
AN APPROACH FOR CLASS MODEL DEVELOPMENT

Nadja Damij and Talib Damij
Faculty of information studies, Novi trg 5, SI-8000 Novo mesto, Slovenia

Faculty of economics, University of Ljubljana, Kardeljeva ploščad 17, SI-1000 Ljubljana, Slovenia

Keywords: Database design, Normalization, Class model.

Abstract: This paper aims to introduce an approach that can be used by both students and practitioners to develop a
class model by analysing users’ documents. The approach is based on the concept of functional dependence
and enables the use of the normalization technique in the field of object-oriented modelling. We believe that
the normalization technique is applicable, useful and even essential in this field. The approach consists of
six steps that lead the analyst through identifying identity attributes, determining functional dependences,
defining associations between identity attributes, integrating the analyses, developing an initial class model,
and completing the class model by using inheritance. Two documents of a hospitalization process are used
as an example to implement the steps of this approach.

1 INTRODUCTION

The purpose of this paper is to present an approach
for class model development based on the concept of
functional dependence.
The reason for developing such an approach is that
the well-known object-oriented techniques and
methods do not offer a specific approach to
developing the class model. For this reason, the
development process remains dependent on the
analyst and his/her experience.
In UML (Unified Modelling Language), for
example, the class diagram is developed on the basis
of the objects listed on the interaction diagrams
(sequence or cooperation), which are created using
the information contained in the use cases
descriptions, particularly in the framework of their
event flows.
On the other hand, it is known in relational
modelling that the normalization technique is
essential for creating a database design.
Normalization is a simple technique, which leads the
database administrator to create a data model by
identifying different kinds of dependencies existing
between the attributes of a certain relation. Such a
data model is free of anomalies which could cause
problems in inserting, updating, and deleting records
in the database.
This paper aims to show that the normalization
technique is very useful in the field of object-

oriented modelling and could be employed to
develop a class model.

The paper is structured into five sections, in
addition to the Introduction. In Section 2, the
concept of functional dependence is discussed. In
Section 3, the normalization technique is presented.
In Section 4, the approach of class model
development is introduced. In Section 5, some useful
remarks and conclusions are presented. Throughout
the paper two simplified documents of a
hospitalization process are used as an example to
implement the approach’s steps.

2 FUNCTIONAL DEPENDENCE

In the process of information systems development
we usually collect many users’ documents. These
documents contain a lot of information about the
objects of the system discussed, their attributes and
relationships. For this reason, such documents
should be analysed carefully to develop the class
model of the system. To achieve this, we use the
concept of functional dependence.
Functional dependence is an excellent way to
analyse in detail the relationships existing between
the attributes of a certain user’s document.
The following definition clarifies the use of
functional dependence to identify relations existing
between attributes of a determined relation: "An

414
Damij N. and Damij T. (2010).
AN APPROACH FOR CLASS MODEL DEVELOPMENT.
In Proceedings of the Third International Conference on Health Informatics, pages 414-421
DOI: 10.5220/0002717404140421
Copyright c© SciTePress

attribute B of a relation is functionally dependent on
the attribute A of it if at every instant of time each
A-value is associated with no more than one B-
value" (Vetter, 1981).
From the above definition, we may conclude that
attribute A is an identity attribute and B is a non-
identity attribute.
This definition may be extended to consider the
functional dependence existing between attributes of
a certain user’s document as follow: "An attribute B
of a certain document is functionally dependent on
attribute A (attributes A1,…,An) if every value of
attribute A (attributes A1,…,An) is associated with
one and only one value of attribute B" [4].
The notation used to indicate that attribute B is
functionally dependent on attribute A is:
 A B
For example, PatientName is functionally dependent
on Patient#, because each value of attribute Patient#
determines or identifies one value of attribute
PatientName. Furthermore, attribute Dose is
functionally dependent on both attributes Order# and
Medication#, because a value of the attribute Dose is
not determined only by an Order# value, neither by a
Medication# value. but a value of attribute Dose is
determined by values of both attributes Order# and
Medication# as a pair. These functional
dependencies could be written:

