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Abstract: The secondary structure of an RNA molecule is known to be critical in its biological function. However, the
problem of predicting the secondary structure of an RNA molecule based on its primary sequence is compu-
tationally difficult in the presence of pseudoknots. In general, the problem is NP-hard. Most of the existing
algorithms aim at restricted classes of pseudoknots. In this paper, we consider a new class of pseudoknot
structures, called simple non-standard pseudoknot, which can cover more complicated secondary structures
found in existing databases. None of the previous algorithms can handle this class of pseudoknots. Only two
of them, which run inO(mf) and O(mP) time where m is the length of the given RNA sequence, can han-
dle certain cases in this new class. On the other hand, we provide a prediction algorithm that@(mé)in
time for simple non-standard pseudoknots of degree 4 which already covers all known secondary structures of
RNAs in this class.

1 INTRODUCTION doknots (Akutsu, 2000), standard pseudoknots (see
the definition in Section 2), recursive pseudoknots
RNA molecules are known to play important roles in (i.e., pseudoknot/regular structure inside a pseudo-
living cells and are involved in many biological pro- knot) (Akutsu, 2000). For the definitions of these
cesses (Frank and Pace, 1998) (Nguyen et al., 2001)pseudoknot structures, please refer to the given ref-
(Yang etal., 2001). The structure of an RNA molecule erences.
provides important information about the functions of Rivas and Eddy were among the first who tack-
the molecule. Thus, finding the structure of an RNA led the problem of RNA secondary structure predic-
molecule is an important problem. Unfortunately, tion with pseudoknots (Rivas and Eddy, 1999). They
finding or predicting the 3D (or tertiary) structure of described a dynamic programming algorithm to solve
an RNA molecule is a complicated and time consum- the problem for simple pseudoknots, certain restricted
ing task. A more promising direction is to predict the cases for standard pseudoknots and recursive pseudo-
secondary structure (that is, which pair of bases of knots, as well as some restricted cases in a more com-
the molecule forms a hydrogen bond) of the molecule plicated class of pseudoknots, simple non-standard
with minimum free energy based on its primary se- pseudoknots, to be defined in Section 2. Their algo-
quence. The predicted secondary structure can al-rithm runs inO(m®) time wherem is the length of
ready help researchers to deduce the functions of thethe input RNA sequence. Their algorithm is still the
molecule. However, predicting secondary structure most powerful algorithm that can handle the largest
of an RNA molecule is not an easy problem and is set of pseudoknot structures including some compli-
computationally difficult in the presence of pseudo- cated ones for which none of the existing polynomial-
knots (base pairs crossing each other, secondary structime algorithms can handle.
ture without pseudoknots are referred as regular struc-  Lyngso and Pedersen provided a faster algorithm
tures). In general, the problem is NP-hard (Lyngso that runs inO(n) time (Lyngso and Pedersen, 2000),
and Pedersen, 2000). Most of the existing algorithms but can only handle H pseudoknots. Later on, Ue-
aim at restricted classes of pseudoknots. muraet al. gave an improved prediction algorithm
Pseudoknot structures can be classified as fol-for H pseudoknots that runs @(m?*) time (Uemura
lows in increasing order of complexity: H pseudo- et al., 1999). The algorithm can, in fact, handle sim-
knots (Lyngso and Pedersen, 2000), simple pseu-ple pseudoknots and some limited cases for standard
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pseudoknots and recursive pseudoknots. Their algo-cases for which three base pairs cross one another. For
rithm is based on a tree adjoining grammar (TAG) to example, it can include a complex structure (shown in
model RNA secondary structures thatinclude pseudo- Figure 1) with three base pairs crossing one another
knots. However, tree adjoining grammar is not easy that is known to be a topology present in Escherichia
to understand. coli o mRNA (Gluick and Draper, 1994) and some
Akutsu provided another dynamic programming other complex structures as shown in Figure 2 listed in
algorithm that runs ifO(n*) time for predicting sim- ~ (Dirks and Pierce, 2003). We provide @tnt*) time
ple pseudoknots (Akutsu, 2000). This algorithm is algorithm for predicting simple non- standard pseu-
much simpler than the algorithm given in (Uemura doknots of degree 4 which already include all known
et al., 1999). He also extended the algorithm to structures in this class. Note that our algorithm can
support recursive simple pseudoknot structures (i.e.,handle all structures defined in the class of simple
there can only be simple pseudoknots/regular struc-non-standard pseudoknots with degree 4 while algo-
tures inside another simple pseudoknot). The algo- rithms in (Rivas and Eddy, 1999) (Akutsu, 2000) can-
rithm in (Akutsu, 2000) was implemented and eval- not. Our algorithm can be extended for general degree
uated by Deogun (Deogun et al., 2004). Recently, k with running timeO(m).
Chenet al. provided a faster algorithm that runs in
O(n) time (Chen et al., 2009) that handles almost
all pseudoknot structures that can be handled by thea M PLE NON-STANDARD
algorithm in (Rivas and Eddy, 1999). The ones that
cannot be handled by the algorithm in (Chen et al., PSEUDOKNOTS
2009) are those in which there are three base pairs that i
cross one another. Other related work includes (Dirks -8t A = @1328m be a lengthm RNA sequence with
and Pierce, 2003) (Reeder and Giegerich, 2004) in 8lPhabet{A, C, G, U} andM be a secondary struc-
which the pseudoknots considered are also more re-uré of A~ M can be represented as a set of
stricted than those in (Rivas and Eddy, 1999) (Chen P@se pair positions, i.eM = {(i,))|1 <i < j <
et al., 2009). m, (a,aj)ls_a ba.se. paj. Let Myy C M be the set
of base pairs within the subsequergay,1...ay,1 <
x<y<m ie, My ={(,j) e Mx<i<j<yh
Note thatM = M1, We assume that there is no
two base pairs sharing the same position, i.e., for any
(i1,J1), (i2, j2) €M, i1 # j2,i2 # 1, andiy =iz if and
onlyif j1 = jo.
Pseudoknots are base pairs that cross each other.
For example, leti, j) and(i, j), wherei < j andi < |,
be two base pairs. They form a pseudoknadt<fi <
j<jori<i<j<j. Myyis aregular structure if
there does not exist pseudoknots. Note that an empty

