
PREDICTING TRAFFIC FLOW IN ROAD NETWORKS
Using Bayesian Networks with Data from an Optimal Plate Scanning Device

Location

S. Sánchez-Cambronero, A. Rivas, I. Gallego and J. M. Menéndez
Department of Civil Engineering, University of Castilla-La Mancha, 13071 Ciudad Real, Spain

Keywords: Traffic data updating, Gaussian Bayesian networks, Probability intervals, Plate scanning, RMARE.

Abstract: This paper deals with the problem of predicting route flows (and hence, Origin-Destination (OD) pair and
link flows) and updating these predictions when plate scanned information becomes available. To this end,
a normal Bayesian network is built which is able to deal with the joint distribution of route and link flows
and the flows associated with all possible combinations of scanned link flows and associated random errors.
The Bayesian network provides the joint density of route flows conditioned on the observations, which allow
us not only the independent or joint predictions of route flows, but also probability intervals or regions to be
obtained. A procedure is also given to select the subset of links to be observed in an optimal way. An example
of application illustrate the proposed methodology and shows its practical applicability and performance.

1 INTRODUCTION

As is well known, in traffic problems several types of
flows can be considered, such us route, OD-pair, link
and node flows, but other types are also possible in-
cluding disaggregated versions of flows, as OD-pair
flows through a given link or node and with a given
origin and/or destination, etc. In this paper, we aim
at estimating route flows, because once they are es-
timated, other traffic flows such as OD-pair and link
flows can be immediately calculated from the corre-
sponding incidence matrices. We also deal with an-
other type of flow, which corresponds to flows pass-
ing only through a given subset of links. This is the
natural type of flow for the plate scanning technique.

In the traffic literature, several problems related to
these types of traffic flows were studied, such as trip
matrix estimation (ME) or traffic assignment prob-
lems. The assignment model has as inputs the OD
pair flows and produces as outputs the probabilities of
a traveler to select the different routes of an OD pair
(see (Castillo et al., 2008c) for deterministic models
and (Praskher and Bekhor, 2004) for stochastic mod-
els). On the contrary, the ME problem has as inputs
these probabilities and link flows and produces as out-
puts the OD pair flows. However, these two problems
are closely connected and some inconsistencies can
occur in the traffic estimation if they are solved sep-

arately. To solve this problem, they can be combined
into one problem, in which the trip matrix flow esti-
mation and the traffic assignment problems become a
single one. Several techniques have been proposed to
solve this combined problem, which include, the well
known bi-level approaches (see (Conejo et al., 2006)).

In the ME problem one tries to estimate origin-
destinations (OD) trip matrices based on some ob-
served link flows. Unfortunately, this is an under-
specified problem, due to the fact that the number of
paths between OD pairs is normally much larger than
the number of observed links (i.e. the incidence ma-
trix is not full rank), and there are infinitely many so-
lutions satisfying the conservation laws. In order to
have a unique solution, one has to provide more in-
formation by means of a prior OD trip matrix, which
can come from many different sources, including an
out-of-date, subjectively-guessed, or obtained by an
alternative method, etc. Based on the observations
(OD or link flows) and this prior OD matrix, the OD
matrix can be estimated by many different methods,
such as the least squares and the generalized least
squares methods ((Doblas and Benitez, 2005)), the
entropy or information based methods ((Van Zuylen
and Willumsen, 1980)), and statistical based meth-
ods (see (Cascetta and Nguyen, 1988), for classi-
cal approaches, and (Tebaldi and West, 1996) for
the Bayesian approaches). Some other works used
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Bayesian networks such as (Sun et al., 2006) and
(Castillo et al., 2008b).

In this paper we have used the plate scanning tech-
nique in order to deal with the problems exposed
above: the under-specification on one hand, and the
inconsistences between OD matrix estimation and the
assignment problems on the other (see (Castillo et al.,
2008a)). The idea is to register the plate numbers of
the circulating vehicles together with the correspond-
ing times at some subsets of links and use this in-
formation to reconstruct vehicle routes. The plate
scanning approach to traffic flow estimation and re-
construction has been revealed as a very promising
alternative to other existing methods based on link
flows or traffic surveys, as was done in other standard
methods, because it provides much richer informa-
tion about traffic flows than simply observing (count-
ing) link flows (see (Watling, 1994) or (Castillo et al.,
2008a)).

