
BRANCHING-TIME VERSUS LINEAR-TIME
A Cooperative and Feasible Approach

Norihiro Kamide
Waseda Institute for Advanced Study, 1-6-1 Nishi Waseda, Shinjuku-ku, Tokyo 169-8050, Japan

Keywords: Temporal reasoning, Branching-time formalism, Linear-time formalism, Computation tree logic, Linear-time
temporal logic, Model checking.

Abstract: A new temporal logic called linear-time computation tree logic (LCTL) is obtained from computation tree
logic (CTL) by adding some modified versions of the temporal operators of linear-time temporal logic (LTL).
A theorem for embedding LCTL into CTL is proved. The model-checking, validity and satisfiability problems
of LCTL are shown to be deterministic PTIME-complete, EXPTIME-complete and deterministic EXPTIME-
complete, respectively.

1 INTRODUCTION

It is known thatcomputation tree logic(CTL) (Clarke
and Emerson, 1981) andlinear-time temporal logic
(LTL) (Pnueli, 1977) are the most useful tempo-
ral logics for verifying concurrent systems bymodel
checking(Clarke et al., 1999). CTL has some feasi-
ble model checking algorithms, which are determin-
istic PTIME-complete (Emerson and Clarke, 1982),
1 but CTL cannot express some important tempo-
ral properties such as strong fairness. LTL can ex-
press almost all important temporal properties, but
LTL has no feasible model-checking algorithms. The
model-checking problem of LTL is indeed PSPACE-
complete (Sistla and Clarke, 1985). Although CTL
and LTL have been rivaled each other (Vardi, 2001),
cooperating CTL and LTL is considered to be a
good choice to obtain a more useful model check-
ing tool. Full computation-tree logic(CTL∗) (Emer-
son and Sistla, 1984; Emerson and Halpern, 1986) is
known to be a result of cooperating CTL and LTL.
However, the model-checking problem of CTL∗ is
PSPACE-complete. This paper tries to obtain a coop-
erative and feasible approach to the traditional issue
of “branching-time versus linear-time”. The proposed
logic in this paper includes CTL and subsumes some
versions of the linear-time temporal operators of LTL
(i.e., cooperative). The proposed logic also has the

1By “feasible”, we mean “computable in practice”.
There is a widespread opinion that PTIME computability
is the correct mathematical model of feasible computation.

same complexity result as CTL model-checking (i.e.,
feasible).

The results of this paper are then summarized
as follows. A new computation tree logic called
linear-time computation tree logic(LCTL) is ob-
tained from CTL by adding some bounded ver-
sions of the linear-time temporal operators of LTL.
A theorem for embedding LCTL into CTL is
proved. The model-checking, validity and satisfiabil-
ity problems of LCTL are shown to be determinis-
tic PTIME-complete, EXPTIME-complete and deter-
ministic EXPTIME-complete, respectively. The em-
bedding and decidability results indicate that we can
reuse the existing CTL-based algorithms for model-
checking, validity and satisfiability. This fact is
regarded as an advantage of LCTL. The proposed
bounded linear-time temporal operators, which are re-
garded as finite approximations of the usual linear-
time temporal operators, have the central role for ob-
taining the complexity results. Although the stan-
dard LTL operators have an infinite (unbounded) time
domain, i.e., the setω of natural numbers, the pro-
posed bounded operators have abounded time domain
which is restricted by a fixed positive integerl , i.e.,
the setωl := {x∈ ω | x≤ l}. Despite this restriction,
the proposed bounded operators can derive almost all
the typical LTL axioms including thetime induction
axiom.

522
Kamide N. (2010).
BRANCHING-TIME VERSUS LINEAR-TIME - A Cooperative and Feasible Approach.
In Proceedings of the 2nd International Conference on Agents and Artificial Intelligence - Artificial Intelligence, pages 522-526
DOI: 10.5220/0002709205220526
Copyright c© SciTePress

2 LINEAR-TIME COMPUTATION
TREE LOGIC

Formulasof LCTL are constructed from countably
many atomic formulas,→ (implication)∧ (conjunc-
tion),∨ (disjunction),¬ (negation), X (next), G (glob-
ally), F (eventually), U (until), XL (linear next), GL
(linear globally), FL (linear eventually), A (all com-
putation paths) and E (some computation path) where
XL, GL and FL are based on a bounded time domain.
The symbols X, G, F, U, XL, GL and FL are called
temporal operators, and the symbols A and E are
called path quantifiers. The symbol ATOM is used
to denote the set of atomic formulas. An expression
A ≡ B is used to denote the syntactical identity be-
tweenA andB.

