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Abstract: Cadia@ is a well-known rule-based expert system that aims at providing support for medical diagnose in
internal medicineCadia@ consists of a knowledge base in the form of a séttifenrules that relate medical
entities, in this paper interpreted esnditional probabilistic statementand an inference engine constructed
upon methods ofuzzy set theory The aim underlying this paper is the understanding of the inference in
Cadia@. To that purpose we provide a (probabilistic) logical formalization of the inference of the system and
check its adequacy with probability theory.

1 INTRODUCTION degree of confirmation 0.30.

As mentioned in (Adlassnig, 1986) we can iden-
tify such degrees of confirmation with probabilities
and the rules themselves with conditional probabilis-
tic statements. In (Adlassnig, 1986) it is stated that
such degrees of confirmation can be interpreted as
frequencies An interpretation in terms adegrees of
belief of the doctor (or doctors) on the truth of the
consequent given that the antecedent of the rule holds
is also possible though. This fact motivates a prob-
abilistic interpretation oCadia@?’s inference. Such
inference engine and the knowledge base. The in-an |.nfterpre|.tat|or:1 I_ea]l(ds to thgl;)(jr!mary aim gf g.‘l'.s pa-
ference engine is based on methods of approximateﬁsr' rggggslsaent q ilr?eilr(eirtlgz de l:zgf Ovr\‘/iﬂ:o r?)blellf)-ilit
reasoning irfuzzy set theoryin the sense of (Zadeh, | 9 Hal 2003 quacy I pr h b-y
1965) and (Zadeh, 1975). In faGadiag is pre-  |°9ic (Halpern, 2003) or, more generally, with pro

: bility theory. We shall not expect big surprises in
sented in some monographs as an examplefofzay ao . 2=
expert system(Klir and Folger, 1988), (Zimmer- this respect. The inference mechanismCadiag?

; ds in @ompositionalvay and thus it is bound
mann, 1991). The knowledge bas#;,q, consists of procee . . e
a set ofif—tht)an rules intendgd to repa;jesent relation- [© Pe probabilistically unsound (as will be clarified
ships between distinct medical entities: symptoms, Iater_). This was soon observed in earlier studies con-
findings, signs and test results on the one hand angc€Ming the celebrate(_j expert system MY.CIN - see
diseases and therapies on the other. The number 01(Buchanan. and Shortliffe, 1984) or (_Shortln‘fe, 1976)
rules in®c4q is approximately 50.000. The vast ma- TOL aldgessgcrlpE'or) ?(f MEC\I/NISIP d (rgagjik’ 1388&’ (Ha-
jority of them are binary (i.e., they relate single medi- Jlegée V)id(' alfggaznf a ebs,b'l' ’ ), (Hec erzmaF,
cal entities) and only such rules are considered in this ; ). ( aldes, .- ) or probabilistic approaches to
paper. The rules ifbcag are defined along with a it. How far isCadiad’s inference from probabilistic

. a

certaindegree of confirmatiomvhich intuitively ex- soundness remains to be seen though.

presses theegreeto which the antecedembnfirms It is worth mentior_ﬂng here that, aIthqugh the in-
the consequent. For example terest among theoretical Al researchers in rule-based

IF suspicion of liver metastases by liver pal- IThis rule is mentioned as an example in (Adlassnig
pation THEN may be pancreatic cancer with et al., 1986).

Cadia@ (Computer Assisted DIAGnosis) is a well-
known rule-based expert system aimed at providing
support in diagnostic decision making in the field of
internal medicine. Its design and construction was
initiated in the early 80’s at the Medical University
of Vienna by K.P. Adlassnhig — see (Adlassnig et al.,
1986), (Adlassnig et al., 1985), (Adlassnig, 1986) or
(Leitich et al., 2002) for more on the origins and de-
sign ofCadia@?.