Figure 1: A complex psuedoknot structure present in Esh- get is also considered as a reqular structure
erichia colia mRNA (Gluick and Draper, 1994). It consist 9 '

three base pairs that cross one another. fa)
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Figure 2: The two complex pseudoknot structures (a) and [ s il g 1

(b) listed in (Roland, 2006). The gray box represents a set ! =i
of base pairs in the regions. X 3 T 2

Our Contributions. In this paper, we consider Figure 3: (&) A standard pseudoknot of degkee(b) A

a more complicated class of pseudoknot structures,s!mp:e non-stangarg pse“gotmt O:Z geg(@ype . () A
called simple non-standard pseudoknots, which ex- simple non-standard pseudoknot of degegype ).

tend the current classification of pseudoknots to cap-

ture more complicated pseudoknots and include some  We now define a standard pseudoknot of degree
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there exists a set of pivot poinig, xg, ..., Xk_1(X = B
X0 < Xp < X2 < ... < X1 < X¢ =Y) that satisfy o

as follows. A structure is a standard pseudoknot of A Ve ”
degreek if the RNA sequence can be divided irko FF‘ f
consecutive regions (see Figure 3(a)) such that base xRy
pairs must have end points in adjacent regions and
base pairs that are in the same adjacent regions cannot 9 . =
cross each other. The formal definition is as follows. Y F'-_: i ﬁ

Myy is a standard pseudoknot of degkeg 3 if ﬁéz ) R | m— i I

the following. LetMy(1 <w<k-1)={(i,]) € 3 - y =
Myy[Xw—1 <1 <Xw < j < Xwy1}. Note that we allow 1‘1; I = ﬂ
j = X« for My_1 to resolve the boundary case. A\) el
e For each(i,j) € Myy, (i,]) € My for some 1< Figure 4: The complex pseudoknot structure (a) and (c) are
wW<k—1. ' type | simple non-standard pseudoknots shown in (b) and
- (d) respectively. Structure (e) is type Il simple non-stmad
° MW(1 <w<k-— 1) is a regular structure. pseudoknot shown in (f). The gray region represents a set

of base pairs and the green region represents a set of base

Note that a standard pseudoknot of degree 3 is pairs in the special region of simple non-standard pseudo-
simply referred as a simple pseudoknot. Now, we de- knot structure.
fine a simple non-standard pseudoknot that extends
the standard pseudoknot to include some structures
with three base pairs crossing each other. For a sim-3 PROBLEM DEFINITION
ple non-standard pseudoknot of degkeesimilar to
a standard pseudoknot, the RNA sequence can be did{n the following, we assume that the secondary struc-
vided intok regions with the region at one of the ends ture of the given RNA sequence is of simple nonstan-
(say, the right end) designated as the special region.dard pseudoknot. We now define a free energy model
Base pairs with both end points in the fikst- 1 re- for a standard non-standard pseduoknot structure. We
gions have the same requirements as in a standardiseé a similar model as defined in (Akutsu, 2000).
pseudoknot. And there is an extra group of base pairsThe energy model depends on adjacent base pairs and
that can start in one of the firkt— 2 regions and end  destabilizing energy. Free energy for adjacent base
at the last special region and again these pairs do notpairs usually takes negative values and we consider
cross each other (see Figure 3(b)). See the formal def-an energy functioeSa;, a;, a+1,a;-1) depending on

