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Abstract: The Multi-Armed Bernoulli Bandit (MABB) problem is a classical optimization problem where an agent
sequentially pulls one of multiple arms attached to a gambling machine, with each pull resulting in a ran-
dom reward. The reward distributions are unknown, and thus, one must balance between exploiting existing
knowledge about the arms, and obtaining new information. Although poised in an abstract framework, the
applications of the MABB are numerous (Gelly and Wang, 2006; Kocsis and Szepesvari, 2006; Granmo et al.,
2007; Granmo and Bouhmala, 2007) . On the other hand, while Bayesian methods are generally computation-
ally intractable, they have been shown to provide a standard for optimal decision making. This paper proposes
a novel MABB solution scheme that is inherently Bayesian in nature, and which yet avoids the computational
intractability by relying simply on updating the hyper-parametersof the sibling conjugate distributions, and
on simultaneously sampling randomly from the respective posteriors. Although, in principle, our solution is
generic, to be concise, we present here the strategy for Bernoulli distributed rewards. Extensive experiments
demonstrate that our scheme outperforms recently proposed bandit playing algorithms. We thus believe that
our methodology opens avenues for obtaining improved novel solutions.

1 INTRODUCTION

The conflict between exploration and exploitation
is a well-known problem in Reinforcement Learn-
ing (RL), and other areas of artificial intelligence.
The Multi-Armed Bernoulli Bandit (MABB) problem
captures the essence of this conflict, and has thus oc-
cupied researchers for over fifty years (Wyatt, 1997).
In (Granmo, 2009) a new family ofBayesiantech-
niques for solving the classical Two-Armed Bernoulli
Bandit (TABB) problem was introduced, and em-
pirical results that demonstrated its advantages over
established top performers were reported. In this
present paper, we address theMulti-Armed Bernoulli
Bandit (MABB). Observe that a TABB scheme can
solve any MABB problem by incorporating either a
parallel or serial philosophy by considering the arms
in a pairwise manner. If operating in parallel, since
the pairwise solutions are themselves uncorrelated,

the overall MABB solution would require the solu-
tion of

(r
2

)

TABB problems (wherer is the number
of bandit arms). Alternatively, if the solutions are in-
voked serially, it is easy to see thatr −1 TABB solu-
tions suffice, namely by each solution leading to the
elimination of an inferior bandit arm - after conver-
gence. The solution that we propose here is inherently
distinct, and does not require any primitive TABB so-
lution strategy. Rather, we propose a general scheme
which considersall the r arms in asinglesequential
“game”. Thus, we believe that the paper presents a
novel solution that searches for the optimal arm by
evaluating arms simultaneously, and yet, with a com-
plexity that growslinearly with the number of arms.
We are not aware of any Bayesian sampling-based so-
lution to the MABB, and thus add that, to the best of
our knowledge, this paper is of a pioneering sort.
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1.1 The Multi-Armed Bernoulli Bandit
(MABB) Problem

The MABB problem is a classical optimization prob-
lem that explores the trade off between exploita-
tion and exploration in reinforcement learning. The
problem consists of an agent that sequentially pulls
one of multiple arms attached to a gambling ma-
chine, with each pull resulting either in arewardor a
penalty1. The sequence of rewards/penalties obtained
from each armi forms a Bernoulli process with an
unknownreward probabilityr i , and a penalty proba-
bility 1 − r i . This leaves the agent with the following
dilemma: Should the arm that so far seems to provide
the highest chance of reward be pulled once more,
or should the inferior arm be pulled in order to learn
more aboutits reward probability? Sticking prema-
turely with the arm that is presently considered to be
the best one, may lead to not discovering which arm
is truly optimal. On the other hand, lingering with the
inferior arm unnecessarily, postpones the harvest that
can be obtained from the optimal arm.

With the above in mind, we intend to evaluate an
agent’s arm selection strategy in terms of the so-called
Regret, and in terms of theprobability of selecting the
optimal arm2. TheRegretmeasure is non-trivial, and
in all brevity, can be perceived to bethe difference
between the sum of rewards expected after N succes-
sive arm pulls, and what would have been obtained
by only pulling the optimal arm. To clarify issues,
assume that arewardamounts to the value (utility) of
unity (i.e., 1), and that apenaltypossesses the value 0.
We then observe that the expected returns for pulling
Arm i is r i . Thus, if the optimal arm is Arm 1, the
RegretafterN plays would become:

r1N−
N

∑
i=1

r̂ i , (1)

with r̂n being the expected reward at Arm pulli, given
the agent’s arm-selection strategy. In other words,
as will be clear in the following, we consider the
case where rewards areundiscounted, as discussed in
(Auer et al., 2002).

