis because 
its input parameters such as aircraft weight or 
landing velocity are not available before the landing. 
In this case, the results of the PhisycalBN would be 
the same as the Standard Degradation’s. Even so, 
PhysicalBN provides with confidence levels of the 
brake wear degradation. 

Nevertheless, OpBN overcame this problem 
using operational plan information in order to 
estimate input parameter for the PhysicalBN. The 
evaluation of OpBN is more complex as the 
goodness of the model depends on the accuracy of 
the probabilities that link the information of the 
operational parameter with the input parameters of 
the PhysicalBN.    
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Even though Bayesian Networks give good 
results compared to the current existing techniques, 
there is still the possibility to improve them. A new 
network is been adjusted. The first idea is that the 
network will be able to adjust its probabilities faced 
with the arrival of new data after some flights.  

6 CONCLUSIONS 

Conditional View function is an important task for 
operational support and operational risk assessment 
for aerospace industry. This function involves many 
types of aircraft components (brake wear, electronic 
components, actuators, fuel pump, etc) to be 
evaluated.  

Because of the fact that is not possible to achieve 
this task with an only type of technique it is 
necessary to look for different techniques which 
involve many issues that lead to the need to cope 
with uncertainties, and the need to re-assess and 
adapt initial models. 

Bayesian Networks are useful technologies. 
Even tough most of the efforts so far have been 
focused on diagnosis for Bayesian Networks, this 
paper demonstrates the usage concerning prognosis, 
in particular for the Conditional View in order to 
improve aircraft maintenance with a new type of 
decision support. 
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