Patient# PatientName
 Order#,Medication# Dose

3 NORMALIZATION

Edgar F. Codd, the inventor of normalization, had
this to say about it: “We all have trouble organizing
even our personal information. Businesses have
those problems in spades. It seemed to me essential
that some discipline be introduced into database
design. I called it normalization because then-
President Nixon was talking a lot about normalizing
relations with China. I figured that if he could
normalize relations, so could I” (Rapaport, 1993).
Normalization is used to identify, analyse and
organize information contained in users’ documents.
It is a bottom-up technique that starts with analysing
attributes and linking them with their entities
(relations). Meanwhile, ER diagrams represent a
top-down approach that first identifies entities and
then defines their attributes.
Relational normalization requires that in order to
avoid anomalies related to inserting, updating and
deleting database records, the relations within a
database design must be at least in the third normal

form. In (Vetter, 1981) we find the following
definitions of the normal forms:
A relation is in the first normal form if presented in
table form contains at each row-column-intersection
precisely one value, never a set of values.
A relation is in the second normal form if it is in the
first normal form and every non-identity attribute is
functionally dependent on complete identity
attribute.
A relation is in the third normal form if it in the
second normal form and every non-identity attribute
is not transitively dependent on any other identity
attribute.
From these definitions, we may conclude:
- There is no repeating groups, which means that

each row-column-intersection contains only one
value, (first normal form);

- There is no functional dependency on a part of
an identity attribute (second normal form); and

- There is no transitive dependency on any other
identity attribute (third normal form).

We think that the normalization technique is
necessary, applicable and useful in the field of
object-oriented modelling. Sanders mentions the
term object normalization to indicate the use of the
normalization concept in the field of object- oriented
modelling (Sanders, 1995).
Each object in a class has a unique identity attribute,
which represents it and distinguishes it from other
objects of the class. Therefore, we think that using
the functional dependence concept is essential in
analysing user documents in order to develop a class
model.

4 NORMALIZATION

The purpose of this work is to introduce an approach
which leads the analyst through simple steps toward
successful creation of a class model.
The fundamental idea of this approach is that using
the concept of functional dependence to analyse the
relationships which exist between the attributes of
users’ documents can lead us to successfully develop
a class model of the system discussed.
This approach consists of six steps as shown in
Figure 1.

AN APPROACH FOR CLASS MODEL DEVELOPMENT

415

Figure 1: The Approach.

As already mentioned, two simplified documents of
the patient hospitalization process are used to
demonstrate application of the approach. These
documents are a temperature form (TEMSHEET)
and a doctor form (DOCTOR), as shown in Figure 2.

Figure 2: Documents TEMPSHEET and DOCTOR.

4.1 Identify Identity Atributes

An object is anything, real or abstract, about which
we store data and those operations that manipulate
the data (Martin et al., 1992).
An object class describes a group of objects with
similar properties (attributes), common behaviour
(operations), common relationships to other objects,
and common semantics (Rumbaugh et al., 1999).
Each object has an identity which represents it.
Object identity or identity attribute is the property of
an object that uniquely distinguishes it from other
objects.
An identity attribute is a minimal set of attributes
that uniquely identifies and represents an object
instance (Rumbaugh et al., 1999).
The first step deals with identifying an object is
identity attributes contained in users’ documents.

Doc#: DocName:

Address:
Specialization#: SpecName:
Dept#: DeptName:
Hospital# HospName:
 HospAddress:

Doctor

Sheet#: Room:
Patient#: PatientName:
Address: Birth date:
Diagnosis#: DiagName:
Surgery#: SurgeryName:
Accept date: Release date:

• Doc#: DocName:

Date/Time Temperature Pulse Presure

Intervention# Description InterDate Doc# DocName

Temperature Sheet

Medication# MedName Dose Times/day

HEALTHINF 2010 - International Conference on Health Informatics

416

This is achieved by analysing the collected
documents one by one. Such an analysis enables us
to identify a number of identity attributes which
belong to a set of object classes.
In our experience, it is better to start with a complex
document, which later plays an important role in
integrating other analyses (see the fourth step).
Hospitalization: Let us start with the document
TEMPSHEET. Carrying out the first step on this
document leads us to identify the following identity
attributes: TempSheet#, Patient#, Diagnosis#, Doc#,
Surgery#, Medication#, and Intervention#, which
belong to the following classes: TempSheet, Patient,
Diagnosis, Doctor, Surgery, Medication, and
Intervention.

