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Abstract: Learning and classification techniques have shown their usefulness in the analysis of ana-cyto-pathological 
cancerous tissue data to develop a tool for the diagnosis or prognosis of cancer. The use of these methods to 
process datasets containing different types of data has become recently one of the challenges of many 
researchers. This paper presents the fuzzy classification method LAMDA with recent developments that 
allow handling this problem efficiently by processing simultaneously the quantitative, qualitative and 
interval data without any preamble change of the data nature as it must be generally done to use other 
classification methods. This method is applied to perform breast cancer prognosis on two real-world 
datasets and was compared with results previously published to prove the efficiency of the proposed 
method. 

1 INTRODUCTION 

In the cancer treatment domain, there are two 
distinct purposes: diagnosis of cancer and the 
prognosis of survival or relapse/recurrence in the 
case of a previously diagnosed cancer. This work 
focuses on developing a methodology for the 
prognosis to better assess the potential risk of 
relapse based on the analysis of ana-cyto-
pathological data. Among many works performed in 
the cancer diagnosis field, classical classification 
methods often give satisfactory results (Ryu et 
al.,2007). However, in the prognosis field, they have 
shown a real difficulty in obtaining accurate 
predictions in terms of the relapse risk (Holter, 
1993). This is due firstly to the fact that the potential 
prognostic factors remain still partially known 
(Deepa et al., 2005) and, secondly, the data 
contained in prognosis datasets are heterogeneous: 
they can be quantitative or qualitative and even take 
the form of intervals. In this work, the fuzzy 
classification method LAMDA based on learning 
(Learning Algorithm for Multivariable Data 
Analysis) (Aguilar-Martin & López de Mantaras, 
1982) was used. LAMDA can handle datasets that 
contain simultaneously features of different type: 
quantitative, qualitative (Isaza et al., 2004). In the 

present paper, this method is also extended in order 
to handle another type of data: interval.  

The paper is organized as follows: in section 2, a 
brief presentation of the general classification 
procedure based on the LAMDA method is given 
with the treatment of different types of data 
(quantitative, qualitative, intervals). In section 3, an 
application on two Breast Cancer Prognosis datasets 
illustrates the effectiveness of the proposed 
methodology. Finally the paper is concluded and 
perspectives on future works are given in section 4. 

2 CLASSIFICATION 
PROCEDURE BY LEARNING 

For any classification and analysis method based on 
learning, there are two principal phases (Figure 1): 
training and recognition (or test). In the training 
phase the objective is to find the set of classes (with 
their features or their parameters: number, shapes,...) 
which represents at best a set of known data. In the 
recognition phase new cases (other than those used 
for learning) are examined and matched to the 
classes obtained during the training phase.  
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During the training phase, the first step is to 
select the features that best discriminate the different 
classes (Figure 1). This selection may relate to the 
raw data as the results from filtering, principal 
components analysis (PCA),.... The next step is to 
determine the parameters of each class. 
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Figure 1: Data processing by classification. 

2.1 LAMDA Classification Method 

LAMDA is a fuzzy methodology of conceptual 
clustering and classification. It is based on finding 
the global membership degree of an individual to an 
existing class, considering all the contributions of 
each of its features. This contribution is called the 
marginal adequacy degree (MAD). The MADs are 
combined using "fuzzy mixed connectives" as 
aggregation operators in order to obtain the global 
adequacy degree (GAD) of an element to a class. 
LAMDA can simultaneously handle qualitative and 
quantitative data (Isaza et al., 2004) and has been 
recently extended to interval data. 

LAMDA offers the possibility to make a 
supervised learning (with classes assigned a priori) 
and/or unsupervised (self-learning). Learning is 
done in an incremental and sequential way, thus 
reducing the learning phase to one or very few 
iterations. The assignment of an individual to a class 
follows always the same procedure; the present 
individual initializes a class or contributes to the 
modification of an existing class. Figure 2 illustrates 
the procedure for assigning an individual to a class. 