In the last decades, several computationally ef-
ficient algorithms for tackling the MABB Problem
have emerged. From a theoretical point of view, LA

1A penaltymay also be perceived as the absence of a
reward. However, we choose to use the termpenaltyas is
customary in the LA and RL literature.

2Using Regretsas a performance measure is typical in
the literature on Bandit Playing Algorithms, while using the
“arm selection probability” is typical in the LA literature. In
this paper, we will use both these concepts in the interest of
comprehensiveness.

are known for theirε-optimality. From the field of
Bandit Playing Algorithms,confidence interval based
algorithms are known for logarithmically growingRe-
gret.

1.2 Applications

Solution schemes for bandit problems have formed
the basis for dealing with a number of applications.
For instance, a UCB-TUNED scheme (Auer et al.,
2002) is used for move exploration inMoGo, a top-
level Computer-Go program on 9× 9 Go boards
(Gelly and Wang, 2006). Furthermore, the so-
called UBC1 scheme has formed the basis for guiding
Monte-Carlo planning, and improving planning effi-
ciency significantly in several domains (Kocsis and
Szepesvari, 2006).

The applications of LA are many – in the interest
of brevity, we list a few more-recent ones. LA have
been used to allocate polling resources optimally in
web monitoring, and for allocating limited sampling
resources in binomial estimation problems (Granmo
et al., 2007) . LA have also been applied for solving
NP-complete SAT problems (Granmo and Bouhmala,
2007) .

1.3 Contributions and Paper
Organization

The contributions of this paper can be summarized as
follows. In Sect. 2 we briefly review a selection of the
main MABB solution approaches, including LA and
confidence interval-based schemes. Then, in Sect. 3
we present the Bayesian Learning Automaton (BLA).
In contrast to the latter reviewed schemes, the BLA is
inherently Bayesian in nature, even though it only re-
lies on simple counting and random sampling. Thus,
to the best of our knowledge, BLA is the first MABB
algorithm that takes advantage of the Bayesian per-
spective in a computationally efficient manner. In
Sect. 4 we provide extensive experimental results that
demonstrate that, in contrast to typical LA schemes as
well as some Bandit Playing Algorithms, BLA does
not rely on external learning speed/accuracy control.
The BLA also outperforms established top perform-
ers from the field of Bandit Playing Algorithms3. Ac-
cordingly, from the above perspective, it is our be-
lief that the BLA represents the current state-of-the-
art and a new avenue of research. Finally, in Sect. 5
we list open BLA-related research problems, in addi-
tion to providing concluding remarks.

3A comparison of Bandit Playing Algorithms can be
found in (Vermorel and Mohri, 2005), with the UCB-
TUNED distinguishing itself in (Auer et al., 2002).
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2 RELATED WORK

The MABB problem has been studied in a disparate
range of research fields. From a machine learning
point of view, Sutton et. al placed an emphasis on
computationally efficient solution techniques that are
suitable for RL. While there are algorithms for com-
puting the optimal Bayes strategy to balance explo-
ration and exploitation, these are computationally in-
tractable for the general case(Sutton and Barto, 1998),
mainly because of the magnitude of the state space as-
sociated with typical bandit problems.

From a broader point of view, one can distin-
guish two distinct fields that address bandit like prob-
lems, namely, the field of Learning Automata and the
field of Bandit Playing Algorithms. A myriad of ap-
proaches have been proposed within these two fields,
and we refer the reader to (Narendra and Thathachar,
1989; Thathachar and Sastry, 2004) and (Vermorel
and Mohri, 2005) for an overview and comparison of
schemes. Although these fields are quite related, re-
search spanning them both is surprisingly sparse. In
this paper, however, we will include the established
top performers from both of the two fields. These
are reviewed here in some detail in order to cast light
on the distinguishing properties of BLA, both from
an LA perspective and from the perspective of Bandit
Playing Algorithms.