The new contribution of this paper consists of pre-
senting a Bayesian network to estimate route flow
based on plate scanning. It combines two recently de-
veloped techniques, Bayesian network and plate scan-
ning, to predict traffic flows. Using both thechniques,
the random dependence structure of traffic flows in-
cluding not only OD-pair and link flows but route
flows and flows associated with subsets of links are
provided. In addition, a procedure is also given to se-
lect the subset of links to be observed in an optimal
way subject to a given budget.

The paper is organized as follows. In section 2 the
problem of selecting an optimal subset of links to be
scanned is dealt with. Section 3 introduces Bayesian
networks and describes the proposed model for route
flow estimation. In Section 4 a example of applica-
tions is used to illustrate the effectiveness of the pro-
posed model and clarify some of its implementation
details. Finally, Section 5 provides some conclusions.

2 THE PLATE SCANNING
DEVICE LOCATION PROBLEM

In real life, the true error or reliability of an esti-
matedO D matrix is unknown. (Yang et al., 1991)
proposed the concept of maximal possible relative er-
ror (MPRE), which represents the maximum possible
relative deviation of the estimatedO D matrix from
the true one. Based on this concept (Yang and Zhou,
1998) proposed several location rules. In this paper,
since the scanner location problem is of different na-
ture to the counting location problem based on link
flows, we derive an analogous formulation based on
prior link and flow values and the following measure

(RMSRE, root mean squared relative error):
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wheret0
i and ti are the prior and estimated flow of

O D -pair i, respectively, andm is the number ofO D -
pairs belonging to the setI . Note that we propose this
alternative formulation because our model uses prior
information and we also assume that the real network
flows will be similar to those given by the prior ap-
proach, therefore our models try to reproduce through
an estimation method the priorO D pair flows as ex-
actly as possible, when other information is not avail-
able. Since the priorO D pair flowst0

i are known, they
are used to calculate the relative error.

Given the setR of all possible routes, ifRi is the
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i =

∑r∈Ri
f 0
r , and then the RMSRE can be expressed as:

RMSRE=

√

√

√

√

1
m∑

i∈I

(

t0
i −∑r∈Ri

f 0
r yr

t0
i

)2

, (2)

whereyr is a binary variable equal to one if router is
identified uniquely (observed) by the scanned links,
and zero otherwise. Note that the minimum possible
RMSRE-value corresponds toyr = 1; ∀r ∈ R, where
ti = t0

i and RMSRE=0. However, ifnsc= ∑r∈Ryr ≤ nr
then RMSRE> 0, and then, one interesting question
is: how do we select the routes to be observed so that
the RMSRE is minimized? From (2) we obtain

m× RMSRE2 = ∑
i∈I
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r

t0
i
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)2

, (3)

where it can be concluded that the bigger the value

of ∑r∈Ri

f 0
r

t0i
yr the lower the RMSRE. If the set of

routes is partitioned into observed (O R ) and unob-
served (U R ) routes associated withyr = 1 or yr = 0,
respectively, (3) can be reformulated as follows

m× RMSRE2 = ∑i∈I
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)2

= ∑i∈I

(

∑i∈(Ri∩U R )
f 0
r

t0
i

)2

,

(4)
so that routes to be observed (yr = 1) should be chosen
minimizing (4).

The main shortcoming of equations (3) or (4) is
their quadratic character which makes the RMSRE
minimization problem to be nonlinear. Alternatively,
the following RMARE (root mean absolute value rel-
ative error) based on the mean absolute relative error
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norm can be defined:
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(5)
and since the numerator is always positive for error
free scanners (0≤ ∑r∈Ri

f 0
r yr ≤ t0

i ; ∀i ∈ I ), the abso-
lute value can be dropped, so that the RMARE as a
function of the observed and unobserved routes is
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(6)

which implies that minimizing the RMARE is equiv-
alent to minimizing the sum of relative route flows of
unobserved routes, or equivalently, maximize the sum
of relative route flows of observed routes.