inition below. adjacent base pair®;,a;) and(aj11,aj—1). On the
Myy is a simple non-standard pseudoknot of de- other hand, free energy for destabilizing energy usu-
greek > 4 (Type |) if there existxy, ..., X1 andt ally is positive value and we consider a simple energy
wherex = Xg < Xg < ... < X1 < X =Yy and 1< function for destabilizing energy, which is determined
t < k— 2 that satisfy the following. LeMy, (1 <w < by the length of the unpaired bases. Also, Rivas and
k—2)={(i,]) € Mxy|Xw-1 <i <Xy < j < Xw+1}. Eddy considered an extra energy for initiatiqn _of a
LetX = {(i,]) € Mxy|[%-1 <i <%, %1 <] <y} new pseudoknot (Rivas and Eddy, 1999). Similarly
' we also consider an additional energy for initiation of
e For each(i, ) € Myy, either(i, j) € My(1 <w < a stem.
k—=2)or(i,j) eX. Roughly speaking, a stem is a pair of maximal re-

gions bounded by two base pairs such that no base
pair with one end inside the regions and another end
Type Il simple non-standard pseudoknots (see outside the region. A stem is defined formally as two
Figure 3(c)) are symmetric to Type | simple nonstan- non-overlapping regiong;a;p] and|aj_q...a;j] such
dard pseudoknots with the special region on the left that (i) (a,a;) and(aj+p,aj—q) both are base pairs;
end. As shown in Figure 4, the complex structures (ii) all base pairs(ar,as) wherei <r <i-+ p and
in Figure 1 and Figure 2 belongs to the simple non- j —q < s< j do not cross each other; (iii) there does
standard pseudoknot structure. For the sake of sim-not exist any base pair such that one end is inside the
plicity, in the rest of the paper, we only consider Type regions, but another one is outside the regions; (iv)
| simple non-standard pseudoknots and simply refer the values ofp andq are maximum. Note that every
it as simple non-standard pseudoknots. So, we omitbase pair will belong to a stem. Figure 5illustrates the
the definition of Type Il simple non-standard pseudo- idea of stems inside the simple non-standard pseudo-
knots. knot structure and Table 1 lists out the parameters of

e My, andX is a regular structure.
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the energy model. Our dynamic programming algo- we do not have base pairs with one end inside the sub-
rithm (which will be described in the next section) is region and the other end outside the subregion, thus
designed to compute the minimum energy according enabling us to use dynamic programming approach
to this simple energy model. The algorithm can be to solve the problem. To make it easy to understand
further extended to consider a more complicated en- what a subregion is, we redraw the pseudoknot struc-
ergy model and include more parameters to increaseture as in Figure 6(b). Based on the way we draw
the accuracy of the structure prediction. the structure, it is easy to see that for the optimal sec-
ondary structure, base pairs can be ordered from top
to bottom without crossing each other.

We define a subregion using four poimtsq, r, s
with x < p<g<r <s<y. An example is shown in
Figure 6(c) in which the highlighted part is the sub-
region defined by the four points. Note that when
we predict the secondary structure, we do not actually
know the locations afy, X2, X3. So, we try all possible

Figure 5: Dot lines represent base pairs. Two regions on

the RNA sequence covered by the same color are a stem

region. Say[6,10 U[23,27] represents a stem region. In
this example, there are 4 stem regions.

combination ofp, g, r, sto define subregions. These
points are added in Figure 6 to illustrate that there is
always a way to define a subregion so that base pairs

in the optimal structure will not have one end point
inside the subregion while the other end outside the

Table 1. Parameters of the energy model. subregion. So, for each subregion we define in the dy-

Parameters Description namic programming algorithm, we will not have base
€0 energy for initiation of a stem pairs having one end point inside the subregion and
inside a pseudoknot the other end point outside the subregion.
eSaj,aj,ay,aj) energy of two adjacent
pairs closed byi, j) and(i’, j’) W &
where|i’ —i|=|j—j|=1 A e 1 __E__‘
eL(k) energy ofk unpaired bases AlE ] ;!

