
PROGRAMMING REACTIVE AGENT-BASED MOBILE
ROBOTS USING ICARO-T FRAMEWORK

José M. Gascueña, Antonio Fernández-Caballero
Universidad de Castilla-La Mancha, Escuela de Ingenieros Industriales de Albacete

Instituto de Investigación en Informática de Albacete, 02071-Albacete, Spain

Francisco J. Garijo
Institut de Recherche en Informatique de Toulouse, Equipe SMAC

Université Paul Sabatier, 118 route de Narbone, 31062 Toulouse Cedex 9 – France

Keywords: Agents, Multi-Agent Systems, Agent-Oriented programming languages, Agent framework.

Abstract: This paper describes the experience and the results of using agent-based component patterns for developing
mobile robots. The work is based on the open source ICARO-T framework, which provides four categories
of component patterns: agent organization pattern to describe the overall architecture of the system,
cognitive and reactive agent patterns to model agent behaviour, and resource patterns to encapsulate
computing entities providing services to agents. The experimental setting is based on the development of a
team of cooperating robots for achieving surveillance tasks.

1 INTRODUCTION

There is a huge amount of work and valuable
proposals about agent oriented programming
frameworks and languages (Bordini et al. (2005),
Braubach & Pokahr (2009). This paper analyses the
MAS development process using the ICARO-T
framework (Garijo et al., 2008). The differentiating
factor from ICARO-T is the use of component
patterns for modelling MAS. Development
guidelines for creating application components using
agent patterns are also provided. The main
advantage of ICARO-T framework is that it provides
to engineers not only concepts and models, but also
customizable MAS design and Java code fully
compatible with software engineering standards.
While other agent based platforms, such as FIPA,
focus on communication standards, ICARO focuses
on providing high level software components for
easy development of complex agent behaviour,
agent coordination, and MAS organization. An
additional reason for choosing ICARO-T is cost-
effectiveness of agent patterns in application
development (Garijo et al., 2004).

The ICARO-T framework is the result from the
cumulative experience in the development of agent-

based applications in the last ten years. Therefore,
the framework architecture and the underlying
patterns have been elaborated, refined and validated
through the realization of several agent-based
applications. The first such system discovered
patterns for building reactive and cognitive agents. It
was a cooperative working system (Garijo et. al,
1998), which was refined with the development of a
project management system for the creation of
intelligent network services (Gómez- Sanz, Pavón &
Garijo, 2000). Scalability of the cognitive agent
model was considered in a context with thousands of
users, in a MAS that supported the personalization
of web sites (Gómez-Sanz, Pavón & Díaz-Carrasco,
2003), and the reuse of this solution in an online
discussion and decision making system (Luehrs,
Pavón & Schneider, 2003), as well as a prototype to
validate the MESSAGE methodology (Caire et. al,
2002).

In 2008 a new version of the framework was
delivered as open source (http://icaro.morfeo-
project.org/); then new teams started using ICARO
as support for academic courses and for research
projects (e.g. the e-learning project ENLACE
(Celorrio & Verdejo, 2007)). Utilization as
implementation support for a new integrative MAS

287
Gascueña J., Fernández-caballero A. and Garijo F. (2010).
PROGRAMMING REACTIVE AGENT-BASED MOBILE ROBOTS USING ICARO-T FRAMEWORK.
In Proceedings of the 2nd International Conference on Agents and Artificial Intelligence - Agents, pages 287-291
DOI: 10.5220/0002715602870291
Copyright c© SciTePress

methodology is also considered (Gascueña &
Fernández-Caballero, 2009a) in the domain of
multisensory surveillance (Pavón et al., 2007;
Gascueña & Fernández-Caballero, 2009b).

ICARO-T offers three categories of reusable
component models: agent organization models to
describe the overall structure of the system, agent
models, based on reactive and cognitive agent
behaviour, and resource models to encapsulate
computing entities providing services to agents. The
reactive agent architecture is made up of three
components: perception, control and actuation. The
perception works as an event handling mechanism.
It stores incoming events, delivering them to the
control on demand. The control is modelled as an
extended finite state machine which consumes
events stored in the perception, and performs
transitions by changing its internal state and
invoking actions in the actuation model. Reactive
agents behave like event-consuming processes
which change their internal state and execute
operations according to their state transition table.
An extensive description of the cognitive agent is
available in (Pavón, Garijo & Gómez-Sanz, 2008).