Note also that even though the knowledge of prior
O D pair flows could be difficult in practical cases,
the aim of the proposed formulation is determining
which O D flows are more important than others in
order to prioritize their real knowledge. In fact the
prior O D matrix is only used as a weighting factor
for O-D pairs flows. Alternatively, the MPRE crite-
rion proposed by (Yang et al., 1991) could be used for
those cases where a prior O-D matrix is unavailable.
Note that existing methods such us the one proposed
by (Yang and Zhou, 1998) and according to their max-
imal flow-interception rule, also use a flow pattern as-
sociated with a prior O-D matrix.

The first location model to be proposed in this pa-
per considers full route observability, i.e. RMSRE=
0, but including budget considerations. In the trans-
port literature, each link, denoted bya, is considered
independently of the number of lanes it has. Obvi-
ously, when trying to scan plate numbers links with
higher number of lanes are more expensive (usually
the number of scanning devices is bigger):

M1 = Minimize
z

∑
a∈A
Paza (7)

subject to

∑
a∈{A }

(λr
a + λr1

a )(1−λr
aλr1

a )za ≥ 1

{

∀(r, r1)|r < r1

∑
a∈A

λr
aλr1

a > 0

(8)
∑
a∈A

zaλr
a ≥ 1;∀r, (9)

whereza is a binary variable taking value 1 if the link
a is scanned, and 0, otherwise,r andr1 are paths,Λ is
the route incidence matrix with elementsλr

a.
Note that constraint (8) guarantees that the se-

lected subset of scanned links is able to distinguish

the users of any given pair of pathsr andr1 based on
their scanned plate numbers, i.e. there exists at least
one scanned link which is in pathr and not in path
r1 or vice-versa. In addition, constraint (9) ensures
that any route or path contains at least one scanned
link, and therefore information, not only of allO D
pairs but all the routes, becomes available.Pa is the
cost of plate scanning linka. Note that constraint
(8) forces to select the scanned links so that every
route is uniquely defined by a given set of scanned
links (every row in the incidence matrixΛ is differ-
ent from the others) and (9) ensures that at least one
link for every route is scanned (every row in the inci-
dence matrixΛ contains at least one element different
from zero). Both constraints (8) and (9) force to ob-
serve the maximum relative route flow and provide
the full identifiability of observed path flows. Note
also that allO D pairs are totally covered. In addi-
tion, this model allows us the estimation of the re-
quired budget resourcesB ∗ = ∑

a∈A
Paz∗a for covering

all O D pairs in the network which obviously must be
the minimum for full identifiability of routes. How-
ever, budget is limited in practice, meaning that some
O D pairs or even some routes may remain uncovered,
consequently based on (6) the following model is pro-
posed in order to observe the maximum relative route
flow:

M2 = Maximize
y,z

∑
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∑
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∑
a∈A

Paza ≤ B , (13)

where f 0
r andt0

i are the route andO D -pair flows, re-
spectively, of a priorO D matrix, yr is a binary vari-
able equal to 1 if router can be distinguished from
others and 0 otherwise,za is a binary variable which
is 1 if link a is scanned and 0 otherwise, andB is the
available budget.

Constraint (11) guarantees that the router is able
to be distinguished from the others if the binary vari-
able yr is equal to 1. Constraint (12) ensures that
the route which is able to be distinguished contains at
least one scanned link. Both constraints (11) and (12)
ensure that all routes such thatyr = 1 can be uniquely
identified using the scanned links. It is worthwhile
mentioning that usingyr instead of 1 in the right hand
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side of constraints (11) and (12) immediately con-
verts into inactive the constraint (9) for those routes
the flow of which are not fully identified.

Note that the full identifiability of observed path
flows is included in the optimization itself and it will
be ensured or not depending on the available budget
B , i.e. depending on whether or not constraint (13)
becomes active. For example, if the available bud-
get equals the optimal value of the objective function
given by model M1 (B = B ∗), model M2 provides full
O D coverage. Note also that previous models can
be easily modified in order to include some practical
considerations as for example the fact that some de-
tectors are already installed and additional budget is
available. To do that one only need to include the fol-
lowing constraint to models M1 or M2

za = 1; ∀a∈ O L . (14)

whereO L is the set of already observed links (links
with scanning devices already installed).