The problem is defined as follows. Given an RNA
sequence, compute a secondary structure which is a
simple non-standard pseudoknot with minimum free . g
energy. T

4 PREDICTION ALGORITHM

tis even

Lis even

We predict the optimal structure with minimum free tiodd

energy using a dynamic programming algorithm. The g re 6: Subregion of a simple non-standard pseudoknot.
core of our algorithm is based on the concept of a sub-
region so that we can find the optimal structure recur-
sively. In the following, we first explain the concept ~ The same definition of subregion cannot be ap-
of subregion, then we provide the details of the al- Plied when tis even. Figure 6(d) shows the problem

gorithm followed by the time and space complexity by using the same definition as there can be base pair
analysis. with one end point inside the subregion and the other

end point outside the subregion, thus dynamic pro-
gramming approach cannot be applied easily. Note
that the two base pairs that appear to cross each other
in Figure 6(d) is only due to the way we draw it, they
do not actually cross each other, so the structure is still
Since all known RNAs with simple non-standard a simple non-standard pseudoknot. To solve the prob-
pseudoknots are of degree at most 4, in the following, lem, we use a different definition for subregions when
we only consider degree 4 simple non-standard pseu-t is even as shown in Figure 6(e). Formally speaking,
doknots. The subregion is defined in a way such that we define a subregion as follows. L&fx..y] be an

4.1 Subregion in Simple Non-standard
Pseudoknot
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RNA sequence. Let= (p,q,r,s) be aquadruplewith ~ where STARTIs the case for starting a stem and

x<p<qg<r<s<y. If tis odd, define the subre- EXPANDis the case for extending a stem.

gion R°d(v) = [p,q]U[r,g. Fort is even, we need

an additional parameteg and define the subregion dd

Re**x,v) = [P, U lr,xs — 1] Ufs Y] START = $M(p+1a-Lrs+e
$gd(p+1vq7 1; r,S)

min +e9p,q,p+1,9-1)

dd

We first show how to compute the minimum free en- SE(p+La-1rs)
g)%)é.of the optimal secondary structure for the case of gimjjarly for 4d(p,q,r,5) andYe4(p, a1, S).

Let S99p,q,r,s) be the minimum free energy
of the optimal secondary structure R?99(p, q,r,s) SEUp+1,q,r,9) +el(1)
whereY € {LP,RRJPLE,RE,JE,D} is one of the dad o dd(p,q—1,r,9) +eL(1)
possible cases to consider for having the optimal sec- SE(p.q,r,s) = min gd(p+ 1,9,r,9 +eL(1)
ondary structure insid&99(p,q,r,s). These cases dd(p,q—1,r,5) +el(1)
are explained in the following. Note that according ES 7
to the definition of simple non-standard pseudoknot, similar for %9(p, q,r,s) andS%(p,q,r,9).
only (p,q), (q,r), and(p,s) can form a base pair. If
one of them forms a base pair, then we have one of
the following cases: (1) it starts a stem or expand a 2%(p,q,r,s) = min{CLOSEBETWEEN
stem, but not ends a stem; or (2) it is the last base pair
of a stem. If they form a base pair, then they will be

4.2 Dynamic Programming Algorithm EXPAND

where CLOSE refers to the closing of a stem and

inside a stem. The following shows all these different SBETWEENrefers to hgcase that it is not inside a

cases. 4
LP refers to the case thép,q) forms a base pair
to start a stem or expand the stem, but not ends the V(ap,aq) + 8% p+1,9—1,r1,5)
stem (i.e. it does not form the last base pair in the +egp,qp+1,g-1)
stem which will be handled by the caBg; dd
RPrefers to the case théd, r) forms a base pair to V(@p, 3q) + $§d(p+ 1.9-1rs
start a stem or expand the stem, but not end the stem; v(ag, &) + Rp(P.q—1,r+19)
JPrefers to the case thép,s) forms a base pairto  CLOSE= min +egq,r,q—1r+1)
start a stem or expand the stem, but not end the stem; v(ag,ar) + SW(p,q—1,r +1,9)
LE refersto the case thép, q) is inside a stem but v(ap,as) + 8(p+1,q,r,5— 1)

does not form a base pair;

RE refers to the case théd, r) is inside a stem but +eSp.sp+1s—1)

does not forms base pair; V(ap,as) + Se(p+1,q,r,5— 1)
doeJ Enroetf(figsngok;tgeecszi thép, s) is inside a stem but Ad(p+1,q,r,5) +el(1)
s r se pair; dd B
D refers to the case that all bases {p,q,r,s} BETWEEN= min S$°(P.a-1rs)+ell)
- - - i S4(p,q,r +1,5) +el(1)
may either (i) contribute to the last base pair in some a7 )
stems, or (ii) do not form base pairs and do not belong S%p,q,r,s—1)+el(1)
to any stem.

