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Abstract: A new temporal logic called linear-time computation tree logic (LCTL) is obtained from computation tree
logic (CTL) by adding some modified versions of the temporal operators of linear-time temporal logic (LTL).
A theorem for embedding LCTL into CTL is proved. The model-checking, validity and satisfiability problems
of LCTL are shown to be deterministic PTIME-complete, EXPTIME-complete and deterministic EXPTIME-
complete, respectively.

1 INTRODUCTION same complexity result as CTL model-checking (i.e.,
feasible).
It is known thatcomputation tree logi¢CTL) (Clarke The results of this paper are then summarized

and Emerson, 1981) arhear-time temporal logic ~ as follows. A new computation tree logic called
(LTL) (Pnueli, 1977) are the most useful tempo- linear-time computation tree logi¢LCTL) is ob-

ral logics for verifying concurrent systems byodel ~ fained from CTL by adding some bounded ver-
checking(Clarke et al., 1999). CTL has some feasi- sions of the linear-time temporal operators of LTL.
ble model checking algorithms, which are determin- A theorem for embedding LCTL into CTL is
istic PT|ME_Comp|ete (Emerson and C|arke, 1982), proved. The mOdel-CheCking, Valldlty and satisfiabil-
1 but CTL cannot express some important tempo_ |ty prOblemS of LCTL are shown to be determinis-
ral properties such as strong fairness. LTL can ex- tic PTIME-complete, EXPTIME-complete and deter-
press almost all important temporal properties, but ministic EXPTIME-complete, respectively. The em-
LTL has no feasible mode|_checking a|gorithms_ The beddlng and deCIdabIIIty results indicate that we can
model-checking problem of LTL is indeed PSPACE- reuse the existing CTL-based algorithms for model-
complete (Sistla and Clarke, 1985). Although CTL checking, validity and satisfiability. ~This fact is
and LTL have been rivaled each other (Vardi, 2001), regarded as an advantage of LCTL. The proposed
cooperating CTL and LTL is considered to be a boundedlinear-time temporal operators, which are re-
good choice to obtain a more useful model check- garded as finite approximations of the usual linear-
ing tool. Full computation-tree logi¢CTL*) (Emer- time temporal operators, have the central role for ob-
son and Sistla, 1984; Emerson and Halpern, 1986) istaining the complexity results. Although the stan-
known to be a result of Cooperating CTL and LTL. dard LTL Operators have an infinite (Unbounded) time
However, the mode'_checking prob'em of CTis domain, i.e., the sab of natural numberS, the pro-
PSPACE-complete. This paper tries to obtain a coop- Posed bounded operators haueainded time domain
erative and feasible approach to the traditional issue Which is restricted by a fixed positive integeri.e.,

of “branching-time versus linear-time”. The proposed the setwy ;= {x € w|x < }. Despite this restriction,
logic in this paper includes CTL and subsumes some the proposed bounded operators can derive almost all
versions of the linear-time temporal operators of LTL the typical LTL axioms including théme induction
(i.e., cooperative). The proposed logic also has the 8xiom

1By “feasible”, we mean “computable in practice”.
There is a widespread opinion that PTIME computability
is the correct mathematical model of feasible computation.
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2 LINEAR-TIME COMPUTATION
TREE LOGIC

Definition 2.3 Let AT be a nonempty subset of
ATOM. Satisfaction relations=" (m € w) on a time-
indexed Kripke structure M= (S S, R, {L™}mew) are

Formulasof LCTL are constructed from countably
many atomic formulas (implication) A (conjunc-

tion), Vv (disjunction),~ (negation), X (next), G (glob- 1.

ally), F (eventually), U (until), X (linear next), G
(linear globally), k& (linear eventually), A (all com-
putation paths) and E (some computation path) where
XL, GL and k. are based on a bounded time domain.
The symbols X, G, F, U, X G_ and k. are called
temporal operatorsand the symbols A and E are
called path quantifiers The symbol ATOM is used

to denote the set of atomic formulas. An expression
A = B is used to denote the syntactical identity be-
tweenA andB.
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Definition 2.1 Formulasa are defined by the follow-
ing grammar, assuming @ ATOM:
ar=pla—alaAalava|-d|
XLo | GLa | FLa | AXa | EXa | AGa |
EGa | AFa | EFa | A(aUa) | E(aUa).