LAMDA states upon the assumption that the 
features of the elements to be classified are 
independent of each other, i.e. there is no correlation 
between the variables (features).  

2.2 MAD: Marginal Adequacy Degree 

The marginal adequacy degree (MAD) is expressed 
as a function of marginal relevance to the Ck class: 

μk
i(xi) =  MAD(xi / ith parameter of class Ck) 

This function depends on the ith feature xi of the 
individual X and on parameter θki of class Ck: 

μk
i(xi) = fi(xi, θki) 

The parameter θki is calculated iteratively from the 
ith feature of all individuals belonging to class Ck. 

The procedure to calculate the MAD when the 
feature is qualitative, quantitative or interval is 
detailed in the following subsections. 
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Figure 2: LAMDA structure for 3 classes. 

2.2.1 Qualitative Type Features 

In the qualitative case, the possible values of the ith 
feature form a set of modalities: 

Di = {Qi1 ,…Qij ,…QiMi} 

Let Φij be the probability of Qij in the class Ck, 
estimated by its relative frequency, then the 
membership function of xi is multinomial: 
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2.2.2 Quantitative Type Features 

When the feature is quantitative, its numerical 
values are firstly normalized (2) within the interval 
[ximin, ximax], where the bounds can be the extremes 
of a given dataset or independently imposed.  

α(xi) = (xi- ximin)/( ximin- ximax) (2)

The MAD is calculated by selecting one of the 
different possible membership functions proposed 
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by (Aguado et Aguilar-Martin, 1999). To take into 
account the correlation between all the quantitative 
features, a pre-treatment of the data was performed 
in order to express the features in the new basis 
where they are linearly independent (appendix A). 
Therefore, the Gaussian membership function has 
been used: 
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e

ikviyi
k

λ
μ −−

=
2
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 (3)

Where yi, vk and λi correspond respectively to the 
projected value of the feature, the mean value of 
class Ck and the variance in the new basis obtained 
after the transformation rendering the features 
uncorrelated to each other. 

2.2.3 Interval Type Features 

To take into account the various uncertainties 
(noises) or to reduce large datasets, the interval 
representation of data has seen widespread use in 
recent years (Billard, 2008). In this work, an interval 
data classification is proposed using a new fuzzy 
similarity measure in such a way that LAMDA can 
handle this type of features.  

To establish a similarity measure S between two 
intervals A=[a-,a+] and B=[b-,b+] defined on the 
universe of discourse U=[min(x-), max(x+)] where 
the distance between A and B is given by 
D=[min(a+,b+), max(a-,b-)], each interval is 
considered as a fuzzy subset, so that the similarity 
measure is given by: 
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The class parameters for the interval type features 
are represented by a vector of intervals and are given 
by the arithmetic mean of its bounds:  
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Where m is the number of individuals assigned to 
class Ck.  
A normalisation within the interval [0,1] is also 
necessary: 
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Where ],[ +−= iii xxx  is the normalized value of 
feature ˆ ˆ ˆ[ , ]i i ix x x− += .

               
 

Finally the marginal adequacy degree is taken as 
the similarity between the data interval xi and the 
interval 
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2.3 GAD: Global Adequacy Degree 

Once all the MADs are calculated, the concept of 
mixed connective is used to compute the overall 
membership (GAD) of the individual X to class Ck. 
This is valid even if the features are of different 
types (intervals, qualitative or quantitative). 

The global level of adequacy (GAD) can be also 
expressed as the membership function of an 
individual X to a class Ck, which is interpreted as a 
fuzzy set: 

μk(X)= GAD(individual X/ class Ck) 

This function depends on each of the n features of 
the individual X through the MADs i

kμ  computed in 
the previous step and combining them by a marginal 
aggregation function generally chosen as a linear 
interpolation between fuzzy t-norm (γ) and t-conorm 
(β) (Piera et Aguilar, 1988).  
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where parameter α, 0≤ α ≤ 1, is called exigency. 

