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Abstract: Usage of Bayesian networks in medical decision support system is in general case twofold: (1) for obtaining 
probabilities of occurrence of medical events (i.e. possible diagnosis) and (2) for obtaining information gain 
of actions that can be taken (i.e. diagnostic tests). On the other hand, typical role of ontology is to provide a 
framework for definition of medical concepts, their structure and relations among them. In medical practice 
diagnostic tests are commonly comprised of number of measurements or sub-tests – a structure which is 
straightforwardly described by ontological language. In this paper we are analyzing the information gain of 
such structured medical diagnostic tests. The purpose of this analysis is to allow finding (1) which 
structured medical diagnostic test is at the given point the most informative one and (2) which elementary 
measurements within a given diagnostic test are the most informative ones. Furthermore, we are analyzing 
some computational issues which arise in the reasoning process. 

1 INTRODUCTION 

Bayesian networks (BN) have already demonstrated 
their practical value in medical decision support 
systems. The most exploited features of such system 
are (1) finding probabilities of possible events in the 
system (usually probabilities of diagnosis) and (2) 
finding information gain (IG) of possible actions 
that can be taken (usually medical diagnostic tests). 
On the other hand, ontologies have become de facto 
standard in medical decision support systems for 
formalization of descriptive medical knowledge: 
defining domain concepts and relations among them.  

Medical domain is particularly suitable for usage 
of IG as a decision support parameter. For example, 
(Jagt 2002) uses BN to describe probabilistic 
relations among medical concepts and uses IG to 
find the most  informative medical measurement 
(test) considering possible final diagnoses (diseases). 
In practice, medical diagnostic tests are commonly 
comprised of more than one diagnostic parameters, 

e.g. laboratory analysis of blood sample measures 
levels of glucose, creatinine, cholesterol, urea, etc. It 
would be useful to allow the decision support system 
to perceive such structured medical test as a 
conceptual unit. Still, one should be aware that it is 
not necessary to measure all existing parameters 
within test; one can choose which parameters are 
currently interesting and disregard the others and 
thus presumably cut the expenses of medical test and 
save some time.  

In this paper we are proposing approach which 
uses BN for description of probabilistic relations 
among medical concepts and measures IG of 
composite medical diagnostic tests defined within 
ontology. As we will demonstrate, the integration of 
those two knowledge formalisms brings in some 
additional features for the decision making but also 
rises some computational issues in the reasoning 
process. 

It should also be noted that in medical practice 
very often some other (non-medical) factors must be 
taken into account: e.g. price of the test, availability 
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of medical instruments, urgency, etc. Although 
measure of IG does not take into account these 
factors, it is possible to derive a weighted 
combination (or some other type) of those factors to 
form a comprehensive scale of medical test utility. 
However this paper analyzes solely IG of actions in 
pure medical sense. 

The organization of paper is as follows. Chapter 
2 previews the existing approaches for integration of 
ontologies and BN. Chapter 3 demonstrates the 
usage of BN in a medical decision support system. 
Chapter 4 upgrades the described decision support 
services with ontological knowledge and analyzes 
means for performing reasoning tasks. Chapter 5 
gives example of practical usage of such integrated 
knowledge base in a single decision support system. 
Chapter 6 discusses some performance issues of the 
described approach related to reasoning phase. 

2 RELATED WORK 

Integration of ontologies with BN is not a new 
paradigm. In (Pan 2005) BN is used to recognize 
semantic relations between concepts in two different 
ontologies, which enables automatic generation of 
mappings between ontology concepts. Application 
of this approach is described in the domain of 
Semantic Web where problem of semantic relation 
between ontologies is emphasized. 

In (Devitt 2006) knowledge stored in the 
ontology is used for generating possible structures of 
BN. Since ontologies thoroughly define domain 
concepts and existing relations among them there is 
a possibility to use such knowledge to generate the 
structure of BN. In (Town 2004) ontology is used 
both to learn BN structure and in the process of  
network training, i.e. learning probability tables of 
network nodes. The usual process of BN training 
(using existing data set) is augmented by scoring 
scheme which is based on the ontological 
knowledge. 