Definition 2.1 Formulasα are defined by the follow-
ing grammar, assuming p∈ ATOM:

α ::= p | α→α | α∧α | α∨α | ¬α |
XLα | GLα | FLα | AXα | EXα | AGα |
EGα | AFα | EFα | A(αUα) | E(αUα).

Note that pairs of symbols like AG and EU are in-
divisible, and that the symbols X,G,F and U cannot
occur without being preceded by an A or an E. Simi-
larly, every A or E must have one of X, G, F and U to
accompany it. Some operators are redundant as those
in CTL, because some operators can be obtained by
the other operators (e.g., AGα := ¬EF¬α).

The symbolω is used to represent the set of nat-
ural numbers. Lower-case lettersi, j,k,m andn are
sometimes used to denote any natural numbers. An
expression XmL α for anym∈ ω is defined inductively
by X0

Lα ≡ α and Xn+1
L α ≡ XLXn

Lα. The symbols≤
and≥ are used to represent a linear order onω. The
symbolωl is used to represent the set{i ∈ ω | i ≤ l}.
In the following discussion, the numberl is fixed as a
certain positive integer.

Definition 2.2 A structure 〈S,S0,R,{Lm}m∈ω〉 is
called atime-indexed Kripke structureif:

1. S is the set of states,
2. S0 is a set of initial states and S0 ⊆ S,
3. R is a binary relation on S which satisfies the con-

dition: ∀s∈ S∃s′ ∈ S [(s,s′) ∈ R],
4. Lm (m∈ ω) are functions from S to the power set

of a nonempty subsetAT of ATOM.

A path in a time-indexed Kripke structure is an
infinite sequence of states,π = s0,s1,s2, ... such that
∀i ≥ 0 [(si ,si+1) ∈ R].

The logic LCTL is then defined as a time-indexed
Kripke structure with satisfaction relations|=m (m∈
ω).

Definition 2.3 Let AT be a nonempty subset of
ATOM. Satisfaction relations|=m (m∈ ω) on a time-
indexed Kripke structure M= 〈S,S0,R,{Lm}m∈ω〉 are
defined inductively as follows (s represents a state in
S):

1. for any p∈ AT, M,s |=m p iff p∈ Lm(s),

2. M,s |=m α1→α2 iff M ,s |=m α1 implies M,s |=m

α2,

3. M,s |=m α1∧α2 iff M ,s |=m α1 and M,s |=m α2,

4. M,s |=m α1∨α2 iff M ,s |=m α1 or M,s |=m α2,

5. M,s |=m ¬α1 iff not-[M,s |=m α1],

6. for any m≤ l −1, M,s |=m XLα iff M ,s |=m+1 α,

7. for any m≥ l, M,s |=m XLα iff M ,s |=l α,

8. for any n∈ ω, M,s |=l+n α iff M ,s |=l α,

9. M,s |=m GLα iff M ,s |=m+n α for all n ∈ ωl ,

10. M,s |=m FLα iff M ,s |=m+n α for some n∈ ωl ,

11. M,s |=m AXα iff ∀s1 ∈ S [(s,s1) ∈ R implies
M,s1 |=

m α],

12. M,s |=m EXα iff ∃s1 ∈ S [(s,s1) ∈ R and
M,s1 |=

m α],

13. M,s |=m AGα iff for all paths π ≡ s0,s1,s2, ...,
where s≡ s0, and all states si along π, we have
M,si |=

m α,

14. M,s |=m EGα iff there is a pathπ ≡ s0,s1,s2, ...,
where s≡ s0, and for all states si alongπ, we have
M,si |=

m α,

15. M,s |=m AFα iff for all paths π ≡ s0,s1,s2, ...,
where s≡ s0, there is a state si alongπ such that
M,si |=

m α,

16. M,s |=m EFα iff there is a pathπ ≡ s0,s1,s2, ...,
where s≡ s0, and for some state si along π, we
have M,si |=

m α,

17. M,s |=m A(α1Uα2) iff for all paths π ≡
s0,s1,s2, ..., where s≡ s0, there is a state sk along
π such that[(M,sk |=

m α2) and∀ j (0≤ j < k im-
plies M,sj |=

m α1)],

18. M,s |=m E(α1Uα2) iff there is a pathπ ≡
s0,s1,s2, ..., where s≡ s0, and for some state sk
alongπ, we have[(M,sk |=

m α2) and∀ j (0≤ j <
k implies M,sj |=

m α1)].