3 APPLICATION TO CANCER 
PROGNOSIS 

The two real-world datasets used to assess the 
effectiveness of the presented methodology are 
obtained from the publicly available machine 
learning repository from Irvine University (Murphy 
& Aha, 1995) and concern the relapse prediction of 
patients with breast cancer: the first one provided by 
the Centre of Clinical Sciences at the University of 
Wisconsin, the second one comes from the Institute 
of Oncology of the University Medical Centre of 
Ljubljana, dedicated also for prognosis including 
only qualitative and interval features. These datasets 
have been widely used to test and compare the 
performance of different learning algorithms and 
classification methods. 

3.1 Prognosis Wisconsin Dataset 

This dataset of prognosis was obtained from the well 
known Wisconsin Breast Cancer Diagnosis (WBCD) 
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which contains 569 patients divided into 2 subsets: 
357 with fibrocystic breast masses and 212 with 
cancer. The later one contains 166 patients with 
primary invasive breast cancer for whom necessary 
information for studying prognosis was available. 
The remaining 46 patients either had in situ cancers, 
or had distant metastasis in the time of presentation 
(Wolberg & al, 1995). Only 118 of the 166 patients, 
excluding patients with missing data, developed 
metastases sometime following surgery (i.e. relapse) 
or were followed a minimum of 24 months without 
developing distant metastases (i.e. no relapse). This 
dataset contains 32 features, 30 were obtained by 
image processing. These features describe the 
characteristics of cell nuclei present in the image: 
1. Radius (average distance from the centre to 

points on the perimeter). 
2. Texture (standard deviation of the values of 

"gray-scale"). 
3. Perimeter 
4. Area  
5. Smoothness (local variation in radius lengths). 
6. Compactness (perimeter2 / area - 1.0).  
7. Concavity (severity of concave parts of the 

contour).  
8. Concave points (number of concave portions of 

the contour).  
9. Symmetry.  
10. Fractal dimension (coastline approximation - 1). 

The average value, the "worst" (average of the 
three larger ones), and standard deviation of each 
feature were calculated for each image, resulting in a 
total of 30 features. In addition, the dataset includes 
the tumour size and the number of affected lymph 
nodes. 

3.1.1 Feature Selection and Extraction 

Feature selection is the problem of choosing a small 
subset of features that ideally is necessary and 
sufficient to describe the target concept (Kira and 
Rendell, 1992). There are 32 features for the 
Wisconsin prognosis dataset. Two feature selection 
methods and one extraction method have been 
compared to assess the performance of the proposed 
classification method during the training phase: T-
Test, Entropy and Principal Component Analysis 
(PCA). 

The T-Test method determines if two groups are 
statistically different from their characteristics. By 
reverse reasoning, it is clear that the characteristics 
that make them different can be determined. 
Similarly, the entropy (entropy of the information 

according to Shannon) is a measure of the quality of 
information. The PCA seeks a projection of d-
dimensional data onto a lower-dimensional subspace 
in a way that is optimal in a sum-squared error 
sense. 

In all three cases, the first 10 ranked features 
have been selected. In the case of T-Test and 
entropy, it was found that although the ranking order 
was different seven out of the first 10 features 
appeared within the two methods. The list of these 
10 features is given in Table1. 

Table 1: Feature selection for Wisconsin dataset according 
to the T-test and Entropy methods. M=mean, W=worst, 
SE= standard deviation. 

T-TEST ENTROPIE 
W Perimeter W fractal dimension 

W Radius M fractal dimension 
M Perimeter M Area 

M Radius W Perimeter 
M Area M Perimeter 
W Area M Radius 

M Fractal dimension W Radius 
SE Area W Area 

M concave points SE Fractal dimension 
SE Perimeter M Symmetry 

As regards to the PCA, the 32 features were used 
to identify the main directions that best represent the 
data. Figure 3 shows the amount of information 
represented by each component and the cumulated 
information given by the first 10 components. It can 
be seen that these components enable to represent 
93% of the total information in the training set.  
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Figure 3: 10 principal components obtained by ACP and 
their power of data representation. 
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3.1.2 Method and Results 

In this study, due to the limited number of relapsed 
patients, a Leave-One-Out Cross Validation (LOO 
CV) strategy has been performed to estimate the rate 
of accuracy. This consists of removing one sample 
from the dataset, constructing the predictor only on 
the basis of the remaining samples, and then testing 
its performance on the removed example. The 118 
patients have been ordered: the first 96 have not 
relapsed after 24 months and the last 22 relapsed 
(ordered in Figure 4 from left to right).  