Cadiag@ consists of two fundamental pieces: the
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expert systems seems to be lesser today than some The statements we will be dealing with are primar-
years ago, rule-based expert systems are still veryily of the form 'the probability of6 given¢ is equal
popular among Al engineers. Marnyadiag?-like ton’. Let £~ be the set of all the statements of
systems are in use and more are being built for fu- the formP(8|@) =n, for 8, € SLandn < [0, 1]. Oc-
ture implementation. Is is mainly for this reason that casionally we will refer to the set =, defined like
we believe that further analysis and understanding of # £~ but with >’ in place of '=".
Cadiag?-like systems is of relevance. We will refer to @ in a statement of the form
This paper is in some way a continuation of (Cia- P(8|¢@) = n as theevidenceand to8 as theuncertain
battoni and Vetterlein, 2009). In (Ciabattoni and Vet- entityor event

terlein, 2009) the inference mechanisnGafdiad? is
formalised by means of a logical calcul@adL and
compared ta¢-norm-basedormalisms (Hajek, 1998).

We will denote byF £g the subset of conditional
statements off £~ where both the evidence and the
uncertain entity are literals, i.e. sentencegip. By

Itis shown thaCadLdoes not respond to any t-norm- ¥ £ we will denote the subset of conditional state-
based (or to any fragment of a t-norm-based) logic. ments of# £~ where the uncertain entity is a literal
As far as we know, (Ciabattoni and Vetterlein, 2009) and the evidence consists of a conjunction of literals

constitutes the first attempt at formalising and under- (we definer £ and¥ £Z analogously).

standingCadia@ in a logical way. The present paper
is the second.
This paper is structured as follows. In Section 2

The binary fragment ofCadiag?’s knowledge
basePcagsin Will be in principle regarded as a subset
of 5. Thatis arguably the most natural interpreta-

we give some basic definitions and introduce most of tion of ®cagginWhen interpreting the rules probabilis-

the notation used later in the other sections. In Sec-

tion 3 the inference process @adiag is briefly de-
scribed. In Section 4 the formal systé&adPLis de-
fined and analysed in the light of probability logic.
CadPLis a formalization of the inference mechanism
of Cadiag? based on a probabilistic interpretation of
it.

2 PRELIMINARY DEFINITIONS
AND NOTATION

Throughout we will be working with a finite proposi-
tional languagel. = {pa, ..., pn}. We will denote by
SLits closure under classical connectives. Within the
context ofCadiad? the languagé represents the set
of medical entities in the system.

LetLii ={p,—p| peL} C SL the set of literals
of the languagé.

LetA = {@,...,¢} C SL We will denote by\ A
the sentencey A ... A ¢k

Definition 1. Let w: SL— [0,1]. We say that wis a
probability function on L if the following two condi-
tions hold, for all6, ¢ € SL:
o If = 0thenw®) =1.
o If = (6 @) then WOV @) =w(8) +w(q).2
We define conditional probability from the notion

of unconditional probability in the conventional way.
Forw a probability function o andg,0 € SL,

wige) = L.

2Here (and throughout: is classical entailment.

tically.

Let© € ¥ £~ andw a probability function ori.
We define satisfiability 0® by w (denoted=y, ©) in
the obvious way. More specifically, foy € [0,1] and
6,0€ SL,

Fw P(6jg) =n < w(6|g) =n.

Satisfiability for statements irF 2= is defined
analogously. Such notion ahtisfiabilityis extended
to subsets inf £~ and 7 £= in its trivial way. We
will sometimes identify the notion afonsistencyf a
set of probabilistic statements with that of satisfiabil-
ity.

Definition 2. Let < be the partial ordering relation
on [0, 1] defined as follows: For @ € [0,1], a< b if
andonlyif0<a<borO<a<landb=0.

We define< from < in the conventional way.

As we will see later, the definition o responds
to the use of both 0 and 1 as maximal values in
Cadia2. The value 0 denotes certainty in the non-
occurrence of an event or falsity of a statement and
the value 1 denotes certainty in its occurrence or its
truth.