Note that pairs of symbols like AG and EU are in-
divisible, and that the symbols,%,F and U cannot
occur without being preceded by an A or an E. Simi-
larly, every A or E must have one of X, G, F and U to
accompany it. Some operators are redundant as those

12. Ms EM EXa iff 35 € S

in CTL, because some operators can be obtained byl4.

the other operators (e.g., AG= —-EF-q).

The symbolw is used to represent the set of nat-
ural numbers. Lower-case letteirg,k,m andn are
sometimes used to denote any natural numbers. An
expression Xa for anym € w is defined inductively
by XPa = a and X'ta = X, X['a. The symbols<
and> are used to represent a linear orderanThe
symbolwy is used to represent the detc w | i <1}.
In the following discussion, the numbleis fixed as a
certain positive integer.

Definition 2.2 A structure (S S,R {L™}mew) IS
called atime-indexed Kripke structuri&
1. Sisthe set of states,
2. Sis asetof initial states andpSE S,
3. Ris abinary relation on S which satisfies the con-
dition: Vse S3s' € S[(s,9) € R},
4. L™ (me w) are functions from S to the power set
of a nonempty subs&f’ of ATOM.
A pathin a time-indexed Kripke structure is an
infinite sequence of states,= 5, 51,%, ... such that
Vi >0][(s,s+1) €R.
The logic LCTL is then defined as a time-indexed
Kripke structure with satisfaction relatiofis™ (m €
w).

15.

16.

17. M;s E™ A(aUay) iff

18.

defined inductively as follows (s represents a state in

for any pe AT, M,sE="piff pe L™(s),

. M sEMa;—ay iff M,;sE™a; implies MsE™

a2,

. MsEMa1Aa2iff M;sE™ay and MisiE="ay,
. MsEMarvariff M;sE™ajg or M, sE="ap,
. M;sE™ —aj iff not-[M,sE™ay],

. forany m< 1 —1, M,;sE="X_a iff M,sE=™1q,
. forany m>1, M,s=""X_a iff M,sk=!q,

. forany ne o, M,s=""aiff M,sk=q,

. M;sE"GLa iff M,sE™"a foralln e w,
10.
. MsE™AXa iff Vs €S [(s,51) € R implies

M,s =M FLa iff M,sE=™"a for some re @,

M,s, =" al,
[(s,s1) € R and
M,s; EMal,

13. M;s =M AGa iff for all paths = 0,51, %, ...,

where s= 5, and all states jsalong 11, we have
M,s E"a,

M,s EMEGu iff there is a pathn= 0,51, %, ...,
where s= 55, and for all statesjsalongT, we have
M,s EMa,

M,s =™ AFa iff for all paths m= s,51,%, ...,
where s= 5, there is a statejsalongtsuch that
M,s EMa,

M,s =" EFa iff there is a pathn= s,51,%, ...,
where s= 5, and for some statg ®long 1, we
have Ms EMa,

for all paths mm =
%,51,%, ..., Where = s, there is a stategalong
mtsuch thaf(M, s EMap) andVj (0 < j <kim-
plies M;sj ="ay)],

M,;s E™ E(aiUayp) iff there is a pathm =
%,51,9,..., Wwhere s= 5, and for some states
alongT, we havg(M,sc EMap) andVj (0< j <
k implies Ms; =M ay)].

We can naturally consider the unbounded version

LCTL which is obtained from LCTL by deleting the
conditions 7 and 8 and replacing the conditions 6, 9
and 10 by the standard conditions:

6.
9.
10.

M,sE™ X aiff M,sE=™1q,
M, sE"GLa iff M,sE™"a forallne w,
M,sE"FLa iff M,sE™"a for somen € w.
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However, the decidability of validity, satisfiability
and model-checking problems for LCJlcannot be

A satisfaction relatior= on a Kripke structure M=
(S S, R,L) for CTL is defined by the same conditions

shown using the proposed embedding-based method1-5 and 9-16 as in Definition 2.3 by deleting the su-

The logic LCTL, is embeddable into the infinitary
version CTl, which is obtained from CTL by adding

perscript “m”. The validity, satisfiability and model-
checking problems fo€TL are defined similarly as

the infinitary conjunction and disjunction connectives those forLCTL.

A andV/. But, logics with A and\/ are known to

be undecidable, and hence such an embedding resulhe

cannot imply the decidability.

Definition 2.4 A formula a is valid (satisfiabl¢

in LCTL if and only if Mss =% a holds for

any (some) time-indexed Kripke structure M

(S %, R {L™}new), any (some) s S, and any (some)
satisfaction relation$="" (m € w) on M.