The reactive agent is able to receive events from
different components (agents and resources) through
their use interface. The perception (1) provides
interfaces to store events in a queue and to consume
them, and (2) provides events to the control when
requested via the perception consumption interface.
To achieve their goals, the agents need to interact
with the computing entities in their environment.
Agents view these entities as “resources”. More
formally, in agent-based applications developed
using ICARO-T resources are those computing
entities that are not agents, and are used by the
agents to obtain information for achieving their
objectives. Basic computing entities including
components for building new agents and resource
models are also available in the framework.

An application in the ICARO-T framework is
modelled as an organization made up of controller
components, which are agents, and resources.
Therefore, there are three layers in the organization:
the control layer (CL), which is made up of
controller components; the resource layer (RL),
made up of the components that supply information
or provide some support functionality to the agents
to achieve their goals; finally the information layer
(IL) contains ontology and/or information entities
needed for modelling both the framework itself and
applications.

2 REACTIVE COLLABORATING
MOBILE ROBOTS

The selected case study, for illustrating the
development process using ICARO-T, implements
the collaboration among several mobile robots (a
minimum of five) to carry out a common
surveillance task in an industrial estate. The robots
navigate randomly through pre-defined surveillance
paths in a simulated environment. When there is an
alarm in a building, a robot is assigned the role of
the chief, three robots will be subordinated, and the
other ones will be expecting in rearguard to receive
orders from the chief (e.g. to replace a damaged
robot). Failures are discovered by the robot itself
when any of its mounted devices (e.g., sonar, laser,
camera, etc) does not work in a right way.

The robots perceive that an alarm has occurred
through two mechanisms: (1) the security guard
notifies robots that an alarm has occurred and where
it has taken place, (2) the robot is equipped to
perceive an alarm itself when it is close enough to
the corner of a building; therefore it does not have to
wait for the security guard announcement. The alarm
is covered when a robot coalition (one chief and
three subordinates) surrounds the building, that is,
the robots that form a coalition are located at the
four building corners where the alarm has occurred.

2.1 Application Resource and Agent
Identification

The first step undertaken by the developer, in order
to implement a multi-agent system with ICARO-T,
is to identify the application agents and resources
from the established requirements. For the proposed
application an agent and three resources were
identified. RobotApplicationAgent is a reactive agent
that supports the robot functionalities. InterfaceRes
is a visualization resource that allows the user to
interact with the application (simulating an alarm
rising in a given building, notifying that an alarm
has occurred, simulating that a robot has detected a
failure, and restarting the application), and to
visualize what is happening in the simulated
environment. EnvironmentRes is a resource that
provides information about the simulated
environment (industrial estate dimensions, building
where the alarm has taken place, robots that do not
work well, and robots initial locations).
RobotLocationRes is a resource that stores the robots
location and the moment in which they were
updated.

ICAART 2010 - 2nd International Conference on Agents and Artificial Intelligence

288

2.2 The Application Agent Description

The reactive agent behaviour is modelled with a
finite state automaton, where the states represent
concrete situations of the agent life cycle. The state
diagram interpretation corresponding with the
reactive agent that controls a robot is as commented
next. There are three kinds of states: initial
(InitialState), final (FinalState) and intermediate
ones (e.g., AlarmDetection, Rearguard, and so on).
When an agent is in a given state and its event queue
has an event, which belongs to the valid inputs
(events) for transition, then the agent transits from
the current state to the transition target state and
executes the action associated with that transition.
This mechanism is not repeated again in the new
state until the execution of such an action has been
completed. There is a kind of particular transition,
the universal transition, which is valid for any
automaton state. This transition takes place for a
given input. Then, the action is executed and the
automaton transits to the next state, regardless of the
automaton’s state. For the reactive agent to be
capable of interpreting the graphically represented
automaton it is necessary to express it in a textual
way through an XML file. Actions are part of the
reactive agent automaton and are defined as methods
of semantic actions. Table 1 has been introduced to
better understand how the modelled automaton
works.