3 THE PROPOSED MODEL FOR
TRAFFIC PREDICTION

Bayesian network models have been used frequently
to solve a wide range of practical problems (see, for
example, (Castillo et al., 1995), (Bouckaert et al.,
1996), (Castillo et al., 1996), (Castillo et al., 1999),
or (Castillo and Kjaerulff, 2003)). In this section we
have used the Bayesian network tool to built a model
for traffic prediction using data from plate scanning
devices. In addition a detailed description and justifi-
cation of its main assumptions are presented.

3.1 Bayesian Networks

A Bayesian network is a pair(G ,P ), where G
is a directed acyclic graph of a set of nodesX,
which are the random variables, and a setP =
{p(x1|π1), . . . , p(xn|πn)} of n conditional probability
densities, whereΠi is the set of parents of nodeXi
in G . The graphG contains qualitative information
about the relationships among the variables, andP
contains the quantitative information and defines the
associated joint probability density of all nodes as

p(x) =
n

∏
i=1

p(xi |πi). (15)

Bayesian networks are very useful to represent
the statistical relationship among multivariate random
variables. In particular, (Sun et al., 2006), (Castillo
et al., 2008b; Castillo et al., 2008c) apply Bayesian
networks to traffic flow problems.

Bayesian networks have a high practical interest
because: (a) the conditional independence relations
among theX variables can be inferred directly from
the graphG , which is relevant to given variables when
the knowledge of other variables become available,
and (b) the updating of probabilities can be very easily
done when new variables become known.

In this paper we use Gaussian Bayesian networks
(GBN), that is, Bayesian networks such that their joint
probability distributions of all their variables are mul-
tivariate normalN(µ,Σ) distributions. This assump-
tion is very common in the transport literature

3.2 Updating Information in GBN after
having Evidences

When one works with Gaussian Bayesian networks, it
is possible to introduce the observed value of several
variables of the network an computing the probability
distribution of the rest of variables.

Let Y andZ be two sets of random variables rep-
resenting unobserved and observed variables, respec-
tively, and having a multivariate Gaussian distribution
with mean vector and covariance matrix given by

µ=

(

µY
µZ

)

and Σ =

(

ΣYY ΣY Z
ΣZY ΣZZ

)

,

respectively, whereµY andΣYY are the mean vector
and covariance matrix ofY, µZ andΣZZ are the mean
vector and covariance matrix ofZ, andΣYZ is the co-
variance ofY andZ. Then the conditional probability
distribution (CPD) ofY given Z = z (the evidence)
is multivariate Gaussian with mean vectorµY|Z=z and
covariance matrixΣY|Z=z that are given by

µY|Z=z = µY + ΣYZΣ−1
ZZ(z−µZ), (16)

ΣY|Z=z = ΣYY−ΣYZΣ−1
ZZΣZY. (17)

Note that the conditional meanµY|Z=z depends on
zbut the conditional varianceΣY|Z=z does not. There-
fore equations (16) and (17) suggest a procedure to
calculate the means and variances of any subset of
variablesY ⊂X, given a set of evidential nodesZ⊂X
whose values areZ = z.

3.3 Model Assumptions

Assuming the route flows are multivariate random
variables, we build a Gaussian Bayesian network us-
ing the special characteristics of traffic flow variables.
To this end, we consider the route flows as parents
and the subsets of scanned link flows as children
and reproduce the conservation law constraints in an
exact or statistical (i.e., with random errors) form. In
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our Gaussian Bayesian network model we make the
following assumptions:

Assumption 1. It is clear that theF of route flows
random variables are correlated. For example, dur-
ing peak commuting periods traffic increases for all
routes and strong weather conditions reduce traffic
flows in all routes. In order to represent these corre-
lations and obtain the associated variance-covariance
matrix, we make the following assumption:

Fr = krU + ηr , (18)

wherekr , r = 1, . . . ,m are positive real constants,U
is a normal random variableN(µU ,σ2

U ), andηr are
independent normalN(0,γ2

r ) random variables. The
meanings of these variables are as follows:

U : Random positive variable that measures the level
of total mean flow. This means that flow varies
randomly and deterministically in situations simi-
lar to those being analyzed (weekend period, labor
day, beginning or end of a holiday period, etc.).

