
XQUAKE
An XQuery-like Language for Mining XML Data

Andrea Romei and Franco Turini
Department of Computer Science, University of Pisa, Largo B. Pontecorvo, 3, Pisa 56127, Italy

Keywords: Data mining, Knowledge discovery, Inductive databases, XML, XQuery, Query language.

Abstract: The rapid growth of semi-structured sources raises the need of designing and implementing environments
for knowledge discovery out of XML data. This paper presents an Inductive Database System in which raw
data, mining models and domain knowledge are represented as XML documents, stored inside XML native
databases. In particular, we discuss our experiences in the design and development of XQuake, a mining query
language that extends XQuery. Features of the language are an intuitive syntax, a good expressiveness and the
capability of dealing uniformly with raw data, induced and background knowledge. The language is presented
by means of examples and a sketch of its implementations and the evaluation of its performance is given.

1 INTRODUCTION

Inductive Databases(IDBs) are general purpose
databases in which both the data and the knowledge
are represented, retrieved, and manipulated in an uni-
form way (Imielinski and Mannila, 1996). A critical
aspect in IDBs is the choice of what kind of formalism
is more suited to represent models, data sources, as
well as the queries one might want to apply on them.
A considerable number of different papers propose to
integrate a mining system with a relational DBMS.
Relational databases are fine for storing data in a tab-
ular form, but they are not well suited for representing
large volumes of semi-structured data fields. How-
ever, data mining need not be necessarily supported
by a relational DB.

The past few years have seen a growth in the adop-
tion of theeXtensible Markup Language(XML). On
the one hand, the flexible nature of XML makes it
an ideal basis for defining arbitrary languages. One
such example is the Predictive Modelling Markup
Language (PMML) (The Data Mining Group, 2009),
an industry standard for the representation of mined
models as XML documents. On the other hand, the
increasing adoption of XML has also raised the chal-
lenge of mining large collections of semi-structured
data, for example web pages, graphs, geographical in-
formation and so on. From the XML querying point
of view, a relevant on-going effort of the W3C is the
design of a standard query language for XML, called
XQuery(W3C World Wide Web Consortium, 2007),

which is drawing much research and for which a large
number of implementations already exists.

The goal of our research is the design and imple-
mentation of a mining language in support to an IDB
in which an XML native database is used as a stor-
age for Knowledge Discovery in Databases (KDD)
entities, while Data Mining (DM) tasks are expressed
in an XQuery-like language, in the same way min-
ing languages on relational databases are expressed
in a SQL-like format. Features of the language are
the expressiveness and flexibility in specifying a vari-
ety of different mining tasks and a coherent formalism
capable of dealing uniformly with raw data, induced
knowledge and background knowledge.

Due to space restrictions, we do not present here
the data model on which XQuake is based, but we fo-
cus on the basic ideas behind the language, discussing
several examples of its concrete usage. All exam-
ples assume the availability of XML data in a native
XML database. Specifically, Figure 1 shows a frag-
ment of the onlinedblp database1, containing biblio-
graphic information on major computer science jour-
nals and proceedings. Figure 1 depicts a sample docu-
ment including various information about researchers
in a university department. Finally, the XML docu-
mentmondial2 of Figure 1 contains a collection of
XML tags storing geographical, economic and politi-
cal characteristic of a country.

1www.dblp.uni-trier.de/xml/
2www.dbis.informatik.uni-goettingen.de/Mondial/

20
Romei A. and Turini F. (2010).
XQUAKE - An XQuery-like Language for Mining XML Data.
In Proceedings of the 2nd International Conference on Agents and Artificial Intelligence - Artificial Intelligence, pages 20-27
DOI: 10.5220/0002703400200027
Copyright c© SciTePress

Figure 1: XML fragments of thedblp dataset (a), thedepartments dataset (b) and themondial dataset (c).

2 XQUAKE

In this section, the XQuake (acronym of XQUery-
based Applications for Knowledge Extraction) min-
ing language is presented.

2.1 The XQuake Philosophy

Essentially, XQuery expressions are used to identify
XML data as well as mining fields and metadata,
to express constraints on the domain knowledge, to
specify user preferences and the format of the XML
output.

