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Abstract: It is known that linear-time temporal logic (LTL) is one of the most useful logics for reasoning about time and
for verifying concurrent systems. It is also known that the satisfiability problem for LTL is PSPACE-complete
and that finding NP-complete fragments of LTL is an important issue for constructing efficiently executable
temporal logics. In this paper, an alternative NP-complete logic called bounded linear-time temporal logic is
obtained from LTL by restricting the time domain of temporal operators.

1 INTRODUCTION

It is known that linear-time temporal logic(LTL)
(Pnueli, 1977) is one of the most useful logics for rea-
soning about time and for verifying concurrent sys-
tems bymodel checking(Clarke et al., 1999; Holz-
mann, 2006). It is also known that in almost all
cases, the model checking problems for LTL and its
fragments are equivalent to the satisfiability problems
for them. For this reason, the satisfiability prob-
lems for LTL fragments are known to be an im-
portant issue for constructing efficiently executable
temporal logics. The satisfiability problem for LTL
is PSPACE-complete (Sistla and Clarke, 1985) and
finding NP-complete fragments of LTL has been
well-studied (Demri and Schnoebelen, 2002; Etes-
sami et al., 1997; Muscholl and Walukiewicz, 2005;
Walukiewicz, 1998). This paper tries to construct an
alternative to such an NP-complete fragment by re-
stricting the time domain of temporal operators. Al-
though the standard temporal operators of LTL have
an infinite (unbounded) time domain, i.e., the setω
of natural numbers, the bounded operators which are
presented in this paper have abounded time domain
which is restricted by a fixed positive integerl , i.e.,
the setωl := {x∈ ω | x≤ l}. Despite this restriction,
the proposed bounded operators can derive almost all
the typical LTL axioms including the temporal induc-
tion axiom.

To restrict the time domain of temporal operators
is not a new idea. Such an idea has been discussed
(Biere et al., 2003; Cerrito et al., 1999; Cerrito and
Mayer, 1998; Hodkinson et al., 2000; Kamide, 2008).

It is known that to restrict the time domain is a tech-
nique to obtain a decidable or efficient fragment of
first-order LTL (Hodkinson et al., 2000). Restricting
the time domain implies not only some purely theo-
retical merits, but also some practical merits for de-
scribing temporal databases and planning specifica-
tions (Cerrito et al., 1999; Cerrito and Mayer, 1998),
and for implementing an efficient model checking al-
gorithm calledbounded model checking(Biere et al.,
2003). Such practical merits are due to the fact that
there are problems in computer science and artificial
intelligence where only a finite fragment of the time
sequence is of interest (Cerrito et al., 1999).

The contents of this paper are then summarized as
follows. In Section 2, a logic calledbounded linear-
time temporal logic(BLTL) is obtained from LTL by
restricting the time domain of temporal operators. In
order to obtain a theorem for embedding BLTL into
classical propositional logic (CL), a semantics for CL
is also defined. In Section 3, the NP-completeness of
the satisfiability problem for BLTL is shown using the
embedding theorem of BLTL into CL. In Section 4,
conclusions and related works are briefly addressed.

2 BOUNDED LINEAR-TIME
TEMPORAL LOGIC

Formulasof BLTL are constructed from (countably
many) propositional variables,→ (implication), ∧
(conjunction),∨ (disjunction),¬ (negation), X (next),
G (globally) and F (eventually) where X,G and F are
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bounded versions of the standard operators of LTL.
Lower-case lettersp,q, ... are used to denote proposi-
tional variables, and Greek lower-case lettersα,β, ...
are used to denote formulas. We writeA ≡ B to in-
dicate the syntactical identity betweenA andB. The
symbolω is used to represent the set of natural num-
bers. Lower-case lettersi, j andk are used to denote
any natural numbers. The symbol≥ or ≤ is used to
represent a linear order onω. Let l be a fixed positive
integer. Then, the symbolωl is used to denote the set
{i ∈ ω | i ≤ l}. In the following discussion,l is fixed
as a certain positive integer.