K : Column matrix whose elementkr measures the
relative weight of the router flow with respect to
the total traffic flow (including all routes). It mea-
sures the importance or level of traffic flow asso-
ciated with router (the larger the value ofkr , the
larger the flow traffic in router).

η : Vector of independent random variables with null
mean such that itsr element measures the vari-
ability of the router flow with respect to its mean.

Then, we have

F =
(

K | I
)





U
−−
ηT



 (19)

and the variance-covariance matrixΣF of F is

ΣF =
(

K | I
)

Σ(U,η)





KT

−−
I



 (20)

= σ2
UKK T +Dη, (21)

where the matricesΣ(U,η) andDη are diagonal.

Assumption 2.The flows associated with the combi-
nations of scanned link flows and counted link flows
can be written as

W = ∆F+ ε, (22)

where theWs variables represent the traffic flow as-
sociated with each feasible combination of scanned
links, which is related to the route flows;δsr (element
of matrix ∆) is 1 if router contains all and only the

links associated withWs, andε = (ε1,ε2, . . . ,εn) are
mutually independent normal random variables, inde-
pendent of the random variables inF, andεs has mean
E(εs) and varianceψ2

s;s = 1,2, . . . ,n. The εs repre-
sents the error in the corresponding subset of scanned
links. In particular, they can be assumed to be null i.e.
the plate data is assumed error free.

Then, we have

(

F
W

)

=





I | 0
− + −
∆ | I









F
−−

ε



 ,

which implies that the meanE[(F,W)] is

E[(F,W)] =





E(U)K
−−−−−−−
E(U)∆K +E(ε)



 , (23)

and the variance-covariance matrix of(F,W) is

Σ(F,W) =





ΣF | ΣF∆T

−− + −−−−
∆ΣF | ∆ΣF∆T +Dε



 . (24)

All these assumptions imply that the joint PDF of
(F1,F2, . . . ,Fm,W1,W2, . . . ,Wn) can be written as

f ( f1, f2, . . . , fm,w1,w2, . . . ,wn) =

fN(µF,ΣF)( f1, f2, . . . , fm)
n
∏

s=1
fN(µs+ ∑

r∈Πs
∆sr( fr−µFr ),ψ2

s)
(ws)

.

(25)
To complete our Bayesian network model we need to
define the graph. Any probability distribution can be
represented by a directed graph. The only problem,
to build the Bayesian network graph, is the number of
links required, that can be large if the order of nodes
is not adequately chosen.

In this paper we give what we think is the most
convenient graph (see Fig. 2): the route flowsFr are
the parents of all link flow combinationsWs used by
the corresponding travelers, and the error variables
are the parents of the corresponding flows, that is, the
εs are the parents of theWs, and theηr are the parents
of the Fr . Finally, theU variable is on top (parent)
of all route flows, because it gives the level of them
(high, intermediate or low). This solves the problem
of “parent” being not well defined, without the need
for recursion - in general graphs, one could seemingly
have a “deadlock” situation in which it is not clear
what node is the parent of which other nodes.

In this paper we consider the simplest version of
the proposed model, which considers only the route
flows, and the scanned link flow combinations. There-
fore, a further requires that a model with all variables
must be built i.e. including the mean and variance
matrix of the all variables (U , ηr ; r = 1,2, . . . ,m and
εs;s= 1,2, . . . ,n).
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3.4 Traffic Prediction

Once we have built the model, we can use its JPD
(25) to predict route and link traffic flows when some
information becomes available. The idea consists of
using the joint distribution of routes flows conditioned
on the available information. In fact, since the re-
maining variables (those not known) are random, the
most informative item we can get is its conditional
joint distribution, and this is what the Bayesian net-
work methodology supplies. In this section we pro-
pose an step by step method to implement the plate
scanning-Bayesian network model:

Step 0: Initialization Step. Assume an initial K
matrix (for example, obtained from solving a SUE
problem for a given out-of-date prior OD-pair
flow data), the values ofE[U ] and σU , and the
matricesDε andDη.

Step 1: Select the Set of Links to be Scanned.
The set of links to be scanned must be selected.
This paper deals with this problem in Section 2
providing several methods to select the best set of
links to be scanned.

Step 2: Observe the Plate Scanning Data.The
plate scanning dataws are extracted.