Definition 2.5 Let M be a time-indexed Kripke struc-
ture (S, S, R, {L™}mew) for LCTL, and =™ (m € w)
be satisfaction relations on M. Then, thmeodel
checking problenof LCTL is defined by: for any for-
mulaa, find the se{sc S| M,s|=%a}.

Let C be a finite set of formulas. Then, expres-
sions/\ C and\/ C represent the conjunction and dis-
junction of all elements dt, respectively. An expres-
siona < [ is used to represeliti—pB) A (B—a).

Proposition 2.6 The following formulas are valid in
LCTL: for any formulasa andf3,

1. X (a o B) < XLa o X Bwhereo € {—,A,V},

2. XL(—|C() — —|(X|_(X),

3. GLa—aq,

4. GLoa—X_q,

5. GLa—X_.GLa,

6. GLa—G .G.q,

7. a AGL(a—XL0)—GLa (time induction),
8. forany ne w, X|™a « X| a,

9. Gla — A{X{a|necw},

10. Fra < \/{X[a |n€ w}.

Note that the formula 8 in in Proposition 2.6
means that the nesting of X is bounded bi{ote also

that the formulas 9 and 10 in Proposition 2.6 mean

that G and K are finite approximations of the stan-
dard linear-time temporal operators.

Definition 2.7 A Kripke structurdor CTL is a struc-
ture (S S, R, L) such that

1. Sisthe set of states,
2. Sis aset of initial states andySC S,

3. Ris abinary relation on S which satisfies the con-

dition: Yse S3s' € S[(s,s) € R],
4. L is a function from S to the power set of a
nonempty subsé&T of ATOM.
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Remark that=""0of LCTL includesE= of CTL, and
nce LCTL is an extension of CTL.

3 EMBEDDING AND
COMPLEXITY

Definition 3.1 Let AT be a non-empty subset of
ATOM, andAT™ (m e w) be the set§p™ | pe AT™}
of atomic formulas where%= p (i.e.,AT? := AT).
The language. " (the set of formulas) dfCTL is de-
fined usin@AT, X, G, F, -, —, AV, X, F, G, U, A
andE. The language: of CTL is obtained fromct
by adding| ] AT™ and deleting{X_,G,F_}.
mew
A mapping f fromz! to £ is defined inductively
by:
1. for any pe AT, f(X"p) := p™ € AT™, esp.,
f(p):=p,
2. f(XMa ¢ B)) := f(X[a) & f(X["B) wheret €
AV, =1
3. f(XMa) = gf(X[a)
{—,AX,EX,AG,EG,AF,EF},
4. f(XM(aUB))) = $(f(XPa)Uf(X["B)) where
t € {A.E},

5. f(XPGLa) := A{f(X[""a) [n€ w},
6. f(XPFLa) == \/{f(X[""a) |ncw}.

Lemma 3.2 Let f be the mapping defined in Def-
inition 3.1. For any time-indexed Kripke structure
M := (S S, R, {L"}mew) for LCTL, and any satisfac-
tion relations=™ (m € w) on M, we can construct a
Kripke structure N= (S $,R,L) for CTL and a sat-
isfaction relationi= on N such that for any formula

in £ and any state s in S,

M,sE"a iff N,s|= f(X["a).

Proof. Let AT be a nonempty subset of ATOM, and
AT™ be the setdp™ | p € AT} of atomic formulas.
Suppose thaM is a time-indexed Kripke structure
(S, S0, R {L™}mew) such that

L™ (m e w) are functions fronSto the power
set of AT.

Suppose thall is a Kripke structuréS S, R, L) such
that

where g €
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L is a function fromS to the power set of

L AT™

mew
Suppose moreover that for asg Sand anyp € AT,

p e L"(s) iff pTe L(s).

The lemma is then proved by induction on the
complexity ofa.

e Base step:

Caseda = p € AT: We obtain:M,s="piff pe
LM(s) iff p™ e L(s) iff N,s| p™iff N,sE f(X["p)
(by the definition off).

e Induction step:

Casea = BAy. We obtain: M;s EM B Ay iff
M,s E™ B and M,s My iff N,s = f(X["B) and
N,s = f(X["y) (by induction hypothesis) ifN,s =
F(XB) A f(XT) iff N,s= f(XP'(BAY)) (by the def-
inition of f).