2.1 Learning Automata (LA) — The
LR−I and Pursuit Schemes

LA have been used to model biological systems
(Tsetlin, 1973; Narendra and Thathachar, 1989;
Thathachar and Sastry, 2004) and have attracted con-
siderable interest in the last decade because they can
learn the optimal action when operating in (or inter-
acting with) unknown stochastic environments. Fur-
thermore, they combine rapid and accurate conver-
gence with low computational complexity. For the
sake of conceptual simplicity, note that we in this sub-
section, we assume that we are dealing with a bandit
associated with two arms.

More notable approaches include the family of
linear updating schemes, with the Linear Reward-
Inaction (LR−I ) automaton being designed for station-
ary environments (Narendra and Thathachar, 1989).
In short, theLR−I maintains an Arm probability se-
lection vector ¯p = [p1, p2], with p2 = 1− p1. The
question of which Arm is to be pulled is decided ran-
domly by sampling from ¯p. Initially, p̄ is uniform.
The following linear updating rules summarize how
rewards and penalties affect ¯p with p′1 and 1− p′1 be-

ing the resulting updated Arm selection probabilities:

p′1 = p1 +(1−a)× (1− p1)

if pulling Arm 1 results in a reward

p′1 = a× p1

if pulling Arm 2 results in a reward

p′1 = p1

if pulling Arm 1 or Arm 2 results in a penalty.

In the above, the parametera (0 ≪ a < 1) governs
the learning speed. As seen, after Armi has been
pulled, the associated probabilitypi is increased us-
ing the linear updating rule upon receiving a reward,
with p j( j 6= i) being decreased correspondingly. Note
that p̄ is left unchanged upon a penalty.

A distinguishing feature of theLR−I scheme, and
indeed the best LA within the field of LA, is its
ε-optimality(Narendra and Thathachar, 1989):By a
suitable choice of some parameter of the LA, the ex-
pected reward probability obtained from each arm
pull can be made arbitrarily close to the optimal re-
ward probability, as the number of arm pulls tends to
infinity.

A Pursuit scheme(P-scheme) makes the updat-
ing of p̄ more goal-directed in the sense that it main-
tains Maximum Likelihood (ML) estimates(r̂1, r̂2) of
the reward probabilities(r1, r2) associated with each
Arm. Instead of using the rewards/penalties that are
received to update ¯p directly, they are rather used to
update the ML estimates. The ML estimates, in turn,
are used to decide which Arm selection probability
pi is to be increased. In brief, a Pursuit scheme in-
creases the Arm selection probabilitypi associated
with the currently largest ML estimate ˆr i , instead of
the Arm actually producing the reward. Thus, un-
like the LR−I , in which the reward from an inferior
Arm can cause unsuitable probability updates, in the
Pursuit scheme, these rewards will not influence the
learning progress in the short term, except by modify-
ing the estimate of the reward vector. This, of course,
assumes that the ranking of the ML estimates are cor-
rect, which is what it will be if each action is chosen a
“sufficiently large number of times”. Accordingly, a
Pursuit scheme consistently outperforms theLR−I in
terms of its rate of convergence.

Discretized and Continuous variants of the Pursuit
scheme has been proposed (Agache and Oommen,
2002) , with slightly superior performances. But, in
general, any Pursuit scheme can be seen to be repre-
sentative of this entire family.
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2.2 Theε-Greedy andεn-Greedy
Policies

The ε-greedy rule is a well-known strategy for the
bandit problem (Sutton and Barto, 1998). In short,
the Arm with the presently highest average reward is
pulled with probability 1− ε, while a randomly cho-
sen Arm is pulled with probabilityε. In other words,
the balancing of exploration and exploitation is con-
trolled by theε-parameter. Note that theε-greedy
strategy persistently explores the available Arms with
constant effort, which clearly is sub-optimal for the
MABB problem (unless the reward probabilities are
changing with time).

As a remedy for the above problem,ε can be
slowly decreased, leading to theεn-greedy strategy
described in (Auer et al., 2002). The purpose is to
gradually shift focus from exploration to exploita-
tion. The latter work focuses on algorithms that min-
imizes the so-calledRegretformally described above.
It turns out that theεn-greedy strategy asymptotically
provides alogarithmically increasingRegret. Indeed,
it has been proved that logarithmically increasingRe-
gret is the best possible (Auer et al., 2002) strategy.