We can naturally consider the unbounded version
LCTLω which is obtained from LCTL by deleting the
conditions 7 and 8 and replacing the conditions 6, 9
and 10 by the standard conditions:

6′. M,s |=m XLα iff M,s |=m+1 α,

9′. M,s |=m GLα iff M,s |=m+n α for all n∈ ω,

10′. M,s |=m FLα iff M,s |=m+n α for somen∈ ω.

BRANCHING-TIME VERSUS LINEAR-TIME - A Cooperative and Feasible Approach

523

However, the decidability of validity, satisfiability
and model-checking problems for LCTLω cannot be
shown using the proposed embedding-based method.
The logic LCTLω is embeddable into the infinitary
version CTLω which is obtained from CTL by adding
the infinitary conjunction and disjunction connectives∧

and
∨

. But, logics with
∧

and
∨

are known to
be undecidable, and hence such an embedding result
cannot imply the decidability.

Definition 2.4 A formula α is valid (satisfiable)
in LCTL if and only if M,s |=0 α holds for
any (some) time-indexed Kripke structure M=
〈S,S0,R,{Lm}m∈ω〉, any (some) s∈ S, and any (some)
satisfaction relations|=m (m∈ ω) on M.

Definition 2.5 Let M be a time-indexed Kripke struc-
ture 〈S,S0,R,{Lm}m∈ω〉 for LCTL, and |=m (m∈ ω)
be satisfaction relations on M. Then, themodel
checking problemof LCTL is defined by: for any for-
mulaα, find the set{s∈ S | M,s |=0 α}.

Let C be a finite set of formulas. Then, expres-
sions

∧
C and

∨
C represent the conjunction and dis-

junction of all elements ofC, respectively. An expres-
sionα ↔ β is used to represent(α→β)∧ (β→α).

Proposition 2.6 The following formulas are valid in
LCTL: for any formulasα andβ,

1. XL(α ◦ β) ↔ XLα ◦ XLβ where◦ ∈ {→,∧,∨},

2. XL(¬α) ↔¬(XLα),

3. GLα→α,

4. GLα→XLα,

5. GLα→XLGLα,
6. GLα→GLGLα,

7. α∧GL(α→XLα)→GLα (time induction),

8. for any n∈ ω, X l+n
L α ↔ X l

Lα,

9. GLα ↔
∧

{Xn
Lα | n∈ ωl},

10. FLα ↔
∨

{Xn
Lα | n∈ ωl}.

Note that the formula 8 in in Proposition 2.6
means that the nesting of X is bounded byl . Note also
that the formulas 9 and 10 in Proposition 2.6 mean
that GL and FL are finite approximations of the stan-
dard linear-time temporal operators.

Definition 2.7 A Kripke structurefor CTL is a struc-
ture 〈S,S0,R,L〉 such that

1. S is the set of states,

2. S0 is a set of initial states and S0 ⊆ S,

3. R is a binary relation on S which satisfies the con-
dition: ∀s∈ S∃s′ ∈ S [(s,s′) ∈ R],

4. L is a function from S to the power set of a
nonempty subsetAT of ATOM.

A satisfaction relation|= on a Kripke structure M=
〈S,S0,R,L〉 for CTL is defined by the same conditions
1–5 and 9–16 as in Definition 2.3 by deleting the su-
perscript “m”. The validity, satisfiability and model-
checking problems forCTL are defined similarly as
those forLCTL.

Remark that|=m of LCTL includes|= of CTL, and
hence LCTL is an extension of CTL.

3 EMBEDDING AND
COMPLEXITY

Definition 3.1 Let AT be a non-empty subset of
ATOM, andATm (m∈ ω) be the sets{pm | p∈ ATm}
of atomic formulas where p0 := p (i.e.,AT0 := AT).
The languageL L (the set of formulas) ofLCTL is de-
fined usingAT, XL, GL, FL, ¬,→,∧,∨, X, F, G, U, A
andE. The languageL of CTL is obtained fromL L

by adding
⋃

m∈ω
ATm and deleting{XL,GL,FL}.