The fuzzy classification results obtained by using 
the Gaussian membership function are presented in 
Table 2.  

A first classification has been performed using 
the 32 features and the results are shown in Figure 5. 
It can be noted that the overall prognosis is quite 
good (85.59%) with a prediction of relapse of 
72.73% (which is acceptable given the reduced 
amount of relapsed patients in the dataset). In Figure 
4 it can be seen that 7 patients (points starting from 
patient number 97) who effectively relapsed have 
not been well recognized. It is clear that a good 
analysis of the results must not only consider the 
total recognition score but focus on the false 
negatives since these patients will not receive an 
appropriate treatment. 
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Figure 4: Wisconsin Breast Cancer ordered dataset. 
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Figure 5: LAMDA results with 32 features. 

 

A comparison of these results can be made with 
those obtained by Wolberg et al. (Wolberg et al., 
1995) using a variant of MSM (MultiSurface 
Method) known as MSM-Tree (MultiSurface Tree 
Method): 86.3%. This method uses linear 
programming iteratively to place a series of 
separating planes of the feature space of the 
examples (Wolberg et al., 1995). MSM-T is similar 
to other decision tree methods such as CART and 
C4.5 but has been shown to be faster and more 
accurate on several real-world data sets (Bennett, 
1992). Although in the reported studies a T-test 
feature selection was performed it was not finally 
used to build the classifier. On the contrary all 
possible combinations of the 32 features were tested 
to determine the best set of features leading to the 
best class separation. Only four features were 
selected: M texture, W area, W concavity, W fractal 
dim. The best obtained result (86%) using this 
method is comparable to ours. Moreover it is shown 
that the introduction of the tumour size and the 
lymph nodes as supplementary features did not 
improve the performance (77.40%). Nevertheless, it 
is impossible to go further in the comparison since 
the authors did not give the rate of the false 
negatives. 

Complementary studies with preliminary feature 
selection step were performed: T-test, entropy and 
PCA. The results are given in Table 2. These results 
confirm that the features that correspond to the 
morphology of the tumour are directly related to the 
prediction of relapse. Nevertheless this information 
is not sufficient to obtain a comparable accuracy (the 
accuracy of general prediction is less than 75% for 
T-test and entropy). These results confirm as stated 
by (Wolberg et al., 1995), that  this  kind of feature 

Table 2: WBCP recognition results for the 3 feature 
selection methods with/without Tumour size and positive 
lymph nodes. 

Feature selection Total ~Relapse Relapse 
T-Test: 10 features 74.58% 77.09% 63.64% 

T-Test: 10 features + tumour 
size & lymph nodes 78.81% 82.29% 63.64% 

Entropy: 10 features 72.88% 77.08% 54.55% 
Entropy: 10 features + tumour 

size & lymph nodes 76.27% 81.25% 54.55% 

PCA: First 10 components 83.05% 93.75% 36.36% 
Nuclei cell 30 features 83.05% 85.42% 72.73% 

Nuclei cell 30 features + 
tumour size & lymph nodes 85.59% 88.54% 72.73% 

MSM-T Results (M texture, 
W area, W concavity,  

W fractal dim.) 
86.3% ~ ~ 

MSM-T Results + tumour size 
& lymph nodes 77.4% ~ ~ 
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selection procedure does not allow identifying the 
best class separation. When the tumour size and the 
number of infected lymph nodes are added to these 
10 selected features, an increase of 4% is achieved 
in both cases but it remains under the 86% obtained 
with the 32 features. In the case of PCA, the results 
given in Table 2 seem better. Nevertheless, even if 
the overall rate of prediction is more than 83%, the 
prediction of relapse (poor prognosis) is very low 
(36.36%). 