4.2 Identify Functional Dependence

The second step identifies the functional
dependencies existing between identity attributes
and non-identity attributes in the framework of each
of the collected documents.
- for each identity attributes (say A, B) identified in

the framework of a certain document (say
DOCUMENT1)
- for each of the document’s non-identity

attributes (say X, Y, Z)
- if each value of the chosen identity attribute

is associated with one and only one value
of the non-identity attributes then the non-
identity attribute is functionally dependent
on the chosen identity attribute.

After completing the analysis of DOCUMENT1, the
process goes on by analysing another document until
all the documents are analysed.
Hospitalization: To implement this, we start by
analysing the relationships existing between the
identity and non-identity attributes of the document
TEMPSHEET.
Figure 3 shows that the attributes RoomNo,
AcceptDate and ReleaseDate are functionally
dependent on attribute TempSheet#, because each
TempSheet# value determines one value of
RoomNo, AcceptDate and ReleaseDate.
Attributes PatientName, Address and BirthDate are
functionally dependent on attribute Patient#, because
every Patient# value identifies one value of each of
the attributes Patient, Address and Birthdate.
Attributes DiagName, SurgeryName and DocName,
MedName and Description are functionally
dependent on identity attributes Diagnosis#,
Surgery#, Doc#, Medication# and Intervention#
sequentially.

TempSheet# RoomNo
 AcceptDate
 ReleaseDate
 Patient# PatientName
 BirthDate
 Address
 Diagnosis# DiagName
 Surgery# SurgName
 Doc# DocName
 Medication# MedName
 Intervention# Description
 TempSheet#,Date/Time Temperature
 Pulse
 Presure
 TempSheet#,Medication# Dose
 TempSheet#,Intervention# InterDate

Figure 3: Functional dependencies of Document
TEMPSHEET.

In addition to this, we find that attributes Doc# and
DocName occur again in the lower part of the
document and their values are repeated in the rows
of this part. The functional dependence between
these two attributes has already been defined and
there is no need to define it again. The presence of
the identity attribute Doc# in these rows means that
an association has to be defined to link these rows
with Doc#, as will be shown in step 3.
Furthermore, attributes Temperature, Pulse and
Presure are functionally dependent only on a
combination of the attributes TempSheet# and
Date/Time, because every value of the combination
of these attributes determines only one value of each
of the attributes Temperature, Pulse and Pressure.
For the same reason, attributes Dose and Times/Day
are functionally dependent on a combination of the
attributes TempSheet# and Medication#. Finally, we
find that attribute InterDate is functionally
dependent on a combination of attributes
TempSheet# and Intervention#.

4.3 Define Associations

The third step of the approach deals with defining
the associations existing between the identified
identity attributes of the document analysed.
In general we may define an association as follows:
An association is a relationship that exists between
objects of two classes. An object is represented by
its identity attribute. Therefore, we may say that an
association is a relationship between identity
attributes.
An association could be one-to-one, one-to-many or
many-to-many. A one-to-one association exists
between identity attributes of objects of two classes,
where every value of one identity attribute is related
to only one value of the other identity attribute. A