A mapping f fromL L to L is defined inductively
by:

1. for any p∈ AT, f(Xm
L p) := pm ∈ ATm, esp.,

f (p) := p,

2. f(Xm
L (α ♯ β)) := f (Xm

L α) ♯ f (Xm
L β) where ♯ ∈

{∧,∨,→},

3. f(Xm
L ♯α) := ♯ f (Xm

L α) where ♯ ∈
{¬,AX ,EX,AG,EG,AF,EF},

4. f(Xm
L ♯(αUβ))) := ♯(f (Xm

L α)U f (Xm
L β)) where

♯ ∈ {A,E},

5. f(Xm
L GLα) :=

∧
{ f (Xm+n

L α) | n∈ ωl},

6. f(Xm
L FLα) :=

∨
{ f (Xm+n

L α) | n∈ ωl}.

Lemma 3.2 Let f be the mapping defined in Def-
inition 3.1. For any time-indexed Kripke structure
M := 〈S,S0,R,{Lm}m∈ω〉 for LCTL, and any satisfac-
tion relations|=m (m∈ ω) on M, we can construct a
Kripke structure N:= 〈S,S0,R,L〉 for CTL and a sat-
isfaction relation|= on N such that for any formulaα
in L L and any state s in S,

M,s |=m α iff N,s |= f (Xm
L α).

Proof. Let AT be a nonempty subset of ATOM, and
ATm be the sets{pm | p ∈ AT} of atomic formulas.
Suppose thatM is a time-indexed Kripke structure
〈S,S0,R,{Lm}m∈ω〉 such that

Lm (m∈ ω) are functions fromS to the power
set of AT.

Suppose thatN is a Kripke structure〈S,S0,R,L〉 such
that

ICAART 2010 - 2nd International Conference on Agents and Artificial Intelligence

524

L is a function fromS to the power set of⋃

m∈ω
ATm.

Suppose moreover that for anys∈ Sand anyp∈ AT,

p∈ Lm(s) iff pm ∈ L(s).

The lemma is then proved by induction on the
complexity ofα.

• Base step:
Caseα ≡ p ∈ AT: We obtain:M,s |=m p iff p ∈

Lm(s) iff pm ∈ L(s) iff N,s |= pm iff N,s |= f (Xm
L p)

(by the definition off).
• Induction step:
Caseα ≡ β ∧ γ: We obtain: M,s |=m β ∧ γ iff

M,s |=m β and M,s |=m γ iff N,s |= f (Xm
L β) and

N,s |= f (Xm
L γ) (by induction hypothesis) iffN,s |=

f (Xm
L β)∧ f (Xm

L γ) iff N,s|= f (Xm
L (β∧γ)) (by the def-

inition of f).
Caseα ≡ β∨ γ: Similar to Caseα ≡ β∧ γ.
Caseα ≡ β→γ: We obtain: M,s |=m β→γ iff

M,s |=m β implies M,s |=m γ iff N,s |= f (Xm
L β) im-

plies N,s |= f (Xm
L γ) (by induction hypothesis) iff

N,s |= f (Xm
L β)→ f (Xm

L γ) iff N,s |= f (Xm
L (β→γ)) (by

the definition off).
Caseα ≡ ¬β: We obtain: M,s |=m ¬β iff not-

[M,s |=m β] iff not-[N,s |= f (Xm
L β)] (by induction hy-

pothesis) iffN,s |= ¬ f (Xm
L β) iff N,s |= f (Xm

L¬β) (by
the definition off).