For the next definition let

D =1[0,1] x [0,1] —{(0,1),(1,0)}.

Definition 3. The function mak: D — R is defined
as follows, for(a,b) € D:

a if b<a

ma)é((avb){ b otherwise

The definition ofmax is extended to more than
two arguments in its trivial way.
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3 THE INFERENCE IN CADIAG2

In this section we describe very briefly a generaliza-
tion of the inference mechanism@adiag?. A more
detailed description and analysis of it can be found in
(Ciabattoni and Vetterlein, 2009).

Cadiag? formally distinguishes between three dif-
ferent types of rules: typeonfirming to the degree d
(for d € [0,1]), type mutually exclusiveand typeal-
ways occurring- see (Adlassnig et al., 1986), (Ad-
lassnig et al., 1985), (Adlassnig, 1986) or (Daniel
et al., 1997) for more o€adiag?’s rules. The last
two types mentioned arelassicalin the sense that

At the nt" step in the inference process a new rule
of the formP(8|y) = n in ®cagsin Will be triggered,
forn €[0,1] and®, Y € L. In order forP(8|Y) =n
to be triggeredp must have been assigned at least one
value in(0, 1] either by the initial assignmenty, or
by any other assignment dnp} defined during the
inference process at some previous step. Atrffie
step the application of this new rule will generate a
new assignment of@} that will give 6 the minimum
betweem and the value ol considered for trigger-
ing the rule at this step in the inference (as above, this
value needs to be strictly positive). If the strictly posi-
tive values generated fgrbefore thent" step are mul-

the degree of confirmation for the rules of these types tiple the inference mechanism@adiad will call the
is 1 and that the antecedent of such rules (or evidencerule P(8|w) = n again in further steps, if it has not

in our settings) needs to Welly true (degree of pres-
ence or of truthl, see below) in order for these rules

done so previously, until all the values iphave been
used and all the possible values tbgenerated. The

to be triggered by the system. Such a distinction is not assignmeniv,, is defined to-6 as mentioned above.

taken into consideration in this paper and it is in this

The inference process goes on until all the rules

sense that we say that our description of the inferencetriggered by all the sentences inand its negations

mechanism o€adiag is actually a generalisation of
the real inference process. The inference engine in
Cadiag? gets started with a set of symptoms, findings,
signs and diseases occurring®aaqgin present in the
patient. Let” be the set of such medical entities.
Cadiag?2 starts with an assignmem on I that
gives a value in the intervdD, 1] to each entity in

have been used and all the possible assignments for
the sentences involved in the inference have been gen-
erated Cadiag? yields as an outcome of the inference
the set of medical entities ib occurring in the rules
triggered by the evidence in along with themaxi-

mal value(with respect to the ordering defined in
Section 2) assigned to them during the inference. If

. Such value is intended to represent the degree toa sentence is assigned both value 0 and 1 along the

which the entity is present in the patient. The in-

tended interpretation of such values is based, in prin-

ciple, on fuzzy set theory. However, other interpreta-

inference process the system generates an error mes-
sage.
It is worth mentioning that the original inference

tions can also be suitable, at least to some extent. Inprocess irCadiag works in a slightly different way.

fact, when defining the syste@adPL, the interpre-
tation to which we will commit will be probabilistic.
The assignmenty is then extended to negative state-
ments and logical equivalents according to the follow-
ing rule:

If wo(@) =n thenwp(—@) =1—n, forge SL

andn € [0,1].

After the initial assignment the inference rules in

Dcagpin come into play. All the rules triggered by the
sentences il are used during the inference process.