2.3 Confidence Interval Based
Algorithms

A promising line of thought is the interval estimation
methods, where a confidence interval for the reward
probability of each Arm is estimated, and an “opti-
mistic reward probability estimate” is identified for
each Arm. The Arm with the most optimistic reward
probability estimate is then greedily selected (Ver-
morel and Mohri, 2005;?).

In (Auer et al., 2002), several confidence inter-
val based algorithms are analysed. These algorithms
also provide logarithmically increasingRegret, with
UCB-TUNED – a variant of the well-known UBC1 al-
gorithm — outperforming both UBC1,UCB2, as well
as theεn-greedy strategy. In brief, in UCB-TUNED,
the following optimistic estimates are used for each
Arm i:

µi +

√

lnn
ni

min{1/4,σ2
i +

√

2lnn
ni

} (2)

whereµi andσ2
i are the sample mean and variance of

the rewards that have been obtained from Armi, n is
the number of Arms pulled in total, andni is the num-
ber of times Armi has been pulled. Thus, the quan-
tity added to the sample average of a specific Armi is
steadily reduced as the Arm is pulled, and uncertainty
about the reward probability is reduced. As a result,

by always selecting the Arm with the highest opti-
mistic reward estimate, UCB-TUNED gradually shifts
from exploration to exploitation.

2.4 Bayesian Approaches

The use of Bayesian methods in inference problems
of this nature has also been reported. The authors
of (Wyatt, 1997) have proposed the use of such a
philosophy in their probability matching algorithms.
By using conjugate priors, they have resorted to a
Bayesian analysis to obtain a closed form expres-
sion for the probability that each arm is optimal given
the prior observed rewards/penalties. Informally, the
method proposes a policy which consists of calcu-
lating the probability of each arm being optimal be-
fore an arm pull, and then randomly selecting the arm
to be pulled next using these probabilities. Unfor-
tunately, for the case of two arms in which the re-
wards are Bernoulli-distributed, the computation time
becomes unbounded, and it increases with the num-
ber of arm pulls. Furthermore, it turns out that for the
multi-armed case, the resulting integrations have no
analytical solution. Similar problems surface when
the probability of each arm being optimal is com-
puted for the case when the rewards are normally
distributed4. The authors of (Dearden et al., 1998)
take advantage of a Bayesian strategy in a related do-
main, i.e., in Q-learning. They show that for nor-
mally distributed rewards, in which the parameters
have a prior normal-gamma distribution, the posteri-
ors also have a normal-gamma distribution, render-
ing the computation efficient. They then integrate this
into a framework for Bayesian Q-learning by main-
taining and propagating probability distributions over
the Q-values, and suggest that a non-approximate so-
lution can be obtained by means of random sampling
for the normal distribution case. It would be interest-
ing to investigate the applicability of these results for
the MABB.

2.5 Boltzmann Exploration and
POKER

One class of algorithms for solving MABB problems
is based on so-called Boltzmann exploration. In brief,

an armi is pulled with probabilitypk = eµ̂i/τ

∑n
j=1

where

µ̂i is the sample mean andτ is defined as the temper-
ature of the exploration. A high temperatureτ leads

4It turns out that in the latter case, the approximate
Bayesian solution reported by (Wyatt, 1997) is computa-
tionally efficient
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to increased exploration since each arm will have ap-
proximately the same probability of being pulled. A
low temperature, on the other hand, leads to arms be-
ing pulled proportionally to the size of the rewards
that can be expected. Typically, the temperature is set
to be high initially, and then is gradually reduced in
order to shift from exploration to exploitation. Note
that the EXP3 scheme, proposed and detailed in (Auer
et al., 1995), is a more complicated variant of Boltz-
mann exploration. In brief, this scheme calculates the
arm selection probabilitiespk based on dividing the
rewards obtained with the probability of pulling the
arm that produced the rewards (Vermorel and Mohri,
2005).