The recurrences for computing the minimum
free energy of the optimal secondary structure for
R&®p,q,r,s,x3) will be similar, but note the ad-
ditional parameter required for this case due to
! g : the slightly different definition of subregions. Let
all possible cases. qu example,lﬁﬁ, (p,q,r,s), |f. _ S°Vp q.r,sx5) be the minimum free energy of
(p,q) form a base pair, we consider the energy if it o optimal secondary structure R®"p,q,, s, xs)
starts a stem or expands a stem. whereY ¢ {LP,RRJPLE,RE,JE,D} is one of the
possible cases. The definitions of Y is the same as that
for 99(p, q,r,s) except with(q, s) replacing(p,s) as
for this casg p, s) will not form a base pair, bufg, )
49(p,q,r,5) = v(ap,aq) + Min{STARTEXPAND} can form a base pair.

For any two basea, a; in the RNA sequence, let
v(aj,aj;) = 0 if & anda; can form a base pair, oth-
erwise letv(a;,aj) = +. The following shows how
to computeS)99(p, q,r,s) recursively by considering

Recurrences:
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The minimum free energy of the optimal structure Dirks, R. and Pierce, N. (2003). A partition function

for the whole RNA sequence is the minimum value algorithm for nucleic acid secondary structure in-
f I'min dd(1 x x= 1.0 mi very 1 cluding pseudoknots. Journal of Comput. Chem
2X£X3)§{}% (Lxx4 1, M)}, Minyex, { LY,y + 24(13):1664-1677.

From the real data, the distance betwegrand Frank,_D. a_nd_Pace, N. (1998)._Ribc_)nuclease p: unity and
the end of the sequence is usually bounded by a small g'i‘girr?'etr{l'27‘"’_‘1tég"ilpsrgcess'“g ribozymennu. Rev.
constant, so we assume that the number of different N ' _
x3 values we need to consider is only a small con- CGluick, T. and Draper, D. (1994). Thermodynamics of
stant. The time complexity of the above algorithm is folding a pseudoknotted mrma fragmendournal of

. . . Molecular Biology 241:246—262.
O(m*). The memory complexity of the algorithm is _
aIsoO(m“) Lyngso, R. and _Pedersen, C. (2000). A dyngm@ program-
) ming algorithm for rna structure prediction including
pseudoknots. IfProc. of the Fourth Annual Interna-
tional Conferences on Compututational Molecular Bi-

5 CONCLUSIONS ology (RECOMBOQ)ACM Press.

Nguyen, V., Kiss, T., Michels, A., and Bensaude, O. (2001).
7sk small nuclear rna binds to and inhibits the activity
of cdk9/cyclin t complexesNature 414:322—-325.

Reeder, J. and Giegerich, R. (2004). Design, implementa-
tion and evaluation of a practical pseudoknot folding
algorithm based on thermodynamid8MC Bioinfor-

In this paper, we consider a new class of pseudoknots
which include more complicated structures that none
of the existing algorithms can handle. We then pro-

vide anO(n*) time algorithm for predicting these

a structure of degree 4 with minimum free energy matics 5:104.
Whlc_h already covers all known secondqry structures Rivas, E. and Eddy, S. (1999). A dynamic programming
of this class in existing databases. We implemented algorithm for rna structure prediction including pseu-

our algorithm and the running time is reasonable, doknots.Journal of Molecular Biology285(5):2053—
which takes about 70sec for a RNA of length about 2068.

100 and about 3 times faster than the one in (Rivas Roland, E. (2006). Pseudoknots in rna secondary structures
and Eddy, 1999). We will evaluate the accuracy of representation, enumeration, and prevaledogirnal
the predicted structures once we can locate a set of  of Computational Biologyl13(6):1197-1213.
appropriate parameters for the energy model. In fact, Uemura, Y., Hasegawa, A., Kobayashi, S., and Yokomori,
there are not many known RNAs with simple non- T. (1999). Tree adjoining grammars for rna structure
standard pseudoknots. One of the reasons may be due  Prediction. Theoretical Computer Scienc10:277—-

to the limitation of existing computational prediction 8.

tools. With our algorithm, we may be able to pre- Yang, Z., Zhu, Q., Luo, K., and Zhou, Q. (2001). The 7sk
dict more RNAs with such a structure for follow-up small nuclear rna inhibits the cdk9/cyclin t1 kinase to
verification. Although there are no other more com- control transcriptionNature 414:317-322.

plicated known pseudoknot structures, there is a high

chance that there exist novel RNAs with more compli-

cated structures, so designing efficient prediction al-

gorithms for more complicated pseudoknot structures

remains an important open problem.
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