3.2 Ljubljana Prognosis Dataset  

For roughly 30% of the patients who undergo an 
operation on breast cancer, the disease reappears 
after five years. Regarding this dataset, the aim is to 
predict whether patients are likely to relapse, which 
may influence the treatment they will receive.                                                                                                                           
The Ljubljana Prognosis dataset contains a total of 
286 patients for whom 201 have not relapsed after 
five years and 85 who have relapsed (Clark & 
Niblett, 1987). For these patients, 9 features are 
available (six qualitative and three interval types): 

1. Age: 10-19, 20-29, 30-39, 40-49, 50-59, 60-69, 
70-79, 80-89, 90-99 

2. Menopause: >40, <40, pre-menopause. 
3. tumour size: 0-4, 5-9, 10-14, 15-19, 20-24,  

25-29, 30-34, 35-39, 40-44, 45-49, 50-54, 55-59.  
4. invaded nodes: 0-2, 3-5, 6-8, 9-11, 12-14, 15-17, 

18-20, 21-23, 24-26, 27-29, 30-32, 33-35, 36-39.  
5. Ablation ganglia: yes, no. 
6. malignancy Degree: I, II, III 
7. Breast right, left  
8. Quadrant: sup. left, inf. left sup. right, inf. right, 

center. 
9.  Irradiation: yes, no  

3.2.1 Methods and Results 

A cross-validation (50% training, 50% test) has been 
performed to estimate the accuracy of the proposed 
methodology. Patients with missing data were 
excluded from this analysis (9 patients). The results 
are given in Table 3. In order to compare these 
results with those cited in earlier works (Clark & 
Niblett, 1987), a first study consisted in classifying  

Table 3: LAMDA results with Ljubljana dataset. 

Feature selection Training  Test 
Whole original 

dataset 
91% 89.89% 

8 features with 
interval grade 

91.33% 90% 

Without irradiated 
patients 

93% 92.1% 

the 277 patients with 9 features as given in the 
original dataset: 6 qualitative features including the 
degree of malignancy (feature No. 6 given by 
modalities I, II or III) and 3 interval features. A 
second study was done by treating the grade data as 
intervals (I: [3,5], II: [6,7], III: [8,9]). This allows 
expressing the linguistic distance between grades, 
such as oncologists do naturally. 

Table 4: Ljubljana comparative results. 

Method Accuracy 
MEPAR-miner 92.8% 

LAMDA 90% 
Isotonic separation 80% 

EXPLORE 76.5% 
C4.5 72% 
AQR 72% 

Assist 86 68% 
NaiveBayes 65% 

The results obtained by considering the grade 
type as an interval show the effectiveness of this 
method, which gives an accuracy of 91.33% in 
training and 90% in test. Figure 6, 7 and 8 show the 
class parameters of interval features obtained in 
these two studies. It can be observed that the interval 
features “Tumour size” and “Lymph nodes” are 
more discriminatory between classes in the two 
studies than the “Age” feature. This fact was 
established in many previous studies (Deepa et al., 
2005), where it was noted that these two features 
still to date are considered as important prognostic 
factors. While for the feature “Grade” which makes 
the difference between the two studies, even if in the 
first study (Figure 7, where it was considered as 
qualitative) the difference in the three modalities 
frequencies between the two classes can be 
observed, the interpretation is still quite ambiguous 
since the two classes contains the three grades with a 
slight difference. In the second study (Figure 8, 
when the grade is considered as interval feature) the 
interpretation becomes easier and straightforward.  