The “Price of Knowledge and Estimated Reward”
(POKER) algorithm proposed in (Vermorel and Mohri,
2005) attempts to combine the following three prin-
ciples: (1) Reducing uncertainty about the arm re-
ward probabilities should grant a bonus to stimulate
exploration; (2) Information obtained from pulling
arms should be used to estimate the properties of arms
that have not yet been pulled; and (3) Knowledge
about the number of rounds that remains (the hori-
zon) should be used to plan the exploitation and ex-
ploration of arms. We refer the reader to (Vermorel
and Mohri, 2005) for the specific algorithm that in-
corporates these three principles.

3 THE BAYESIAN LEARNING
AUTOMATON (BLA)

Bayesian reasoning is a probabilistic approach to in-
ference which is of significant importance in machine
learning because it allows quantitative weighting of
evidence supporting alternative hypotheses, with the
purpose of allowing optimal decisions to be made.
Furthermore, it provides a framework for analyzing
learning algorithms (Mitchell, 1997).

We here present a scheme for solving the MABB
problem that inherently builds upon the Bayesian rea-
soning framework. We coin the schemeBayesian
Learning Automaton(BLA) since it can be modelled
as a state machine with each state associated with
unique Arm selection probabilities, in an LA manner.

A unique feature of the BLA is its computational
simplicity, achieved by relyingimplicitly on Bayesian
reasoning principles. In essence, at the heart of BLA
we find theBeta distribution. Its shape is determined
by two positive parameters, usually denoted byα and
β, producing the following probability density func-
tion:

f (x;α,β) =
xα−1(1−x)β−1

∫ 1
0 uα−1(1−u)β−1du

, x∈ [0,1] (3)

and the corresponding cumulative distribution func-
tion:

F(x;α,β) =

∫ x
0 tα−1(1− t)β−1dt

∫ 1
0 uα−1(1−u)β−1du

, x∈ [0,1]. (4)

Essentially, the BLA uses theBetadistribution for
two purposes. First of all, theBetadistribution is used
to provide aBayesian estimateof the reward prob-
abilities associated with each of the available bandit
Arms - the latter being valid by virtue of the Conju-
gate Prior (Duda et al., 2000) nature of the Binomial
parameter. Secondly, a novel feature of the BLA is
that it uses theBeta distribution as the basis for an
Order-of-Statistics-basedrandomizedArm selection
mechanism.

The following algorithm contains the essence of
the BLA approach.

Algorithm: BLA-MABB
Input: Number of bandit Armsr.
Initialization: α1

1 = β1
1 = α1

2 = β1
2 = . . . = α1

r = β1
r =

1.
Method:
For N = 1,2, . . . Do

1. For eachArm j ∈ {1, . . . , r}, draw a valuex j
randomly from the associatedBeta distribution
f (x j ;αN

j ,βN
j ) with the parametersαN

j ,βN
j .

2. Pull theArm i whose drawn valuexi is the largest
one of the randomly drawn values:

i = argmax
j∈{1,...,r}

x j .

3. Receive eitherRewardor Penaltyas a result of
pulling Arm i, and update parameters as follows:

• UponReward: αN+1
i = αN

i +1; βN+1
i = βN

i ; and
αN+1

j = αN
j , βN+1

j = βN
j for j 6= i.

• UponPenalty: αN+1
i = αN

i ; βN+1
i = βN

i +1; and
αN+1

j = αN
j , βN+1

j = βN
j for j 6= i.

End Algorithm: BLA-MABB

As seen from the above BLA algorithm,N is
a discrete time index and the parametersφN =
〈αN

1 ,βN
1 ,αN

2 ,βN
2 , . . . ,αN

r ,βN
r 〉 form an infinite discrete

2× r-dimensional state space, which we will denote
with Φ. Within Φ the BLA navigates by iteratively
adding 1 to eitherαN

1 , βN
1 , αN

2 , βN
2 , . . . ,αN

r or βN
r .

Since the state space of BLA is both discrete and
infinite, BLA is quite different from both theVari-
able Structure-and theFixed StructureLA families
(Thathachar and Sastry, 2004), traditionally referred
to asLearning Automata. In all brevity, the novel as-
pects of the BLA are listed below:
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1. In traditional LA, the action chosen (i.e, Arm
pulled) is based on the so-called action probability
vector. The BLA does not maintain such a vector,
but chooses the arm based on thedistribution of
the components of theEstimatevector.