A mining query begins with a collection of
XQuery functions and variables declarations followed
by an XQuake operator. The syntax of each operator
includes three basic statements3: (i) task and method
specification; (ii) domain entities identification; (iii)
exploitation of constraints and user preferences. The
outline of a generic operator is explained below.

Task and Method Specification. Each XQuake
operator starts specifying the kind of KDD activ-
ity. Constructs for preprocessing, model extraction,
knowledge filtering, model evaluation or model meta-
reasoning are possible. As an instance, the following
XQuake fragment denotes a data sampling task:

prepare samplingdoc("my-out") using
alg:my-sampling-alg(my-params ...).

3More precisely, the language also allows the construc-
tion of the generated results. However, this feature is not
described in this paper.

Thedoc("my-out") expression directs the result of
the mining task to a specific native XML database for
further processing or analysis. Theusing statement
introduces the kind of mining or preprocessing algo-
rithm used, together with atomic parameters.

Domain Entities Identification. Any KDD task may
need to specify the set of relevant entities as input of
the analysis. The syntax is an adaptation of the stan-
dard XQuery FLOWR syntax, in which the result of
the evaluation of an expression is linked to a variable
in for andlet clauses. Below you can see a simple
statement that can be used to locate input data.

for data $tuple in <XQuery expr>
where<XQuery expr on $tuple>
let active field$field := <XQuery expr on $tuple>.

Input data is typically a sequence of XML nodes. The
<for> expression above binds the variable$tuple to
each item during the evaluation of the operator, while
the <let> clause identifies an attribute of the data.
XQuake also offers an optional<where>, used to
express data filtering constraints. The user specifies
them through an XQuery condition that is typically
processed before the mining task. The<let> clause
defines a data attribute with name$field, whose val-
ues are obtained by means of the XQuery expression
in the body and whose type is omitted. The keyword
after the<let> refers to the role of such an attribute
in the mining activity of interest. More specifically:

• <active> specifies that the field is used as input
of the analysis;

• <predicted> specifies that it is a prediction at-
tribute;

XQUAKE - An XQuery-like Language for Mining XML Data

21

• <supplementary> states that it holds additional
descriptive information.

Mining fields in input to the mining task are re-
quired to be atomic, i.e. an instance of one of the
built-in data types defined by XML schemas, such as
string, integer, decimal and date. A richer set of types
is included into the data model by extending the sys-
tem type of XQuery to support discrete, ordering and
cyclical data types. Moreover, XQuake maintains the
typing philosophy of XQuery by offering a method to
equip attributes with logical information. In the query
fragment below, we are interested in the specification
of a mining attribute that indicates whether a journal
paper published by the ‘ACM’ focusses on the KDD
field. An explicit boolean type is specified by the user
for the field$has-kdd-keyword.

for data $paper in doc("dblp")//article
wherefn:contains($paper/journal, "ACM")
let active field$has-kdd-keyword asxs:boolean :=

some $keyword in $paper/keywords/keyword
satisfies $keyword eq "KDD".

Either if an input field has an explicit or an implicit
type, it is validated against a required type, that de-
pends on the context in which it appears. For instance,
the target attribute of a classification task is required
to be discrete. An error is raised whenever the type of
an expression does not match the expected type.

Exploitation of Constraints and User Preferences.
XQuake admits a special syntax to specify domain
knowledge4, particularly useful for the definition of
domain-based constraints. In contrast to active and
predicted mining fields, a metadata field may include
also non-atomic types, such as XML nodes or at-
tributes. For example, below we assign an hypotheti-
cal XML hierarchy to a table column as metadata in-
formation.

for data $country in doc("mondial")//country
let metadata field$hier :=
let $cap := $country//city[@is-capital=’yes’]
return doc("hierarchy")/root/city[.=$cap].

For each distinct<country> element of themondial
dataset, the<metadata> keyword defines a special
field used to bind domain knowledge (an XML taxo-
nomy in this case) to the capital of that country. This
paper reports, in the next section, several examples to
show how the user can express personalized sophisti-
cated constraints based on the domain knowledge.