Definition 2.1 (BLTL) . Let S be a non-empty set of
states. A structure M:= (σ, I) is amodelif

1. σ is an infinite sequence s0,s1,s2, ... of states in S,
2. I is a mapping from the setΦ of propositional

variables to the power set of S.

A satisfaction relation(M, i) |= α for any formula
α, where M is a model(σ, I) and i (∈ ω) represents
some position withinσ, is defined inductively by

1. for any p∈ Φ, (M, i) |= p iff si ∈ I(p),
2. (M, i) |= α∧β iff (M, i) |= α and(M, i) |= β,
3. (M, i) |= α∨β iff (M, i) |= α or (M, i) |= β,
4. (M, i) |= α→β iff (M, i) |= α implies(M, i) |= β,
5. (M, i) |= ¬α iff not-[(M, i) |= α],
6. for any i≤ l −1, (M, i) |= Xα iff (M, i +1) |= α,
7. for any i≥ l, (M, i) |= Xα iff (M, l) |= α,
8. (M, i) |= Gα iff ∀ j ≥ i with j ∈ ωl [(M, j) |= α],
9. (M, i) |= Fα iff ∃ j ≥ i with j ∈ ωl [(M, j) |= α],

10. for any m∈ ω, (M, l +m) |= α iff (M, l) |= α.

A formulaα is valid in BLTL if (M,0) |=α for any
model M:= (σ, I). A formulaα is satisfiablein LTL
if (M,0) |= α for some model M:= (σ, I).

Since BLTL depents onl , it should precisely be
named e.g., BLTL[l ], but, for the sake of simplicity,
we use the name BLTL in the following.

An expressionα ↔ β means(α→β) ∧ (β→α).
Expressions

∧
C and

∨
C are used to represent the fi-

nite conjunction and disjunction of the formulas inC,
respectively.

Proposition 2.2. The following formulas are valid in
BLTL :

1. X(α◦β)↔ Xα◦Xβ where◦ ∈ {→,∧,∨},
2. X(¬α)↔¬(Xα),
3. Gα→α,
4. Gα → Xα,
5. Gα → XGα,
6. Gα → GGα,
7. α∧G(α→Xα)→Gα (temporal induction),

8. for any m∈ ω, X l+mα ↔ X l α,

9. Gα ↔
∧

{Xiα | i ∈ ωl},

10. Fα ↔
∨

{X iα | i ∈ ωl}.

Proof. We show some critical cases. LetM be an
arbitrary model and|= be an arbitrary satisfaction re-
lation onM.

(7): We show (M,0) |= α ∧ G(α→Xα)→Gα.
Suppose(M,0) |= α∧G(α→Xα), i.e., (a):(M,0) |=
α and (b): (M,0) |= G(α→Xα). We will show
(M,0) |= Gα, i.e., ∀ j ∈ ωl [(M, i) |= α]. From (b),
we obtain:

(M,0) |= G(α→Xα)
iff ∀ j ∈ ωl [(M, j) |= α→Xα]
iff ∀ j ∈ ωl [(M, j) |= α =⇒ (M, j) |= Xα]
iff (c): ∀ j ∈ ωl [(M, j) |= α =⇒ (M, j + 1) |=

α (if j ≤ l −1) or (M, l) |= α (if j ≥ l)].

We now show the required fact∀i ∈ ωl [(M, i) |= α]
by mathematical induction oni. Base step: We have
(M,0) |= α by (a). Induction step: Suppose(M,k) |=
α with k≤ l −1. Then, we obtain(M,k+1) |= α by
(c). Suppose(M,k) |= α with k ≥ l . Then, we obtain
(M, l) |= α by (c), and hence obtain(M,k+1) |= α
wherek+1= l +mwith m∈ ω.

(8): We obtain:(M,0) |= X l+nα iff (M, l) |= α iff
(M,0) |= X l α.

(9): We obtain: (M,0) |= Gα iff ∀ j ∈
ωl [(M, j) |= α] iff ∀ j ∈ ωl [(M,0) |= X jα] iff
(M,0) |=

∧
{X jα | j ∈ ωl}.

Remark that 8, 9 and 10 in Proposition 2.2 are re-
garded as characteristic axioms concerning the time
boundl . Note that 9 and 10 in Proposition 2.2 be-
come the axioms of LTL ifωl is replaced byω. Thus,
BLTL is quite natural as a bounded time formalism.