In (McGarry 2007) high level knowledge 
obtained from ontologies is integrated with newly 
discovered knowledge extracted from BN which was 
trained on existing data set. In (Huhns 2007) 
ontology is used for management of evidence in the 
BN. In (Wang 2008) ontology is used for integration 
of heterogeneous data sources and BN is used for 
making probabilistic suggestions. 

In medical domain, (Jeon 2007) uses ontology 
for semi-automatic construction of BN for 
diagnosing diseases. In (Zheng 2005) guideline 
modelling tool that uses ontological workflow 

management (GLIF) is integrated with probabilities 
obtained by BN.  

As we have demonstrated in this brief overview, 
previous attempts of integration of these knowledge 
representation formalisms are focused mainly on 
calculation of probabilities of outcomes of some 
events. Methodology proposed in this paper is 
focusing mainly towards the IG of possible actions.  
This is the crucial difference of the proposed 
methodology with already existing approaches of 
integration of ontologies and BNs. 

3 USING BAYESIAN NETWORK 

It is possible to construct BN (1) manually by 
knowledge acquisition (in interaction with medical 
experts), (2) automatically by machine learning 
algorithms (from available medical data sets), where 
it is possible to learn network structure and 
conditional probabilities separately.  

The machine learning approach is especially 
useful in the medical domain where it is very hard to 
explicitly state medical knowledge, and on the other 
hand there already are plenty of available medical 
data sets. With arrival of new patient data the 
network can be updated and improved. If the 
environment of the network is changed (e.g. the 
system is applied in another country), new network 
can be obtained by learning on new data set. 

Figure 1 shows a provisional example of BN that 
was built manually and that is used in the paper for 
methodology  demonstration  purposes (from heart 

 
Figure 1: Provisional BN for diagnosing heart failure 
disease. 
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failure domain). Based on defined conditional 
probabilities it is possible to calculate probabilities 
(beliefs) of each outcome of each node in the 
network (e.g. expecting normal ejection fraction in 
70% cases).  

In cases when physician is uncertain about the 
diagnosis she should perform additional diagnostic 
tests. In that case it would be very useful to know 
which medical tests are the most appropriate in 
currently observed patient situation. In other words, 
it is useful to calculate IG of each observation node 
for each target node. There are many measures 
which could be appropriate in this situation; the 
expected decrease of entropy is a measure which is 
most commonly used (Jagt 2002). 

To calculate the entropy of the target node we 
use the probabilities of all outcomes of the target 
node: 

oo
o

ppXEXEntropy 2log)()( ∑−==  

where X is a target node and o is the outcome of the 
target node.  The maximum value of entropy is 1 
(when considering only two possible outcomes: YES 
and NO) and it is reached when the information 
about the target node is completely uncertain (when 
P(YES) = P(NO) = 0.5). As probability of target node 
approaches towards ends (0 and 1) the entropy is 
falls into zero. It is better to have the entropy values 
as close to zero as possible since that indicates that 
the answer to the target question is clearer. 

A summary measure which takes all possible 
outcomes of diagnostic test into account is called 
expected entropy which is calculated as follows: 

),|(),( dDXEpDXtropyExpectedEn
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where X is target node, D is observation node, d 
is a single outcome of node D, pd is probability of 
occurrence of d outcome, and E(X|D=d) is the 
entropy of the target node X when outcome d has 
happened. It can be shown that in any BN value of 
expected entropy cannot be raised by any diagnostic 
test, only lowered (Jagt 2002). 

When the procedure described above is repeated 
for all observation nodes, a diagram shown on 
Figure 2 is obtained. The figure indicates that for 
reaching the final decision whether patient has or 
has not diastolic heart failure the most informative 
diagnostic tests is measuring diastolic blood 
pressure. After physician actually measures diastolic 
blood pressure beliefs in the network are updated. 
Accordingly, observation nodes are updated with 
fresh IG values. Such reasoning procedure in BN is 
referenced in  the  literature as “explaining away”. 

 
Figure 2: IG of all diagnostic nodes for target concept 
DIASTOLICHF, for a patient that has not performed a single 
diagnostic test yet. 