Step 3: Estimate the Route Flows. The route ma-
trix F with elementsfr are estimated using the
Bayesian network method, i.e., using the formu-
las (see (16) and (17)):

E[F] = E[U ]K (26)

E[W] = E[U ]∆K +E[ε] (27)
Dη = Diag(νE[F]) , (28)

ΣFF = σ2
UKK T +Dη (29)

ΣFW = ΣFF∆T (30)
ΣWF = ΣFW (31)

ΣWW = ∆ΣFF∆T +Dε (32)
E[F|W = w] = E[F]+ ΣFWΣ−1

WW (w−E[W])
(33)

ΣF|W=w = ΣFF−ΣFWΣ−1
WW ΣWF (34)

E[W|W = w] = w (35)
ΣW|W=w = 0 (36)

F = E[F|W = w]|(F,W)=F (37)

whereν is the coefficient of variation selected for
the η variables, and we note thatF and W are
the unobserved and observed components, respec-
tively.

Step 4. Obtain the F Vector. Return the the fr
route flows as the result of the model. Note that
from F vector, the rest of traffic flows (link flows
and OD pair flows) can be easily obtained.

4 EXAMPLE OF APPLICATIONS

In this section we illustrate the proposed methods by
their application to a simple example. We assume that
plate scanning traffic data have no errors.

1

2 3

4

1

2 3
4

5 6

7

8
9

5 6

Figure 1: The elementary example network.

Table 1: Required data for the simple example.
path code

OD (r) Links
1-4 1 1 5 8
1-4 2 2 8
1-4 3 3 9
1-4 4 3 6 8
1-4 5 4 7 9
1-4 6 4 7 6 8
2-4 7 5 8
2-4 8 7 6 8
3-4 9 7 9

set code Scanned links
(s) 1 2 3 4 7 8
1 X X
2 X X
3 X
4 X X
5 X X
6 X X X
7 X
8 X X
9 X

Consider the network in Fig. 1 with the routes and
OD-pairs in Table 1, which shows the feasible combi-
nation of scanned links after solving theM1 model.

As described in Section 3, the graph of the as-
sociated Bayesian network is shown in Fig. 2 for
S L = {1,2,3,4,7,8}. Note that the route nodeFr has
as parents only nodeU and ηr , and any flow from
plate scanning data nodeWs has its associated routes
as parents, i.e., those routes with all and only all the
corresponding subset of scanned links (see Table 1).
Next, the proposed method in Section 3 is applied.

Figure 2: BN associated with the example.

Step 0: Initialization Step. To have a reference
flow, we have considered that the true route flows
are those shown in the second column of Table 2.
The assumed mean value wasE[U ] = 10 and the
value ofσU is 8. The initial matrixK is obtained
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by multiplying each true route flow by an inde-
pendent random uniformU(0.4,1.3)/10 number.
TheDε is assumed diagonal matrix, the diagonal
of which are almost null (0.000001) because we
have assumed error free in the plate scanning pro-
cess. Dη is also a diagonal matrix which values
are associated with a variation coefficient of 0.4.

Step 1: Select the Set of Links to be Scanned.
The set of links to be scanned have been selected
using theM2 model for different available budget,
i.e. using the necessary budget for the devices
needed to be installed in the following links:

S L ≡ {1,2,3,4,7,8}; S L ≡ {1,4,5,7,9};
S L ≡ {1,4,7,9}; S L ≡ {4,7,9};
S L ≡ {1,5}; S L ≡ {2}.

Step 2: Observe the Plate Scanning Data.The
plate scanning dataWs is obtained by scanning the
selected links (a detailed explanation of how this
can be done appears in (Castillo et al., 2008a)).

Step 3: Estimate the Route Flows. The route
flows F with elementsfr are estimated using the
Bayesian network method and the plate scanning
data, i.e., using the formulas (26)-(37)

Table 2: Route flow estimates using BN and LS approaches.