Caseα ≡ XLβ:
Subcasem≤ l − 1: We obtain:M,s |=m XLβ iff

M,s |=m+1 β iff N,s |= f (Xm+1
L β) (by induction hy-

pothesis).
Subcasem ≥ l : We obtain: M,s |=m XLβ iff

M,s |=l β iff M,s |=m+1 β iff N,s |= f (Xm+1
L β) (by

induction hypothesis).
Caseα ≡ GLβ: We obtain: M,s |=m GLβ iff

M,s |=m+n β for any n ∈ ωl iff N,s |= f (Xm+n
L β)

for any n ∈ ωl (by induction hypothesis) iffN,s |=∧
{ f (Xm+n

L β) | n∈ ωl} iff N,s |= f (Xm
L GLβ) (by the

definition of f).
Caseα ≡ FLβ: Similar to Caseα ≡ GLβ.
Caseα ≡ AXβ: We obtain: M,s |=m AXβ iff

∀s1 ∈ S [(s,s1) ∈ R implies M,s1 |=m β] iff ∀s1 ∈
S [(s,s1) ∈ R implies N,s1 |= f (Xm

L β)] (by induc-
tion hypothesis) iff N,s |= AX f (Xm

L β) iff N,s |=
f (Xm

L AXβ) (by the definition off).
Caseα ≡ EXβ: Similar to Caseα ≡ AXβ.
Caseα ≡ AGβ: We obtain:

M,s |=m AGβ
iff for all pathsπ ≡ s0,s1,s2, ..., wheres≡ s0, and all

statessi alongπ, we haveM,si |=
m β

iff for all paths π ≡ s0,s1,s2, ..., wheres≡ s0, and
all statessi alongπ, we haveN,si |= f (Xm

L β) (by
induction hypothesis)

iff N,s |= AG f (Xm
L β)

iff N,s |= f (Xm
L AGβ) (by the definition off).

Casesα ≡ EGβ, α ≡ AFβ andα ≡ EFβ: Similar
to Caseα ≡ AGβ.

Caseα ≡ A(βUγ): We obtain:

M,s |=m A(βUγ)
iff for all pathsπ≡ s0,s1,s2, ..., wheres≡ s0, there is

a statesk alongπ such that[M,sk |=
m γ and∀ j[i ≤

j < k impliesM,sj |=
m β]

iff for all pathsπ ≡ s0,s1,s2, ..., wheres≡ s0, there
is a statesk alongπ such that[N,sk |= f (Xm

L γ) and
∀ j[i ≤ j < k impliesN,sj |= f (Xm

L β)] (by induc-
tion hypothesis)

iff N,s |= A(f (Xm
L β)U f (Xm

L γ))
iff N,s |= f (Xm

L A(βUγ)) (by the definition off).

Caseα ≡ E(βUγ): Similar to Caseα ≡ A(βUγ).

Lemma 3.3 Let f be the mapping defined in Defini-
tion 3.1. For any Kripke structure N:= 〈S,S0,R,L〉
for CTL, and any satisfaction relation|= on N, we
can construct a time-indexed Kripke structure M:=
〈S,S0,R,{Lm}m∈ω〉 for LCTL and satisfaction rela-
tions |=m (m∈ ω) on M such that for any formulaα
in L L and any state s in S,

N,s |= f (Xm
L α) iff M ,s |=m α.

Proof. Similar to the proof of Lemma 3.2.

Theorem 3.4 (Embedding)Let f be the mapping
defined in Definition 3.1. For any formulaα, α is
valid (satisfiable) inLCTL iff f (α) is valid (satisfi-
able) inCTL.

Proof. By Lemmas 3.2 and 3.3.

We then obtain the main theorem of this paper.

Theorem 3.5 (Complexity) The model-checking,
validity and satisfiability problems forLCTL are
deterministic PTIME-complete, EXPTIME-complete
and deterministic EXPTIME-complete, respectively.

Proof. By the mappingf defined in Definition 3.1, a
formula α of LCTL can finitely be transformed into
the corresponding formulaf (α) of CTL. By Lem-
mas 3.2 and 3.3 and Theorem 3.4, the model check-
ing, validity and satisfiability problems for LCTL can
be transformed into those of CTL. Since the model
checking, validity and satisfiability problems for CTL
are decidable, the problems for LCTL are also de-
cidable. Since the mappingf from LCTL into CTL
is a polynomial-time reduction, the complexity re-
sults for LCTL become the same results as CTL, i.e.,

BRANCHING-TIME VERSUS LINEAR-TIME - A Cooperative and Feasible Approach

525

the model-checking, validity and satisfiability prob-
lems for LCTL are deterministic PTIME-complete,
EXPTIME-complete and deterministic EXPTIME-
complete, respectively.