2. The second difference is that we have not chosen
the arm based on thea posterioridistribution of
the estimate. Rather, it has been chosen based on
the magnitude of arandom sampledrawn from the
a posterioridistribution, and thus it is more appro-
priate to state that the arm is chosen based on the
order of statisticsof instances of these variables5.

3. The third significant aspect is that we can now
consider the design of Pursuit LA in which the
estimate used is not of the ML family, but on a
Bayesian updating scheme. As far as we know,
such a mechanism is also unreported in the litera-
ture.

4. The final significant aspect is that we can now de-
vise solutions to the Multi-Armed Bandit problem
even for cases when the Reward/Penalty distribu-
tion is not Bernoulli distributed. Indeed, we advo-
cate the use of a Bayesian methodology with the
appropriate Conjugate Prior (Duda et al., 2000).

In the interest of notational simplicity, letArm 1
be the Arm under investigation. Then, for any pa-
rameter configurationφN ∈ Φ we can state, using
a generic notation6, that the probability of selecting
Arm 1 is equal to the probabilityP(XN

1 > XN
2 ∧XN

1 >
XN

3 ∧·· ·∧XN
1 > XN

r |φN) — the probability that a ran-
domly drawn valuex1 ∈ XN

1 is greater than all of
the other randomly drawn valuesx j ∈ XN

j , j 6= i, at
time stepN, when the associated stochastic variables
XN

1 ,XN
2 , . . . ,XN

r areBetadistributed, with parameters
αN

1 ,βN
1 ,αN

2 ,βN
2 , . . . ,αN

r ,βN
r respectively. In the fol-

lowing, we will let pφN

1 denote this latter probability.

The probabilitypφN

1 can also be interpreted as the
probability thatArm 1 is the optimal one, given the
observationsφN. The formal result that we derive in
the unabridged paper shows that the BLA will grad-
ually shift its Arm selection focus towards the Arm
which most likely is the optimal one, as the observa-
tions are received.

Finally, observe that the BLA does not rely on
any external parameters that must be configured to

5To the best of our knowledge, the concept of having
automata choose actions based on theorder of statisticsof
instances of estimate distributions, has been unreported in
the literature

6By this we mean thatP is not a fixed function. Rather,
it denotes the probability function for a random variable,
given as an argument toP.

optimize performance for specific problem instances.
This is in contrast to the traditional LA family of algo-
rithms, where a “learning speed/accuracy” parameter
is inherent inε-optimal schemes.

4 EMPIRICAL RESULTS

In this section we evaluate the BLA by comparing it
with the best performing algorithms from (Auer et al.,
2002; Vermorel and Mohri, 2005), as well as theLR−I
and Pursuit schemes, which can be seen as established
top performers in the LA field. Based on our com-
parison with these “reference” algorithms, it should
be quite straightforward to also relate the BLA per-
formance results to the performance of other similar
algorithms.

For the sake of fairness, we base our compari-
son on the experimental setup for the MABB found
in (Auer et al., 2002). Although we have conducted
numerous experiments using various reward distribu-
tions, we here report, for the sake of brevity, results
for the experiment configurations enumerated in Ta-
ble 1.

Experiment configuration 1 and 4 forms the sim-
plest environment, with low reward variance and a
large difference between the reward probabilities of
the arms. By reducing the difference between the
arms, we increase the difficulty of the MABB prob-
lem. Configuration 2 and 5 fulfill this purpose. The
challenge of configuration 3 and 6 is their high vari-
ance combined with the small difference between the
available arms.

For these experiment configurations, an ensemble
of 1000 independent replications with different ran-
dom number streams was performed to minimize the
variance of the reported results7. In each replication,
100 000 arm pulls were conducted in order to exam-
ine both the short term and the limiting performance
of the evaluated algorithms.

Note that real-world instantiations of the bandit
problem, such as Resource Allocation in Web Polling
(Granmo et al., 2007) , may exhibit any reward prob-
ability in the interval[0,1]. Hence, a solution scheme
designed to tackle bandit problems in general, should
perform well across the complete space of reward
probabilities.

7Some of the tested algorithms were unstable for cer-
tain reward distributions, producing a high variance com-
pared to the mean regret. This confirms the observations
from (Audibert et al., 2007) where the high variance of e.g.
UCB-TUNED was first reported. Thus, in our experience
100 replications were too few to unveil the “true” perfor-
mance of these algorithms.
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Table 1: Reward distributions used in 2-armed and 10-armed Bandit problems with Bernoulli distributed rewards.