AN APPROACH FOR CLASS MODEL DEVELOPMENT

417

one-to-many association exists between identity
attributes of objects of two classes, where every
value of one identity attribute is related to none, one
or more values of the other identity attribute. A
many-to-many association exists between identity
attributes of objects of two classes, where every
value of one identity attribute is related to none, one
or more values of the other identity attribute.
To introduce different type of association, we use
general notations.
Hospitalization: To implement the third step
concerning the document TEMPSHEET, we
continue with the analysis given in Figure 3 to
define the associations existing between the identity
attributes.
Figure 4 shows that the identity attributes Patient#
and TempSheet# are associated by a one-to-many
association, because each TempSheet# value
determines only one value of attribute Patient# and
every Patient# value could be related to one or more
TempSheet# values.
Furthermore, we also find that attribute TempSheet#
is associated by a many-to-one association to the
attributes Diagnosis#, Surgery# and Doc#, because a
certain diagnosis may be written on different
temperature sheets, whereas only one diagnosis is
defined on a temperature sheet. A similar
explanation is valid concerning the other two
associations.
We also find that TempSheet# is connected to
attributes TempSheet#,Intervention#,
TempSheet#,Medication# and
TempSheet#,Date/Time by one-to-many
associations. TempSheet#,Intervention# and
TempSheet#,Medication# are linked to Intervention#
and Medication# by many-to-one associations
sequentially. Finally, we define a one-to-many
association between Doc# and TempSheet#,
Intervention# to link doctors with intervention rows.
The result of analsying the first document using the
first three steps is an analysis called the master
analysis (Figure 4). After that we continue
analysing other documents. For each following
document, we first repeat the implementation of the
first three steps and secondly continue with the
fourth step to integrate the document analysed into
the master analysis.
Analysing the document DOCTOR identifies in the
first step the following identity attributes:

Figure 4: Associations between identity attributes of
document TEMPSHEET.

Doc#, Specialization#, Hospital#, and Dept#, which
belong to the classes Doctor, Specialization,
Hospital, and Department.
The result of using the second step is shown in
Figure 5, which represents the functional
dependencies existing between identity and non-
identity attributes of this document.

Figure 5: Funcional dependencies of Document
DOCTOR.

The third step is implemented by the analysis shown
in Figure 6, which defines associations existing
between the identity attributes of the mentioned
document.

Address

Dept#
DeptName

Hospital#
HospName

 HospAddress

Doc#
DocName

Specialization#
SpecName

Figure 6: Associations between identity attributes of
document DOCTOR.

HEALTHINF 2010 - International Conference on Health Informatics

418

Figure 7: Integrated analyses.

4.4 Integrate Analyses

The fourth step starts by integrating analyses from
the second analysis into the master analysis. Each of
these analyses is a result of implementing the first
three steps on each document from the second to the
last document.
This step consists of integrating these analyses and
grouping them into one analysis, which represents
all the objects of the system, their attributes and
associations.
This step has the following sub-steps:
Integrating the analysis (from the second to the last
one) into the framework of the master analysis is
done using the following rules:
a) for each identity attribute existing in both

analyses (the master and the integrating analyses)
- connect every non-identity attribute that is

defined only in the integrating analysis to the
master identity attribute

b) for each identity attribute that exists only on the
integrating analysis
- define this identity attribute and all non-

identity attributes connected with it on the
master analysis

c) define associations that connect the newly
defined identity attribute to other identity
attributes defined in the master analysis.

Hospitalization: Figure 7 shows the integration of
the analysis obtained from the document DOCTOR
(Figure 6) into the master analysis.

By using rule b, the master analysis was extended by
new three identity attributes, Specialization#, Dept#
and Hospital#, and their non-identity attributes.
To implement rule c, we define two many-to-one
associations which were defined to connect Doc# to
Specialization# and Doc# to Dept#. Furthermore, a
many-to-one association was defined between Dept#
and Hopspital#.