A third part of the study was to consider only 
patients who have not yet undergone an irradiation 
treatment (215). This treatment had been applied 
systematically to patients with a positive number of 
lymph nodes. This implies that the two features: 
“irradiation” and the “number of affected lymph 
nodes” are correlated with each other. The objective 
here is to validate the method precisely to help 
physicians on the decision of treatment based on the 
results of prognosis beyond 5 years. The results (3rd 
line of Table 3) are quite satisfactory, 93% of 
accuracy for learning and 92.1% for test. Comparing 
these   results  (Table 4)  with  those  obtained  with  
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Figure 6: Classes parameters of interval features (1ststudy). 
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Figure 7: Classes of the feature “grade” (1st study). 
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Figure 8: Classes parameters of interval features(2ndstudy). 

other techniques AQR (Michalski & Larson, 1983), 
Assistant (Cestnik et al., 1987), CN2 (Clark & 
Niblett, 1989), C4.5 (Quinlan, 1993), Boosters 
(Bernhard et al., 2001), Isotonic separation (Ryu et 
al., 2007) and EXPLORE (Kors et al., 1997), 
LAMDA classification results appear to be as good 
as the best results reported previously and gives 
comparable results to MEPAR-miner algorithm 
(Aydogan et al.) which achieves 92.8% of accuracy. 

4 CONCLUSIONS 

This study has shown that the fuzzy classification 
provides satisfactory results in the prognosis of 
breast cancer. Comparing these results with those of 
the literature shows that they are either very similar 
or higher. The improvement of the quality of these 
results is based primarily on the recent development 
of a method that handles efficiently interval data as 
well as both quantitative and qualitative data; this 
property is one of the main features of the LAMDA 
method. Although other methods may yield results 
that are equal to those obtained with the LAMDA 
method, the advantage of using LAMDA is the 
significant gain in the interpretation simplicity. This 
is particularly useful in the medical context where a 
significant insight into the nature of the problem 
under investigation is recommended. 

Future works will be devoted to develop a 
feature selection procedure based on a wrapper 
method which consists in using the classification 
algorithm itself to evaluate the goodness of a 
selected feature subset.  
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APPENDIX 

As it has been described, in the LAMDA approach 
the GAD is obtained by using a fuzzy aggregation 
function applied to the MADs considered 
independently. In the present work the MAD 
function used is: 

[ ]
2

1
2/ exp i ik

i k
ik

x
MAD x C

ρ
σ

⎛ ⎞⎛ ⎞−⎜ ⎟= − ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

                     (A.1) 

where the parameters of class Ck are respectively 
the mean ρik and the standard deviation σik of the 
elements of this class. Therefore, if the aggregation 
function chosen is Γ , for an object X=[x1,...,xi,...xn] 

mR∈ , its global membership to class Ck is 

GAD[X/Ck]=Γ(MAD[x1/Ck],..., MAD[xi/Ck],... 
MAD[xn/Ck]) (A.2)

Nevertheless by using the Gaussian type function 
it is possible to take into account the correlation 
between features in the definition of the GAD, as 
follows: 

[ ] ( ) ( )( )11
2/ exp T

k k k kGAD X C X Xρ σ ρ−= − − −  (A.3) 

where the parameters of class Ck are ρk and σk, 
respectively the mean vector and the covariance 
matrix of the elements of this class. To take into 
account the features correlation it is proposed a 
transformation to calculate the MADs in a new basis 
such as they are uncorrelated to each other. This 
transformation relies on the following theorem:  
Theorem: given a set of vectors{ }NnX n L,1= , its mean 
vector is M (A.4) and its covariance (correlation) 
matrix is P (A.5) assumed to be invertible. 
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There exists always a linear transformation T 
such that the covariance matrix of nn TXY =  is 
diagonal.  
Proof: A square regular matrix P is diagonalizable if 
and only if there exists a basis consisting of its 
eigenvectors. The matrix B having these basis 
vectors as columns is such that 1R B P B−=  will be 
a diagonal matrix. The diagonal entries of this 
matrix are the eigenvalues of P. Therefore the 
transformation T=B-1 such that Yi=T.Xi transforms 
the mean of the set {Yn|n=1,...,N} into: 
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 (A.6) 

and the covariance matrix into: 
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So that 
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where .ir is the ith eigenvalue of R, and the mean 

∑
=

=
Nn

nii y
N

k
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1 . 

By analogy this property is extended further than 
the product towards any fuzzy aggregation 
function Γ . 
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