At each step in the inference process a rule is ap-

plied (thatis done, in principle, in no particular order).
At the first step in the inference a rule of the form
P(8|) =n in Pcagainis triggered, witm € [0, 1] and
0,p€ Li;. Inorder for that to happepor its negation
needs to be il and the valuevy () has to be strictly
positive. The application of the ruR(8|@) = n gen-
erates a new assignmemt;, on {6}. The value as-
signed toB@ by it is calculated as the minimum be-
tweenn andwy (@) and the value assigned t® and
logical equivalents (if necessary for the inference) is
calculated fronw (6) as mentioned above far.
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The update in the value of the distinct sentences in-
volved in the inference is done as soon as two differ-
ent values for the same sentence are produced by the
system. The value chosen in the update for atomic
sentences i is the maximalone (with respect to
the ordering=). Notice though that this feature has

a highly undesirable result (unless further restrictions
on the rules or on the order in which the rules are ap-
plied are imposed), which is that the outcome of a run
of the inference mechanism can depend on the order
in which the rules are applied.

Such a drawback is easily avoided by assuming
that the update is only done at the end of the pro-
cess. There are other several undesirable features in
Cadia@®’s inference engine, most of them related to
the maximal value 0 and negated propositions. Maybe
the most evident concerning the maximal value 0 is
that a medical entity that at some step along the in-
ference process is assigned value 0O (that is to say, it
is considered false with certainty or impossikteg-
gersany rules in which it occurs as evidence if any
other value other than 0 is assigned to it along the in-
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ference process. For a deeper analysis of such aspectsuch an interpretation places us within the subjective
of the inference process iBadiag see (Ciabattoni  probabilistic frame and thus, for the sake of coher-
and Vetterlein, 2009). ence, the knowledge bas® ,ggin should also be in-
We represent sentences together with the assign-terpreted subjectively. Other interpretations are also
ments generated for them at each step in the inferencepossible though. For example, one could regard such
by pairs inSLx [0,1] along with a subscript indicat-  values as the ratio given by the number of doctors that
ing the step in the process at which such pairs haveagree on the truth of the statement out of all the doc-
been generated. As mentioned above, a step in the intors involved in the assessment. In order to accommo-
ference process is given by the application of a rule in date such values into a coherent probabilistic frame

®cadgin and the new assignments that it generates for along with the statements fhcagsin 0ne could justify

the sentences involved in the rule.

Let p € L andn € [0,1] be the highest assignment
to p in a run of the inference mechanism@adiad?.
We will use the subscripiax on the pair(p,n) —
that is to say(p,n)max — to denote thay is themaxi-
malvalue assigned during the inference procespfor
(with respect to the ordering).

4 THE FORMAL SYSTEM CADPL

Some medical entities that occur in the rules of
Cadiag represent statements that aague For ex-
ample, inCadiad? we have a medical entity given by
the following statementréduced glucose in serum

In such a statement the adjectiveducedis vague.

them as beingubjectiveprobabilities assessed by a
group of experts — see (Genest and Zidek, 1986) or
(Osherson and Vardi, 2006) for an analysis and justi-
fication of such concept.

Let @ € L i represent a medical entity present in
the patient and assume thate [0,1] is the initial
value assigned to it at the start of a runGddiagR’s
inference process. We can formalise this by means
of a probabilistic conditional statement of the form
P(pk) =n in ¥ L=, wherek € SL s the evidence
that supports the presencegih the patient. For sim-
plicity the sentence& will be assumed to be a literal
in L.

Next we are going to define the formal system
CadPL Recall that the ultimate goal when doing so is
to define a system which represents the inference pro-
cess inCadia@ when interpreted from a probabilistic

Cadiag tackles vagueness by assigning values to point of view. Although the inference i@adiag? can

medical entities in the intervgD,1]. Such values

stand in principle for fuzzy membership within the
context of fuzzy set theory — see (Adlassnig et al.,
1986), (Adlassnig et al., 1985) or (Adlassnig, 1986).
In this paper we consider the possibility of interpret-

be closely related to probability theory (given the na-
ture of the rules of inference caqgsin) it is not based

on probabilistic methods and so the degree of free-
dom when choosing the rules of the syst€adPLis
high. We have chosen the rules by interprefimthe

ing such values as probabilities, which can be done in most natural waythe steps along the inference pro-
quite intuitive ways given the nature of the statements cess within a probabilistic frame. The main idea be-

we are dealing with.