Casea = 3Vvy: Similar to Casex =[3AY.

Casea = B—y. We obtain: M;s ™ B—y iff
M,s =M B impliesM,s ="y iff N,s = f(X["B) im-
plies N,;s = f(X["y) (by induction hypothesis) iff
N,s}= f(XPB)— F(XTy) iff N.sk= (X (B—y)) (by
the definition off).

Casea = —f: We obtain: M,s ™ - iff not-
[M,sE™ ] iff not-[N,s = f(X["B)] (by induction hy-
pothesis) iffN,s|= = f (X["B) iff N,s= f(X["-B) (by
the definition off).

Casea = X f3:

Subcasen < | — 1: We obtain:M,s =™ X, B iff
M,s =™ B iff N,sk= f(X™1B) (by induction hy-
pothesis).

Subcasem > |I: We obtain: M,s =™ X B iff
M,s|=! B iff M,s =™ B iff N,s = f(X™'B) (by
induction hypothesis).

Caseda = G : We obtain: M,s E™ G iff
M,s ™" B for any n € wy iff N,s | f(X[""B)
for any n € oy (by induction hypothesis) ifN,s =
AFX™MB) [ ne w ) iff s f(X['GLB) (by the
definition of f).

Casen = F_3: Similar to Casex = G| (3.

Casea = AX[B: We obtain: M,s =™ AX( iff
Vs € S[(s,s1) € R implies M;s; E™ B] iff Vs €
S [(s;s1) € R implies N,s; = f(X["B)] (by induc-
tion hypothesis) iffN,s = AXf(X"B) iff N,s |
f(X"AXB) (by the definition off).

Casea = EX[3: Similar to Casexr = AXp.

Casen = AG[3: We obtain:

M,sEMAGPB
iff for all pathsti=0,51,%, ..., wheres= 5, and all
statess alongr, we haveM,s =™ 3

iff for all pathst= %,%,%,..., wheres= s, and
all statess alongm, we haveN,s = f(X["B) (by
induction hypothesis)

iff N,si=AGf(X["B)
iff N,s}= f(X["AGP) (by the definition off).

Casesn = EGR, o = AFB anda = ER3: Similar
to Casen = AGp.
Casen = A(BUy): We obtain:

M,s =" A(BUY)

iff forall pathsti=<%,51,%, ..., Wwheres= g, there is
a statesc alongmsuch thafM, s, E™yandvj[i <
j <kimpliesM,s; =™ B]

iff for all pathst= ,91,%,..., wheres = s, there
is a statesc alongrsuch thafN, s = f (X[My) and
Vj[i < j <kimpliesN,s; = f(X{"B)] (by induc-
tion hypothesis)

iff N,s=A(f(XTB)UF(XTY))
iff N,sk= f(X["A(BUy)) (by the definition off).
Casea = E(BUy): Similar to Casex = A(BUy).

Lemma 3.3 Let f be the mapping defined in Defini-
tion 3.1. For any Kripke structure N= (S S, R,L)
for CTL, and any satisfaction relatioh= on N, we
can construct a time-indexed Kripke structure:#
($,9,R {L™}mew) for LCTL and satisfaction rela-
tions =™ (m € w) on M such that for any formula

in £ and any state s in S,

N,sE f(X[a) iff M,s="a.
Proof. Similar to the proof of Lemma 3.2. |

Theorem 3.4 (Embedding)Let f be the mapping
defined in Definition 3.1. For any formula, o is

valid (satisfiable) inLCTL iff f(a) is valid (satisfi-
able) inCTL.

Proof. By Lemmas 3.2 and 3.3. |

We then obtain the main theorem of this paper.

Theorem 3.5 (Complexity) The  model-checking,
validity and satisfiability problems fot.CTL are
deterministic PTIME-complete, EXPTIME-complete
and deterministic EXPTIME-complete, respectively.

Proof. By the mappingf defined in Definition 3.1, a
formulaa of LCTL can finitely be transformed into
the corresponding formul&(a) of CTL. By Lem-
mas 3.2 and 3.3 and Theorem 3.4, the model check-
ing, validity and satisfiability problems for LCTL can
be transformed into those of CTL. Since the model
checking, validity and satisfiability problems for CTL
are decidable, the problems for LCTL are also de-
cidable. Since the mappinfyfrom LCTL into CTL

is a polynomial-time reduction, the complexity re-
sults for LCTL become the same results as CTL, i.e.,
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