4 CONCLUDING REMARKS

In this paper, a new logic, linear-time computation
tree logic (LCTL), was introduced by “cooperat-
ing” CTL and LTL, and the deterministic PTIME-
completeness (i.e., the existence of “feasible” algo-
rithms) of the LCTL model-checking problem was
shown. It was thus shown that there is a coopera-
tive and feasible approach to the traditional issue of
“branching-time versus linear-time”.

In the following, we give some remarks on the
idea of bounding time and on the concept of combin-
ing logics.

To restrict the time domain of the LTL operators
is not a new idea. Such an idea was discussed in
(Biere et al., 2003; Cerrito et al., 1999; Cerrito and
Mayer, 1998; Hodkinson et al., 2000). For exam-
ple, by using and introducing a bounded time domain
and the notion of bounded validity in a semantics,
bounded tableaux calculi(with temporal constraints)
for propositional and first-order LTLs were intro-
duced by Cerrito, Mayer and Prand (Cerrito et al.,
1999; Cerrito and Mayer, 1998). It is also known that
to restrict the time domain is a technique to obtain
a decidable or efficient fragment of first-order LTL
(Hodkinson et al., 2000). Restricting the time domain
implies not only some purely theoretical merits dis-
cussed above, but also some practical merits for de-
scribing temporal databases and planning specifica-
tions (Cerrito et al., 1999; Cerrito and Mayer, 1998),
and for implementing an efficient model checking al-
gorithm calledbounded model checking(Biere et al.,
2003). Such practical merits are due to the fact that
there are problems in computer science and artificial
intelligence where only a finite fragment of the time
sequence is of interest (Cerrito et al., 1999).

As mentioned in (Sernadas and Sernadas, 2003),
there are some general theories for various combined
modal logics (Sernadas and Sernadas, 2003), includ-
ing the theories offusion, productandfibring. Vari-
ous combined modal logics have been studied based
on these theories. The proposed logic LCTL may be
categorized by a fusion of CTL and a bounded-time
version of LTL.

ACKNOWLEDGEMENTS

This research was supported by the Alexander von
Humboldt Foundation and by the Japanese Ministry
of Education, Culture, Sports, Science and Technol-
ogy, Grant-in-Aid for Young Scientists (B) 20700015.

REFERENCES

Biere, A., Cimatti, A., Clarke, E., Strichman, O., and Zhu,
Y. (2003). Bounded model checking.Advances in
Computers, 58:118–149.

Cerrito, S. and Mayer, M. (1998). Bounded model search in
linear temporal logic and its application to planning.
In Lecture Notes in Computer Science, volume 1397,
pages 124–140.

Cerrito, S., Mayer, M., and Prand, S. (1999). First order lin-
ear temporal logic over finite time structures. InLec-
ture Notes in Computer Science, volume 1705, pages
62–76.

Clarke, E. and Emerson, E. (1981). Design and synthesis of
synchronization skeletons using branching time tem-
poral logic. InLecture Notes in Computer Science,
volume 131, pages 52–71.

Clarke, E., Grumberg, O., and Peled, D. (1999).Model
checking. The MIT Press.

Emerson, E. and Clarke, E. (1982). Using branching time
temporal logic to synthesize synchronization skele-
tons.Science of Computer Programming, 2:241–266.

Emerson, E. and Halpern, J. (1986). “sometimes” and “not
never” revisited: on branching versus linear time tem-
poral logic.Journal of the ACM, 33 (1):151–178.

Emerson, E. and Sistla, P. (1984). Deciding full branching
time logic. Information and Control, 61:175–201.

Hodkinson, I., Wolter, F., and Zakharyaschev, M. (2000).
Decidable fragments of first-order temporal logics.
Annals of Pure and Applied Logic, 106:85–134.

Pnueli, A. (1977). The temporal logic of programs. InPro-
ceedings of the 18th IEEE Symposium on Foundations
of Computer Science, pages 46–57.

Sernadas, A. and Sernadas, C. (2003). Combining logic
systems: why, how, what for?CIM Bulletin, 15:9–14.

Sistla, A. and Clarke, E. (1985). The complexity of propo-
sitional linear temporal logic.Journal of the ACM, 32
(3):733–749.

Vardi, M. (2001). Branching vs. linear time: final show-
down. InLecture Notes in Computer Science, volume
2031, pages 1–22.

ICAART 2010 - 2nd International Conference on Agents and Artificial Intelligence

526