Let us consider again the statememeduced glu-
cose in serum Let us assume that the value assigned
by the evaluation system Dadia@ to the statement
'Patient A has reduced glucose in sefurat of the

hind such interpretation consists of the identification
of the inference process with thpeopagation of evi-
dencdacilitated by the rules iPc4ggin. FOr example,
from P(q|k) = n, wherek € L is evidence support-
ing the presence aj in the patient, andP(6|@) = ¢

evidence given by the corresponding measurement ofin ®c,qgin we would inferP(8|k) = min(n, ), where

the amount of glucose in Patient Aris for somen €
[0,1]. As an example, we could interpret such value
as thedegree of beliethat a medical doctor has in the
truth of the statement given the evidence. As sgch
could be interpreted as a probability. The probabilistic
interpretation is certainly favoured by tligscretiza-
tion applied to medical concepts @adiad? (for ex-
ample, the concepglucose in serufrgenerates five
distinct medical entities i€adiad: "highly reduced
glucose in seruin’ reduced glucose in serdpnor-
mal glucose in serum’ elevated glucose in serum
and 'highly elevated glucose in sergmNotice that

3This example is extracted from (Adlassnig et al., 1986).

min(n, {) is the value (probability) assigned@aiven
the evidence. We would have propagationprocess
of this nature for each single piece of evidence. The
evidence would then be brought togetheCiadiag?
by what we call theRight conjunctionrule: given
two outcomes ofCadia@’s inference process, say
P(p|k1) =n andP(p|k2) =, for p € L andk1,K2 €
L.it, Cadiag?2 combines the evidence given ky and
K2 by computingP(p|K1 AK2) = max (n,{). Thein-
ference rules o€adPLthat we next present formalise
this interpretation.A theory in CadPLis a finite
subset of sentencesincg .
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For what follows letr = Q U ®, with

Q = {P(@[K1) = N1, ... P(@m[Km) = Nm},
for someme N.

Let KXo = {K1,....,Km} andl' = {@1, ..., m}.

The setQ is intended to represent the initial as-
signmentin the inference procedsthe set of rules of
the system[ the initial set of medical entities present
in the patient andkg the evidence in support of the
presence of the corresponding medical entitids.in

The formal systenCadPLis defined by the fol-
lowing inference rules:

Inference rules

o Reflexivity rule
Forge Liit, K € g andn € [0,1],
Plk)=n €Q
T - P(gK) =n
e Negation rule
Forgoe Liit, Y € SLandn € [0,1],
T FP(@Y) =n
T EP(-@p) =1-n
e Equivalence rule
Fory,o,8 € SLandn € [0,1],

=@ THFP(@6)=n
T - P([8) =n

e Minimum rule
For6,@c Liit, K € Xq,n € (0,1] and € [0,1],
THPOK)=n P(@6)= €®
7 = P(k) = min(n, {)
e Right conjunction rule
Forpel, Ky,Kz C g andn,Z € [0,1],
T FP(p[AK)=n T FP(p|AKz)=¢
7 = P(p| A{K1UKz}) = max(n,{)
e Exhaustivity rule
Forpel, k € X, K C %xq andn € [0, 1],
T FP(pIAK)=n  ¥{€[0,1] 7 ¥ P(p|K) =1
T EP(plk AAK) =n
Notice that the&exhaustivityrule does not have any
bearing on thalecidabilityof whetherP(p|k) = ( is
provable from7 or not for{ € [0,1], p€ L andk €
Kq. TheExhaustivityrule can only be applied after
its provability or non-provability has been decided.
Given a theoryr of CadPLand a statemer® <

F L;, a proof of® from 7 is defined as a finite se-
guence okequentsf the form

T l_@17,7 I_@n

32

with ®, = © and where, for € {1,...,n}, each®; in
T I ©; follows from 7 by the application of one of
the rules above, frorm®; in a previous sequent (with
j <i)orfrom@j, O in previous sequents (withk <

i) by one of the rules above.