Config./Arm 1 2 3 4 5 6 7 8 9 10

1 0.90 0.60 - - - - - - - -
2 0.90 0.80 - - - - - - - -
3 0.55 0.45 - - - - - - - -
4 0.90 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60
5 0.90 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
6 0.55 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45

Table 2: Results on 2-armed and 10-armed Bandit problem withBernoulli distributed rewards.

Algorithm /Config. 1 2 3 4 5 6
BLA Bernoulli 1.000 0.999 0.997 0.998 0.988 0.975
εn−GREEDY c =0.05 † 0.981 0.992 0.965 0.996 0.961 0.893
εn−GREEDY c =0.15 † 1.000 0.999 0.991 0.990 0.988 0.957
εn−GREEDY c =0.30 † 1.000 0.997 0.997 0.982 0.981 0.977
LR−I 0.05 0.999 0.918 0.985 0.832 0.378 0.526
LR−I 0.01 0.998 0.993 0.993 0.992 0.885 0.958
LR−I 0.005 0.995 0.986 0.986 0.984 0.940 0.951
Pursuit 0.05 1.000 0.970 0.932 0.912 0.699 0.608
Pursuit 0.01 0.999 0.998 0.998 0.998 0.875 0.848
Pursuit 0.005 0.999 0.999 0.998 0.997 0.960 0.924
UCB1 0.998 0.982 0.983 0.979 0.848 0.848
UCB-TUNED 1.000 0.997 0.997 0.997 0.977 0.978
Exp3γ = 0.01 0.990 0.978 0.980 0.913 0.736 0.749
POKER 0.995 0.991 0.876 0.982 0.916 0.812
INTESTIM 0.01 0.961 0.949 0.796 0.920 0.905 0.577

† Parameterd is set to be the difference in reward probability between thebest arm and the second best arm

For all of the experiment configurations in the ta-
ble, we compared the performance of both the BLA,
εn-GREEDY, LR−I , Pursuit, UCB-1, UCB-TUNED,
EXP3, POKER, and INTESTIM. In Table 2 we report
the average probability of pulling the best arm over
100 000 arm pulls. By taking the average probabil-
ity over all the arm selections, a low learning pace
is penalized, however, long term performance is em-
phasized. As seen in the table, BLA provides ei-
ther equal or better performance than any of the com-
pared algorithms, expect for experiment configuration
6 where UCB-TUNED provides slightly better perfor-
mance than BLA. Also note that theεn-GREEDY al-
gorithm is given the difference between the best arm
and the second best arm, thus giving it an unfair ad-
vantage.

Both learning accuracy and learning speed gov-
erns the performance of bandit playing algorithms in
practice. Table 3 reports the average probability of se-
lecting the best arms after 10, 100, 1000, 10 000, and
100 000 arm pulls for experiment configuration 5.

As seen from the table, INTESTIM provides the
best performance after 10 arm pulls, being slightly

better than BLA. After 100 arm pulls, however, BLA
provides the best performance. Then, after 1000
arm pulls, one of the parameter configurations of
εn-GREEDY as well as the Pursuit scheme provide
slightly better performance than BLA, with BLA be-
ing clearly superior after 10 000 and 100 000 arm
pulls.

We now consider theRegretof the algorithms.Re-
gret offers the advantage that it does not overly em-
phasize the importance of pulling the best arm. In-
deed, pulling one of the non-optimal arms will not
necessarily affect the overall amount of rewards ob-
tained in a significant manner if for instance the re-
ward probability of the non-optimal arm is relatively
close to the optimal reward probability. ForRegretit
turns out that the performance characteristics of the
algorithms are mainly decided by the reward distribu-
tions, and not by the number of arms. Thus, in Fig. 1
we now consider configuration 4, 5, and 6 only. The
plots in the figure show the accumulation of regret
with the number of arm pulls. Because of the logarith-
mically scaled x- and y-axes, it is clear from the plots
that both BLA and UCB-TUNED attain a logarithmi-
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Table 3: Detailed overview of the 10-armed problem with optimal armp = 0.9 andp = 0.8 on the rest.