2.3 Application Resources Description

Application resources inherit the management
interface from the resource pattern. The developer
should define the use interface and the class that
implements the interface for each resource. In
general, an interface NAMEUseItf is created in a
package called icaro.applications.resources.NAME
for a NAME resource. This interface defines
methods callable from other components.

2.4 How to Access a Resource and Send
Events

Firstly a variable, whose type is resource use
interface, is defined. After that, the resource use
interface is retrieved from interface repository.
Then, all is ready to access the methods offered by
the interface. A resource accesses another resource
by following a mechanism similar to the previously
described one. Next, we illustrate how an event
containing information is sent by an agent. First, an
array of objects is created with a size equal to the

objects to be sent, and then it is initialized. Let us
highlight that the order of assignment should be the
same that appears in the parameters definition of the
semantic action that will be executed upon receiving
the event. After that the interface repository use
interface is retrieved and it is used to get the use
interface associated with the agent instance to which
the event will be sent. Then, the event is created.
Finally, the event is sent using the use interface.
Notice that sending an event to an agent from a
resource follows this same idea.

2.5 Organization File Description

The application organization is described through an
XML file (in our case it is “RobotSimulation.xml”)
that conforms to “OrganizationDescription-
Schema.xsd” file. Firstly, the XML file describes the
organization components features: managers’
behaviour, application agents’ behaviour, and
application resources description. Secondly, the
application instances are defined. Moreover, the
instances managed for each manager are also
specified. Finally, a script file in bin folder should be
created to launch the developed application. This file
will contain the following command: ‘ant -
buildfile=../build.xml run –DdescriptionPath=
DESC’ (in our case DESC is RobotSimulation).

3 CONCLUSIONS

In order to cope with application development
complexity, the availability of architectural
framework ICARO-T facilitates the development of
MAS in several ways. (1) The categorization of
entities either as agents or resources implies a clear
design choice for the developer. (2) Environment
can be modelled as a set of resources, with clear
usage and management interfaces. There are
standard patterns and mechanisms in the framework
to facilitate their access. (3) Management of agents
and resources follows certain patterns and most
management functionality is already implemented.
This relieves the developer of a considerable amount
of work, and guarantees that the component will be
under control. (4) The framework enforces a pattern
for system initialization, which is particularly
important in MAS where multiple distributed
entities have to be initialized consistently, and this
turns out to be a complex issue in many systems. (5)
Agents work as autonomous entities and encapsulate
their behaviour (reactive, cognitive) behind their
interfaces.

PROGRAMMING REACTIVE AGENT-BASED MOBILE ROBOTS USING ICARO-T FRAMEWORK

289

Table 1: Description of the automaton’s actions.

Action Description
move The agent sends itself a newStep event if there is no alarm.

notifyPosition
Determines if the agent becomes the chief. The chief is the agent closer to the alarm and the ties
are solved in favour of the agent that has a lower index. The agent sends itself a ChiefDesignation
event if it becomes the chief.

stayInRearguard The agent updates its role as rearguard and learns who the chief is. The robot does not move while
it has this role.

subordinate The agent (1) updates its role as subordinate and learns who is the chief, and (2) sends itself a
newStep event.

assignRoles

The agent (1) updates its role as chief, (2) assigns to what corner the chief should go, (3) assigns
to what corners the three next closets agents to the alarm should go to, and sends them a
subordinateDesignation event that contains the following information: the target corner that it
should occupy and who is the chief robot, (4) send to the other agents a rearguardDesignation
event, and finally, (5) sends itself a newStep event. The notifyPosition action may be consulted to
know how the ties are solved.

goToFreeCorner
If the chief/subordinate agent is on the assigned target corner, then it sends itself an
alarmTargetCorner event; otherwise it determines to what corner it will move next, and it sends
itself a newStep event.

notifyChiefOfTheError
If the agent is a rearguard, then it sends an errorRearguard event to the chief; whereas if it is a
subordinate agent, then it sends an errorSubordinate event, which contains its identification
number to the chief. In both cases the agent marks the controlled robot as damaged.

informChief The subordinate agent sends to the chief agent an alarmTargetCornerSub event, which contains
the subordinate agent identification number.