4.5 Develop Initial Model

The fifth step transforms the analysis obtained from
the fourth step, as a result of the process of
integration all analyses into the framework of the
master analysis, into the class model. This is done
using the following rules:
- for each identity attribute presented on the

master analysis
- define a class by drawing a rectangle and

writing the class name in it
- write the new class’s identity attribute(s)

and its non-identity attributes
corresponding to the master analysis

- connect the newly defined class with other
classes in accordance with the associations
presented on the master analysis, which
connect its identity attribute(s) to other
identity attributes

- identify operations of the newly defined
class by studying the behaviour of its
objects corresponding to the descriptions of

AN APPROACH FOR CLASS MODEL DEVELOPMENT

419

Patient

Patient#
PatientName

BirthDate
Address

CreatePatient
UpdatePatient
RemovePatient

Diagnosis

Diagnosis#
DiagnosisName

CreateDiagnosis
UpdateDiagnosis

Surgery

Surgery#
SurgName

CreateSurgery
UpdateSurgery

Doctor

Doc#
DocName

CreateDoctor
UpdateDoctor
RemoveDoctor

Specialization

Specialization#
SpecName

CreateSpec
UpdateSpec
DeleteSpec

Department

Dept#
DeptName

CreateDept
UpdateDept
DeleteDept

Hospital

Hospital#
HospName

CreateHospital
UpdateHospital
DeleteHospital

TempSheet-
Time

TempSheet#
Date/Time

Temperature
Pulse

Presure

AddTimeLine

TempSheet

TempSheet#
RoomNo

AcceptDate
ReleaseDate

CreateTempSheet
UpdateTempSheet

TempSheet-
Intervention
TempSheet#
Intervention#

InterDate

AddInterLine

TempSheet-
Medication

TempSheet#
Medication#

Dose

AddMedLine

Medication

Medication#
MedName

CreateMedication
UpdateMedication
DeleteMedication

Intervention

Intervention#
Description

CreateInterv
UpdateInterv
RemoveInterv

Figure 8: Class model.

the documents and add them to the class
definition.

Hospitalization: Figure 8 shows the result of
transformation of the master analysis into the class
model, which is called the initial model of the
system

4.6 Complete Class Model

In the last step, we complete the initial model and
develop the final class model.
Transforming the initial into the final class model is
done by:
- studying the possibility of defining the

inheritance between classes,
- adding new classes from the analyst’s

knowledge, if needed.
Hospitalization: Analysing the class model shown in
Figure 8, we find that inheritance does not exist
between the classes of the model.

5 CONCLUSIONS

The aim of this paper was to introduce an approach

which is capable of leading the analyst to overcome
the complex problem of class model development.
The reason for developing such an approach to solve
this important problem is that often we find that
analysts create the class model on the basis of their
experience alone, which may lead them to overlook
some important facts.
We add the following useful remarks and
conclusions. Firstly, users’ documents are very rich
in information about objects, their attributes,
associations, and operations. This fact is very
important and could be used with great success to
develop an initial class model that represents the real
world of the system discussed.
Secondly, the approach introduced is effective, easy
to use by students and practitioners, and capable of
producing a class model that satisfies the terms of
the third normal form.
Thirdly, the concept of functional dependence is
essential for analysing the associations existing
between the documents’ attributes. Implementing
the functional dependence enables the modeller to
remove repeating groups, and partial and transitive
dependences.
Fourthly, the normalization technique is very useful

HEALTHINF 2010 - International Conference on Health Informatics

420

and easily applicable in the field of object-oriented
modelling. Implementing normalization in this field
could help a great deal in establishing order in the
process of class model development.

REFERENCES

M. H. Rapaport, A Fireside Chat, DBMS, Vol. 6, No. 13,
pp. 54-60, 1993.

G. L. Sanders, Data Modeling, Boyd & Frase, Danvers,
1995.

M. Vetter, R.N. Maddison, Database Design
Methodology, Prentice Hall, New Jersey, 1981.

T. Damij, Tabular Application Development for
Information Systems. Springer-Verlag New York, Inc,
2000.

J. Martin, J.J. Odell, Object-Oriented Analysis and
Design, Prentice-Hall, Inc, Englewood Cliffs, New
Jersey, 1992.

J. Rumbaugh, I. Jacobson, G. Booch: The Unified
Software Development Process, Addison-Wisley,
1999.

AN APPROACH FOR CLASS MODEL DEVELOPMENT

421