Formulas of classical logic (CL) are constructed
from (countably many) propositional variables,→,¬,∧

(finite conjunction) and
∨

(finite disjunction).

Definition 2.3 (CL). LetΘ be a finite (non-empty) set
of formulas. V is a mapping from the setΦ of propo-
sitional variables to the set{t, f} of truth values. V is
called avaluation. A satisfaction relation V|= α for
any formulaα is defined inductively by

1. V |= p iff V(p) = t for any p∈ Φ,
2. V |= ¬α iff not-(V |= α),
3. V |= α→β iff V |= α implies V|= β,

4. V |=
∧

Θ iff V |= α for anyα ∈ Θ,

5. V |=
∨

Θ iff V |= α for someα ∈ Θ.

A formulaα is valid (satisfiable) in CL if V |= α
for any (some) valuation V.
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3 NP-COMPLETENESS

Definition 3.1. Fix a countable non-empty setΦ
of propositional variables. Define the setsΦi :=
{pi | p∈ Φ} (i ∈ ω) of propositional variables where
p0 = p (i.e., Φ0 := Φ). The languageL b of BLTL
is defined usingΦ, →,∧,∨,¬, X, G andF. The lan-
guageL of CL is defined using

⋃

i∈ω
Φi , →,¬,

∧
and

∨
. The binary versions of

∧
and

∨
are also denoted

as ∧ and ∨, respectively, and these binary symbols
are included in the definition ofL .

A mapping f fromL b to L is defined by

1. for any p∈ Φ, f(X i p) := pi ∈ Φi , especially,
f (p) := p∈ Φ,

2. f(X i(α ◦ β)) := f (X iα) ◦ f (X iβ) where ◦ ∈
{→,∧,∨},

3. f(X i¬α) := ¬ f (X iα),
4. for any m≥ l, f (XmXα) := f (X l α),
5. f(X iGα) :=

∧
{ f (X i+ jα) | j ∈ ωl},

6. f(X iFα) :=
∨
{ f (X i+ jα) | j ∈ ωl}.

Remark that the mappingf in Definition 3.1 is
a polynomial-time reduction sincef (α) can be com-
puted by subformulas ofα.

Lemma 3.2. Let f be the mapping defined in Defini-
tion 3.1, and S be a non-empty set of states. For any
model M:= (σ, I) of BLTL , any satisfaction relation
|= on M and any state si in σ, we can construct a val-
uation V ofCL and a satisfaction relation|= of CL
such that for any formulaα in L b,

(M, i) |= α iff V |= f (X iα).
Proof. Let Φ be a non-empty set of propositional
variables andΦi be the set{pi | p ∈ Φ}. Suppose
thatM is a model(σ, I) where

I is a mapping fromΦ to the power set ofS.

Suppose that

V is a mapping from
⋃

i∈ω
Φi to {t, f}.

Suppose moreover thatI andV satisfy the following
condition:

∀i ∈ ω, ∀p∈ Φ [si ∈ I(p) iff V(pi) = t].

Then, the lemma is proved by induction on the
complexity ofα. For the sake of simplicity,V of V |=
is omitted in the following.

• Base step:α ≡ p ∈ Φ. (M, i) |= p iff si ∈ I(p)
iff V(pi) = t iff |= pi iff |= f (X i p) (by the definition
of f ).

• Induction step.
(Caseα ≡ β∧ γ): (M, i) |= β∧ γ iff (M, i) |= β and

(M, i) |= γ iff |= f (X iβ) and|= f (X iγ) (by induction

hypothesis) iff|= f (X iβ)∧ f (X iγ) iff |= f (X i(β∧ γ))
(by the definition off ).

(Casesα ≡ β∨ γ andα ≡ β→γ): Similar to the
above case.

(Caseα ≡ ¬β): (M, i) |= ¬β iff not-[(M, i) |= β]
iff not-[ |= f (X iβ)] (by induction hypothesis) iff|=
¬ f (X iβ) iff |= f (X i¬β) (by the definition off ).