Let © be the statemerR(6|¢) = n, for somen €
[0,1] and®, @€ SL We say that there exists@aximal
proof of © from 7 if there exists a proof 0® from
7 and there is no proof frorr of P(8]@) = ¢ with
n=<c<.

We say tha® follows maximallyfrom 7 (denoted
by 7 FcagpL ©) if there exists a maximal proof @&
from 7.

For the next proposition let = QU ®caggin, With

Q = {P(@1]K1) = N1, -, P(@m[Km) = N}

Ko = {K1,...,Km} C Lt andl" = {@,...,@m} a subset
of literals occurring iPcagin

Proposition 4. Let pe L andn € [0,1]. We have that

T FcadpLP(P| /\ @) =N

if and only if (p,N)max is the outcome of a run of
Cadiag2's inference process an

Proof? In order to prove the left implication let us
consider a run o€adiag?’s inference mechanism on
7. The inference starts from pairs of the fofmn)o
and(—@,1—n)o for somen € [0,1] forall e T. In
CadPLa pair of the form(¢g,n)o, for @€ T, corre-
sponds to a sequent of the formk P(g/k) = n, for

K € Xq. The pair(—¢,1—n)o corresponds to the se-
quent7 + P(—@K) = 1—n. The former corresponds
to an application of th&eflexivityrule. The latter fol-
lows from the first one by an application of thiega-
tion rule.

Let us assume now that we are at tHestep of the
inference process and that a rule of the fér(8|y) =
Cis triggered, for somé € [0,1] andB, Y € L. Let
us suppose that we hay®, u)n—t, the pair that trig-
gersthe rule at thef" step of the process, fare (0,1
andt < n-—1. In CadPL that would correspond
to a sequent of the fornt + P(Y|k) = pu derived
from a previous step in the inference, fore xq.
The inference mechanism @adiag? produces the
pairs (8,min(¢, u))n and (—6,1 — min(Z, u))n which,
in CadPL corresponds to the sequents- P(8|k) =
min(¢,) and 7 + P(=6|K) = 1 — min({, ) respec-
tively, which follow by an application of thBlinimum
rule and, for the latter, an application of thegation
rule on the former.

4For the sake of brevity we will deal with sentences as
if they were equivalence classes. If anything applies to a
sentence of the form, with @ € L j;, we also assume that
it applies to any logical equivalent gfwithout mentioning
it.
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At the end of the procesSadia@ generates the
pair (p,N)max for each sentenge< L involved in the
inference, whergq is the maximal value (with respect
to the ordering<) among those assigned foalong

of the Reflexivity Negationand Equivalenceules is
clear. TheMinimumrule is certainly not sound with
respect to such semantics. TRight conjunction rule

is not sound and it can generate probabilistic conse-

the inference. This maximization process is achieved quences that arenconsistentwith its premises and
in CadPL by means of repeated applications of the the theoryT (in the sense that such consequences

Right conjunctiorrule. Instances of thExhaustivity

along with the premises and the theory are not si-

rule (if necessary) complete the inferential counter- multaneously satisfiable by a probability function).

part ofCadiag? in CadPL
In order to prove the right implication let us sup-
pose that we have a maximal proof of the form

T |_ @17,7 l_ @m,

where®p, is the statemer®(p| A Xq) = n, for some
ne[0,1] andp € L.