4 STRUCTURED MEDICAL 
DIAGNOSTIC TESTS 

In medical practice some diagnostic measurements 
are never performed separately (e.g. systolic and 
diastolic blood pressure). Ontology provides a 
framework for organizing all possible diagnostic 
tests into groups as they appear in medical practice. 
In the ontology grouped diagnostic tests are 
organized easily by arranging the ontology structure 
as shown on Figure 3. 

 

Figure 3: Diagnostic tests are defined within ontology. 

The figure shows which elementary diagnostic 
values are measured by performing blood pressure 
measurement grouped diagnostic test. Besides 
identifying blood pressure measurement as an 
independent test, it is at the same time a constituent 
part of a more thorough tests which is called 
physical examination. In this manner it is possible to 
organize diagnostic tests into groups and subgroups. 
Additionally, some elementary observation can be a 
part of two different tests; e.g. heart rate can be 
measured both on physical examination and on 
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ECG. Grouped diagnostic tests are not necessarily 
disjunctive. 

4.1 Outcomes of Structured Tests 

Difficulty with structured diagnostic tests is that the 
number of possible outcomes grows extremely fast. 
Namely, it is equal to the product of number of 
outcomes for every elementary test in the group. For 
example, if group blood pressure measurement has 
only two elementary measurements (systolic and 
diastolic) where each has three possible outcomes 
(high, normal, low), there are nine possible 
outcomes of such test. It is evident that the growth 
rate of total number of outcomes in the group is of 
combinatorial nature. 

4.2 Information Gain of Structured 
Medical Test 

Formally speaking, to calculate the IG of a group for 
every possible outcome g of the group G one must 
calculate (1) the a priori probability of occurrence of 
observed group outcome pg, and (2) entropy of the 
target concept when observed outcome g happens Eg 
= E(X | G = g). Then the expected entropy of the 
target concept is equal to: 

∑=
g

gg EpGXtropyExpectedEn ),(  

where X is observed target node and G is observed 
grouped diagnostic test. 

To find exact value of probability pg it is possible 
to construct a dummy node in the BN which would 
have all nodes from the observed group as parent 
nodes and conditional probability table defined as 
truth table which evaluates to YES only in the 
column of the observed outcome g. When network 
beliefs are updated the belief of outcome YES in that 
node will be equal to pg. By setting the evidence on 
the same dummy node to the outcome YES one 
could read out the a posteriori probability of the 
observed target node and thus calculate value Eg. 
This procedure should be repeated (1) for every 
possible outcome, (2) of every possible diagnostic 
group test, and (3) for every possible target node. 
With large number of target nodes, large number of 
grouped diagnostic tests and large number of 
possible outcomes the procedure becomes extremely 
computationally demanding. This calls for other 
potential solutions which would compute in more 
acceptable time. 

One possibility for solving this issue is to use the 
sampling algorithms. Namely, it is possible to 
generate arbitrarily large set of samples (artificial set 
of patients) depending on the properties of the BN 

and depending on patient evidence that is present 
and to use it to calculate required probability values. 
The same procedure applies with grouped tests: 

samplesofnumber
goutcomewithsamplesofnumberpg =  

Table 1: Calculating the expected entropy of the target 
concept with respect to the grouped diagnostic test. 

 
Table 1 explicates the procedure for computing 

the expected entropy (0.231) of the target node 
(DIASTOLIC HF) after performing grouped diagnostic 
test (measuring blood pressure). By counting the 
number of samples with observed outcome one 
calculates probabilities of outcomes pg (second 
column of Table 1): 

 
This way the initial set of samples has been 

divided (unevenly) into nine disjoint subsets. In each 
subset it is possible to count samples for which the 
target node was assigned with positive diagnosis. 
This way a posteriori target probabilities are also 
calculated from the same sample set: 

 
Now it is also possible to calculate the a 

posteriori entropy values and also the final IG value. 

5 USAGE EXAMPLE 

By starting the decision support services physician 
finds out probabilities of diseases for the observed 
patient considering all currently known patient data. 
An example is shown on Figure 4. When the 
analysis of IG for all defined grouped diagnostic 
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tests in the ontology is performed, the physician can 
find out which test is the most informative one 
considering observed target nodes. Figure 5 shows 
the example results of such analysis. 