(Caseα ≡ Xβ):
Subcase (i ≤ l −1): (M, i) |= Xβ iff (M, i +1) |=

β iff |= f (X i+1β) (by induction hypothesis) iff|=
f (X i(Xβ)).

Subcase (i ≥ l ): (M, i) |= Xβ iff (M, l) |= β iff |=
f (X l β) (by induction hypothesis) ifff (X iXβ) (by the
definition of f ).

(Caseα ≡ Gβ): (M, i) |= Gβ iff ∀ j ≥ i with j ∈
ωl [(M, j) |= β] iff ∀ j ≥ i with j ∈ ωl [|= f (X jβ)]
(by induction hypothesis) iff∀k ∈ ωl [|= f (X i+kβ)]
iff |= γ for all γ ∈ { f (X i+kβ) | k ∈ ωl} iff |=∧

{ f (X i+kβ) | k∈ ωl} iff |= f (X iGβ) (by the defini-
tion of f ).

(Caseα ≡ Fβ): Similar to the above case.

Lemma 3.3. Let f be the mapping defined in Defini-
tion 3.1, and S be a non-empty set of states. For any
valuation V ofCL and any satisfaction relation|= of
CL, we can construct a model M:= (σ, I) of BLTL
and a satisfaction relation|= on M such that for any
formulaα in L b,

V |= f (X iα) iff (M, i) |= α.

Proof. Similar to the proof of Lemma 3.2.

Theorem 3.4 (Embedding). Let f be the mapping
defined in Definition 3.1. For any formulaα, α is
valid (satisfiable) inBLTL iff f (α) is valid (satisfi-
able) inCL.

Proof. By Lemmas 3.2 and 3.3.

We then obtain the main theorem of this paper as
follows.

Theorem 3.5 (Complexity). The validity and satis-
fiability problems ofBLTL are Co-NP-complete and
NP-complete, respectively.

Proof. The validity and satisfiability problems of CL
are known to be Co-NP-complete and NP-complete,
respectively. By decidability of CL, for eachα, it
is possible to decide iff (α) is valid (satisfiable) in
BLTL. Then, by Theorem 3.4, the validity and satis-
fiability problems of BLTL are decidable. Sincef is
a polynomial-time reduction, the validity and satisfi-
ability problems of BLTL are also Co-NP-complete
and NP-complete, respectively.
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4 CONCLUSIONS AND RELATED
WORKS

In this paper, BLTL, which is obtained from LTL by
restricting the time domain of temporal operators, was
introduced, and the satisfiability problem for BLTL
was shown to be NP-complete by using a theorem for
embedding BLTL into CL. The embedding theorem
had a central role for showing the NP-completeness
of BLTL. The embedding theorem may also be justi-
fied by the usefulness of the bounded model checking
technique (Cerrito and Mayer, 1998), which uses a
propositional satisfiability checking technique. It was
thus shown in this paper that the existing satisfiability
checking techniques of CL are available for BLTL.
This is an advantage of BLTL.

In the following, some related works are briefly
reviewed. It is known (Sistla and Clarke, 1985) that
the LTL fragment endowed with the standard opera-
tors X, G and F are PSPACE-complete and that the
fragment endowed with either X or (F and G) has NP-
complete satisfiability problems. Some NP-complete
fragments of LTL have been well-studied (Demri and
Schnoebelen, 2002; Etessami et al., 1997; Muscholl
and Walukiewicz, 2005; Walukiewicz, 1998). Some
restrictions on the nesting of operators and on the
number of propositions were proposed by Demri and
Schnoebelen (Demri and Schnoebelen, 2002). Re-
stricting X to operators Xa (a ∈ Σ) that enforce the
current letter to bea was proposed by Muscholl
and Walukiewicz (Muscholl and Walukiewicz, 2005).
The formula Xα is expressed as

∨
a∈Σ Xaα whereΣ is

the alphabet. They proved that the satisfiability prob-
lem for the LTL fragment with Xa (a∈SI), F and G is
NP-complete. Finally it is mentioned that a Gentzen-
type sequent calculus for a modification of BLTL was
proposed by Kamide (Kamide, 2008).
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