markReachedTarget
CornerSub

The chief agent (1) marks the target corner that the subordinate agent has occupied, (2) increases
the number of occupied corners, and, (3) notifies the user when four target corners have been
occupied.

markReachedTarget
CornerChief

The chief agent (1) marks the target corner that it has occupied, (2) increases the number of
occupied corners, and, (3) notifies the user when four target corners have been occupied.

selectSubordinate
InRearguard

The chief agent (1) increases the number of damaged robots, (2) identifies the closest rearguard
agent to the target corner to be occupied by the damaged subordinate agent, and, (3) sends a
subordinateDesignation event that contains the target corner and the chief identification number.

markFailureyRearguard The chief agent (1) marks the rearguard agent that sent an errorRearguard event as damaged, and,
(2) increases the number of damaged robots.

generateRoles
Reasignation

The chief agent (1) marks itself as damaged, (2) increases number of damaged robots, and, (3)
sends to the rest of agents a rolesReassignation event that contains the location of the building
where the alarm occurred.

ACKNOWLEDGEMENTS

This work was partially supported by Spanish
Ministerio de Ciencia e Innovación TIN2007-67586-
C02-02, and Junta de Comunidades de Castilla-La
Mancha PII2I09-0069-0994 and PEII09-0054-9581
grants.

REFERENCES

Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni,
A. (Editors.). (2005). Multi-Agent Programming:
Languages, Platforms and Applications. Springer.

Braubach, L., Pokahr, A. (2009).
http://jadex.informatik.uni-
hamburg.de/bin/view/Links/Agent+Platforms.

Caire, G., Coulier, W., Garijo, F., Gómez, J., Pavón, J.,
Leal, F., Chainho, P., Kearney, P., Stark, J., Evans, R.,
Massonet, P. (2002). Agent-oriented analysis using
MESSAGE/UML. LNCS 2222, pp. 119-135.

Celorrio, C., Verdejo, M.F. (2007). Adapted activity
deployment and configuration in a pervasive learning
framework. Pervasive Learning, PL2007, pp. 51-58.

Garijo, F., Polo, F., Spina, D., Rodríguez, C. (2008).
ICARO-T User Manual. Technical Report, Telefonica
I+D.

Garijo, F., Bravo, S., Gonzalez, J., Bobadilla, E. (2004)
BOGAR_LN: An agent based component framework
for developing multi-modal services using natural
language. LNAI 3040, pp. 207-220.

Garijo, F., Tous, J., Matias, J.M., Corley, S., Tesselaar, M.
(1998). Development of a multi-agent system for
cooperative work with network negotiation
Capabilities. LNCS 1437, pp. 204–219.

Gascueña, J.M., Fernández-Caballero, A. (2009). Towards
an integrative methodology to develop multi-agent
systems. First International Conference on Agents and
Artificial Intelligence, ICAART'09, pp. 392-399.

Gascueña, J.M., Fernández-Caballero, A. (2009). On the
use of agent technology in intelligent, multi-sensory
and distributed surveillance. The Knowledge
Engineering Review, to appear.

Gómez-Sanz, J., Pavón, J., Díaz-Carrasco, A. (2003). The
PSI3 agent recommender system. LNCS 2722, pp. 30-39.

ICAART 2010 - 2nd International Conference on Agents and Artificial Intelligence

290

Gómez-Sanz, J., Pavón, J., Garijo, F. (2000). Intelligent
interface agents behavior modeling. LNAI 1793, pp.
598-609.

Luehrs, R., Pavón, J., Schneider, M. (2003). DEMOS tools
for online discussion and decision making. LNCS
2722, pp. 525-528.

Pavón, J., Garijo, F., Gómez-Sanz, J. (2008). Complex
systems and agent-oriented software engineering.
LNAI 5049, pp. 3-16.

Pavón, J. Gómez-Sanz, J., Fernández-Caballero, A.,
Valencia-Jiménez, J.J. (2007). Development of
intelligent multisensor surveillance systems with
agents. Robotics and Autonomous Systems 55(12), pp.
892-903.

PROGRAMMING REACTIVE AGENT-BASED MOBILE ROBOTS USING ICARO-T FRAMEWORK

291