 
Figure 4: Probabilities of target nodes for observed patient 
considering all currently known patient data. 

 
Figure 5: IG of ontologically organized diagnostic tests 
considering the target concept “Heart failure signs”. 

Medical interpretation of results shown on Figure 
5 is following: considering all his currently known 
data and considering all previously recorded cases of 
the disease (cases which are inherently encoded 
within BN) observed patient has 60% possibility of 
having heart failure signs. If physician wants to be 
more certain he can perform some additional 
medical tests. Analysis of IG (again, considering all 
known patient data and considering all previously 
recorded cases) indicates that physical examination 
is the most informative test that can be performed.  

Physical examination contains more diagnostic 
tests one of which is measuring blood pressure, 
which can be further divided into measuring 
diastolic and systolic blood pressure (structure 
defined within the ontology). All such tests (both 
grouped and elementary) have their own IG value. 

A different view of the results is also possible: 
one can compare the summary impacts of grouped 
diagnostic tests on defined target concept. Figure 6 
demonstrates the comparison of two diagnostic tests: 
echocardiography and physical examination. This 
way physician can compare the overall values of IG 
of all medical tests which helps him to make a 
decision which medical test (tests) should be 
performed next. 

 
Figure 6: Comprehensive view of IG of available medical 
diagnostic tests. 

6 PERFORMANCE 

Behaviour of the system in a great deal depends 
upon some inherent characteristic both of the 
ontology and the BN. Within this paper 
measurements are conducted using a single specific 
BN and a single specific ontology; hence, the 
analysis is merely a preview of some provisional 
setting. However, we assume that behaviour of a 
single problem instance at least to some extent 
indicates its general behaviour. 

The main concern in the performance of the 
described system is with (1) time required for 
reasoning and (2) error made in reasoning. 
Furthermore, it is evident that there is a trade-off 
between those two parameters. 

 
Figure 7: Standard error made in reasoning depends upon 
number of elementary measurements in the test and the 
number of samples.  

Figure 7 shows the dependency of error made in 
the reasoning process upon the number of 
elementary measurements in the test and the number 
of samples used. For example, if one is calculating 
the IG of some grouped test which contains 10 
elementary measurements using 50,000 samples 
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standard error made in calculations will be 
somewhere near 1%. 

 
Figure 8: The appropriate number of samples depends on 
used number of elementary measurements in the tests and 
on chosen error rate. 

Figure 8 is indicating a minimum number of 
samples one should use depending on sizes of 
defined groups in the ontology and on chosen error 
rate. E.g., if one is satisfied with error rate of 1% and 
has up to 12 elementary measurements in a group 
she should use at least 100,000 samples in reasoning 
phase. Chart depicts such relation for error rates of 
2%, 1% and 0.5%.  

7 CONCLUSIONS 

In this paper we have demonstrated the approach for 
integration of knowledge from BNs and ontologies 
in order to calculate the IG of structured medical 
test. We strongly believe that the approach is sound 
and can be very useful in practical medical decision 
support systems. 

The main obstacle in the described methodology 
appeared to be the combinatorial nature of the 
number of outcomes in grouped diagnostic tests. 
However, practical experiments indicate that this 
obstacle in some cases can be to some extent 
avoided by usage of sampling algorithms in the 
reasoning phase. The measurements have 
demonstrated the dependency of error rate and 
required number of samples. On that basis, and 
considering some specific system properties such as 
number of nodes in the network, sizes of grouped 
diagnostic tests, acceptable time of reasoning, 
acceptable error rate, and properties of machine that 
performs reasoning, one can conclude which number 
of samples should she use in the reasoning phase.  

Structure of BNs inherently assumes conditional 
independency – an assumption that in general case 
does not stand for medical diagnostic tests. In spite 
of that, vast majority of decision support systems 
that make use of BNs ignore this issue. However, 
one should be fully aware of this drawback when 
using proposed methodology in practice. 

Suggested methodology of integration of BNs 
and ontologies still calls for more thorough testing 
of its overall performance and has yet to 
demonstrate its practical utility in real medical 
environments. Furthermore, suitability of the 
approach in some other domains remains to be 
shown. All above mentioned problems seem to be 
rather interesting topics for the future work. 
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