True Scanned links
Route flow Method 0 1 2 3 4 5 6

1 5.00 BN 4.26 4.35 5.00 4.91 5.00 5.00 5.00
LS 4.26 4.26 5.00 4.26 5.00 5.00 5.00

2 7.00 BN 6.84 7.00 7.76 7.89 7.91 7.85 7.00
LS 6.84 7.00 6.84 6.84 6.84 6.84 7.00

3 3.00 BN 3.45 3.52 3.91 3.00 3.00 3.00 3.00
LS 3.45 3.45 3.45 3.00 3.00 3.00 3.00

4 5.00 BN 3.00 3.07 3.41 3.46 3.47 3.45 5.00
LS 3.00 3.00 3.00 3.00 3.00 3.00 5.00

5 6.00 BN 5.36 5.47 6.08 6.00 6.00 6.00 6.00
LS 5.36 5.36 5.36 6.00 6.00 6.00 6.00

6 4.00 BN 3.37 3.45 3.82 4.00 4.00 4.00 4.00
LS 3.38 3.38 3.38 4.00 4.00 4.00 4.00

7 10.00 BN 8.90 9.08 10.00 10.25 10.28 10.00 10.00
LS 8.90 8.90 10.00 8.90 8.90 10.00 10.00

8 7.00 BN 3.97 4.06 4.50 7.00 7.00 7.00 7.00
LS 3.97 3.97 3.97 7.00 7.00 7.00 7.00

9 5.00 BN 5.45 5.57 6.18 5.00 5.00 5.00 5.00
LS 5.45 5.45 5.45 5.00 5.00 5.00 5.00

The method has been repeated for different sub-
sets of scanned links shown in step 2 of the process.
The resulting predicted route flows are shown in Table
2. The first rows correspond to the route predictions
using the proposed model. With the aim of illustrat-
ing the improvement resulting from the plate scanning
technique using Bayesian networks when compared
with the standard method of Least Squares (LS), for
example (see (Castillo et al., 2008a)), we have imple-
mented this model using the same data. The results
appear in the second rows in Table 2. A compari-
son of the results obtained from both methods con-
firm that the plate scanning method using Bayesian

networks outperforms the standard method of Least
Squares for several reasons:

• The BN tool provides the random dependence
among all variables. This fact allows us improve
the route flow predictions even though when we
have no scanned link belonged to this particular
route. Note that using the LS approach the predic-
tion is the prior flow (the fourth column in Table
2, i.e with 0 scanned links in the network)

• The BN tool provides not only the variable pre-
diction but also the probability intervals for these
predictions using the JPD function. Fig. 3 shows
the conditional distributions of the route flows the
different items of accumulated evidence. From
left to right and from top to bottomF1,F2 . . . pre-
dictions are shown. In each subgraph the dot rep-
resents the real route flow in order to analyze the
predictions.
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Figure 3: Conditional distribution of the route flows.

It is necessary to point out that the proposed mod-
els have been applied to real size networks as for ex-
ample the city of Cuenca (Spain) but the results can-
not be showed for space problems. The network con-
sists of 672 links, 232 nodes, 139 OD-pairs and 528
routes. In this network, 100 scanned links are suffi-
cient for full observability usingM1 proposed model.

5 CONCLUSIONS

The main conclusions that can be drawn from this pa-
per are the following:

1. Bayesian networks are very natural tools for re-
producing the random dependence structure of
traffic flows including not only OD-pair and link
flows but route flows and flows associated with
subsets of links. Therefore, the combination of
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Bayesian networks and scanned link flows seems
to be a very good and practical tool to predict traf-
fic flows. The example in this paper illustrate the
improvement of this combination when combined
with other methods and shows that it outperforms
other alternatives.

2. The updating techniques for Bayesian networks
allow us obtaining the distribution of route flows
conditioned by the observed flows, accounting for
all the information available (evidences).

3. The knowledge of plate scanned observations
modify substantially the means and reduces the
variance of the route flows leading to more precise
predictions, which improve with increasing num-
ber of scanned links and can be exact for an ade-
quate selection of the set of scanned and counted
links i.e. using theM1 proposed model.

4. Several models have been presented for an ade-
quate selection and location of plate scanning de-
vices including budget constraints together with
the consideration of already existing devices. In
addition, they allow us improving the route flow
estimations.

5. Errors in scanned links can produce important al-
terations of the parameters estimates, because sev-
eral users of several routes can be confounded if
they are not been observed in some links. This
aspect is not the focus of this paper and its full
treatment will be dealt with in an outgoing work.
In any case one approach for solving this problem
is treated in (Castillo et al., 2008a).
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