Algorithm /#Arm Pulls 10 100 1000 10000 100000
BLA Bernoulli 0.112 0.197 0.549 0.916 0.988
εn−GREEDY c =0.05d =0.10 0.101 0.124 0.630 0.898 0.961
εn−GREEDY c =0.15d =0.10 0.105 0.100 0.511 0.911 0.988
εn−GREEDY c =0.30d =0.10 0.099 0.099 0.359 0.872 0.981
LR−I 0.05 0.103 0.119 0.273 0.368 0.378
LR−I 0.01 0.104 0.105 0.156 0.672 0.885
LR−I 0.005 0.102 0.102 0.126 0.518 0.940
Pursuit 0.05 0.100 0.157 0.567 0.682 0.699
Pursuit 0.01 0.098 0.116 0.550 0.840 0.875
Pursuit 0.005 0.101 0.108 0.488 0.910 0.960
UCB1 0.100 0.119 0.166 0.406 0.848
UCB-TUNED 0.100 0.164 0.425 0.841 0.977
Exp3γ = 0.01 0.097 0.099 0.104 0.156 0.736
POKER 0.105 0.180 0.444 0.751 0.916
INTESTIM 0.01 0.126 0.194 0.519 0.857 0.905
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Figure 1: Regret for experiment conf. 4 (top left), conf. 5
(top right), and conf. 6 (bottom).

cally growing regret. Moreover, for configuration 4,
the performance of BLA is significantly better than
that of the other algorithms, with the Pursuit scheme
catching up from the final 10 000 to 100 000 rounds.
Note that if the learning speed of the Pursuit scheme
is increased to match that of BLA, the accuracy of
the Pursuit schemes becomes significantly lower than
that of BLA. Surprisingly, both of the LA schemes
converge to constant regret. This can be explained
by their ε-optimality and the relatively low learning
speed parameter used (a = 0.01). In brief, the LA
converged to only selecting the optimal arm in all of
the 1000 replications.

For experiment configuration 5, however, it turns
out that the applied learning accuracy of the LA is too
low to always converge to only selecting the optimal
arm (a = 0.005). In some of the replications, the LA
also converges to selecting the inferior arm only, and
this leads to linearly growing regret. Note that the LA
can achieve constant regret in this latter experiment
too, by increasing learning accuracy. However, this
reduces learning speed, which for the present setting
already is worse than that of BLA and UCB-TUNED.
As also seen in the plots, the BLA continues to pro-
vide the best performance.

Finally, we observe that the high variance of con-
figuration 3 and 6 reduces the performance gap be-
tween BLA and UCB-TUNED, leaving UCB-TUNED

with slightly lower regret compared to BLA. Also,
notice that the Pursuit scheme in this case too is able
to achieve more or less constant regret, at the cost of
somewhat reduced learning speed.

From the above results, we conclude that BLA is
the superior choice for MABB problems in general,
providing significantly better performance in most of
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the experiment configurations. Only in two of the ex-
periment configurations does it provideslightly lower
performance than the second best algorithm forthose
configurations. Finally, BLA does not rely on fine-
tuning some learning parameter to achieve this per-
formance.

5 CONCLUSIONS AND FURTHER
WORK

In this paper we presented the Bayesian Learning
Automaton (BLA) for tackling the classical MABB
problem. In contrast to previous LA and regret min-
imizing approaches, BLA is inherently Bayesian in
nature. Still, it relies simply on counting of re-
wards/penalties and random sampling from a set of
sibling beta distributions. Thus, to the best of our
knowledge, BLA is the first MABB algorithm that
takes advantage of Bayesian estimation in a computa-
tionally efficient manner. Furthermore, extensive ex-
periments demonstrates that our scheme outperforms
recently proposed bandit playing algorithms.

Accordingly, in the above perspective, it is our be-
lief that the BLA represents a new promising avenue
of research. E.g., incorporating other reward distri-
butions, such as Gaussian and multinomial distribu-
tions, into our scheme is of interest. Secondly, we be-
lieve that our scheme can be modified to tackle bandit
problems that are non-stationary, i.e., where the re-
ward probabilities are changing with time. Finally,
systems of BLA can be studied from a game theory
point of view, where multiple BLAs interact forming
the basis for multi-agent systems.
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