The Exhaustivityrule assumes some probabilisithc
dependencamong sentences that may not actually
be independent. OveralladPLdoes not score well
within probability theory. This is no surprise. The
computation of conditional probabilistic statements in
a compositional way, as done Badiad@ primarily

by means of thenin andmax operators, is clearly

The first sequent of the proof needs to respond to hound to be probabilistically unsound. One may won-

an instance of thReflexivityrule, 7 F P(g/k) =n, for
some@e I, K € Xq andn € [0,1]. The correspond-
ing counterpart of this sequent@adiag is the pair
(®n)o.

Let us move now to the" sequent, witm < m.
Then™ sequent can be an instance of Reflexivity
rule, 7 - P(glk) =n, for somepe ', n € [0,1] and
K € Kq. The counterpart for this sequent@adiad?
is the pair(@,n)o.

Thent" sequent can follow from a previous one in
the proof by an instance of th¢egationrule. Let us
suppose that the" sequent isr - P(-8|y) =1—n
for somen € [0,1], 6 € Ly andy C L and that
there is a sequertt - ©;, for somel < n, of the form
7 F P(B|w) = n. The latter corresponds to a pair of
the form(6,n); in Cadiag and the former to the pair
(=6,1—n)t, wheret is the step in the inference pro-
cess at which such pairs have been generated.

The n' sequent can follow from a previous one
by an instance of th#linimumrule. Let us assume
that then" sequent is7 + P(8|k) = min(n,), for
someb € Liit, K € KXo, N € [0,1] and{ € (0,1], that
7 + P(Y|K) = Cis a previous sequent in the proof and
thatP(B|W) =n € Pcagin The latter corresponds in
Cadia@? to the pain{,{); and the former to the pair
(6,min(n,{))i+x, Wheret,t +k indicate the steps at

der though what could be done in order to improve
the inference on probabilistic grounds from a knowl-
edge base lik&caggin The answer seems to be 'not
much’. Certainly abcaqggirlike knowledge base (i.e.,
a knowledge base given by some binary probabilistic
conditional statements) is not the most convenient for
inferential purposes in probability theory for medical
applications likeCadia@. As is well known, there
are other knowledge-base structures better suited for
that purpose, Bayesian networks being the most cel-
ebrated among them, see (Castillo et al., 1997) or
(Pearl, 1988).

In terms of consistency, it is worth noting that
CadPL satisfies what we can calleak consistency
— calledweak soundnesa (Hajek, 1988) —, defined
as follows: if there is a maximal proof @adPLof a
statement of the forrR(qg| AA) =1 (orP(g| AA) =0)
from a certain theory , with @ € SLandA C SLthen,
if there is a maximal proof i€CadPLof a statement
of the formP(@ A A*) =n, with A C A%, thenn =1
(orn = 0 respectively). That is to say,adPLcon-
cludes certainty about the occurrence of some event or
about the truth or falsity of some sentence then adding
new evidence does not alter this certainty. Weak con-
sistency is provided ifadPLand so irCadiag?’s in-
ference mechanism by the operatmax defined over

which the pairs have been generated by the inferencethe ordering=.

process.

It is also worth noting that one could guaran-

Then'" sequent can follow from previous sequents tee consistency (i.e., satisfiability) by considering

by an application of th®ight conjunctiorrule. The
counterpart irCadiag of such an outcome consists

Pcagina subset off LSZ (in place off Lg, regarding
the values of the conditional statementsoager prob-

of the maximization process at the end of the infer- apijlity boundsrather than agxactprobabilities) and

ence. Instances of tHexhaustivityrule are irrelevant
to the inference ilCadiacR.
This completes the proof. |

by restricting the system togositive fragmenof L
(i.e., only one ofp, —p can occur in®caggin). This
way consistency is trivially guaranteed f@cagsin

Itis worth Commenting on some features of the in- together with any outcomes produced by the system

ference rules a€adPLin connection with probability
theory.
Soundneswith respect to probabilistic semantics

during the inference process.
In terms of soundness there does not seem to be
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much that one can do in order to improve the infer- Adlassnig, K., Kolarz, G., Effenberger, W., and Grab-
ence mechanism for knowledge bases ttkeqgin, OF ner, H. (1985). Cadiag: Approaches to computer-
at least not much that one can do that does not come ~ 2ssisted medical diagnosiSomputers in Biology and
at the price of generating probabilistic statements Me_d'c'ne 15:315-335. _

with very low probabilistic bounds (when working ~Adlassnig, K., Kolarz, G., Scheithauer, W., and Grabner, H.
in 5fL2), which would makeCadiag® potentially (1986). Approach to a hospital-based application of

. . a medical expert systeninformatics for Health and
useless for practical purposes. There is some room Social Care 11(3):205-223.

for improvement for some steps in the inference that Buchanan, B. and Shortliffe, E. (1984Rule-Based Expert

come by the addition of some independence assump-  systems: The MYCIN Experiments of the Stanford
tions among some of the medical entitiesipgsin Heuristic Programming Project Addison-Wesley,
Under such independence assumptions plesluct Reading, MA.

operator in place of thenin operator could yield Castillo, E., Gutiérrez, J., and Hadi, A. (1997Expert
soundness for the inference steps referred. Systems and Probabilistic Network ModeBpringer-

Verlag, New York.

Ciabattoni, A. and Vetterlein, T. (2009). On the fuzzy (log-
ical) content of cadiag2Fuzzy Sets and Systems (to

5 CONCLUSIONS appear Short]y_)

. . . . Daniel, M., Hajek, P., and Nguyen, P. (1997). Cadiag2
Cadiag? is a reasonably well-performing medical ex- and mycin-like systems. Atrtificial Intelligence in
pert system (Adlassnig et al., 1986), but how it is so is Medicing 9:241-259.
far from clear. The inference engine ©@adiag was Genest, C. and Zidek, J. (1986). Combining probability dis-
built with methods of approximate reasoning in fuzzy tributions: A critique and an annotated bibliography.

set theory but, as such, it was not based on any logical ~ Statistical Sciencel(1):114-135.
formalism or theory embedded with a clear semantics. Hajek, P. (1988). Towards a probabilistic analysis of mycin

This fact motivated the main aim of this paper, which like expert systems. ICOMPSTAT 88 proceedings

was no other than thenderstandingf Cadiag in a Physica-Verlag Heidelberg.

logical way. Hajek, P. (1989). Towards a probabilistic analysis of
The natural interpretation of the inference rules of mycin-like expert systems 2. lArtificial Intelligence

Cadiag (i.e., probabilistic) placed us upon the at- ﬁ%ﬂ;g&ormaﬂon'oomml Systems of Robolorth-

tempt of interpreting the inference itself probabilis-
tically. We formalised this interpretation by means of

the systenCadPL, the logical (probabilistic) coun- A i . -

: ; ; 3 Hajek, P. and Valdés, J. (1994). An analysis of mycin-like
terpart of the inference engine 6adiag2. The un expert systemsvlathware and Soft Computing:45—
soundness of some of the rules@idPL (and thus 68

of some inference steps@adiag?) and the WICONSigs Halpern, J. (2003). Reasoning About UncertaintyMIT
tency of the calculus (and thus of the inference pro- Press.

cess inCadiag) was made clear. Apart from these F!eckerman, D. (1986). Probabilistic interpretations for
drawbacks, otherwise expected, some other aspects of ~ ycin's certainty factors. Ituncertainty in Artificial
CadPLwere also stressed and analysed. At the end of Intelligence pages 167—196. North-Holland.

the paper some possibilities for an improvement of jir G. and Folger, T. (1988)Fuzzy Sets, Uncertainty and
Cadiag in terms of soundness and consistency were Information Prentice-Hall International.

also mentioned. Leitich, H., Adlassnig, K., and Kolarz, G. (2002). Evalua-
tion of two different models of semiautomatic knowl-
edge acquisition for the medical consultant system
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