4The domain, or background, knowledge is the informa-
tion provided by a domain expert about the domain to be
mined.

2.2 Constraint-based XML Frequent
Itemset Mining

One of the most important open issues in frequent
itemset mining is the too large number of gener-
ated patterns. The constraint-based pattern mining
paradigm has been introduced with the aim of pro-
viding the analyst with a domain-dependent tool for
driving the discovery process directly towards poten-
tially interesting patterns. We present an operator to
handle constrained itemset mining out of XML data.

Example 1. We wish to discover correlations among
authors in thedblp dataset. In our analysis, we con-
sider only the patterns with a minimum support of
10%, in which some “leader” author occurs, and in
which at most two authors received a PhD after 2002.
We consider as “leaders” those authors that received
an award from the “IEEE” society or, alternatively,
are prime investigators of an active project. The re-
sulting XQuake operator is given in Figure 2.2. ⊳

The query is not hard to understand for readers fa-
miliar with XQuery. The algorithm used is the Apri-
ori algorithm (Agrawal and Srikant, 1994), with the
relative minimum support expressed as a parameter
(<using> clause).

The set of involved XML transactions, i.e. both
proceeding and journal papers, is specified through
the <for data> clause. The next statement uses a
similar syntax to identify items of a transaction, i.e.
the authors of a publication, binding each XML node
<Author> to the variable$author. The keyword
<item> specifies in this case that we are iterating
over the items of a transaction. The<let active>
clause uses a built-in function to format the required
author name, i.e. the atomic values in the itemset.
In addition, we bind to the variable$employee an
XML element encoding the domain knowledge (i.e.
the employee information of the department of inter-
est to each distinct author - see also Figure 1). This is
achieved through the<let metadata> statement con-
taining, in the body, an XQuery expression that first
looks for the department of interest in the collection
of the various departments, and then looks for the au-
thor name among its employees. Notice the use of
both the$aut and$aut-name variables in the body
expression.

The set of itemset constraints occur in the
<having> clause. Specifically, they constrain the
number of the items of an itemset that satisfies a par-
ticular condition to have a certain threshold. They
have the following format (wheren > 0).

having at leastn item satisfies<XQuery predicate>.

The operator<at least> (similar are<at most> and

ICAART 2010 - 2nd International Conference on Agents and Artificial Intelligence

22

Figure 2: Two examples of theMINE ITEMSETSoperator at work.

<exactly>) is true for all itemsets which have at least
a specified number of items that satisfy the XQuery
predicate. The latter one can be expressed on the vari-
ables previously defined that, in the example 1, denote
both the author’s name and the employee metadata.
The examples below highlight their usage.
exactly1 item satisfies$aut-name eq "A. Einstein"
at least4 item satisfiesfn:true()
at mostfn:round($ALL div 2) item satisfies
count($employee//Project[@active]="yes") > 1

exactly$ALL item satisfies$aut/@dep eq "Cambridge".

The first condition above finds out who publishes fre-
quently together with “A. Einstein”. The next clause
looks for itemsets of length at least 4. The third con-
dition imposes that at most half of the authors in the
itemset are involved in at least two active projects.
The special variable$ALL stands for the length of
the current itemset that should be validated against
the constraint. Finally, the last predicate finds cor-
relations among the publications of the authors at the
“Cambridge University”.

In the above queries we have supposed the avail-
ability of metadata. In several cases, XQuery can be
also used to build metadata from scratch. The variable
below stores an XML element containing the number
of publications for each distinct author in thedblp
database.

declare variable local:np as node()* :=
for $a in distinct-values(doc("dblp")//author)
return element publication {
<name>{$a}</name>,
<number>{count(/dblp/*[aut=$a])}</number>};

The fragment of the XQuake query below returns all
itemsets which have “Enrico Fermi” as an author, and

at least one co-author with a number of publications
greater than 30.

let metadata field$n as xs:decimal :=
local:np/number[./name=$aut-name]

having exactly1 item satisfies$aut-name eq "Fermi",
at least1 item satisfies
$aut-name ne "Fermi" and $n > 30.

The predicate below aims at extracting frequent item-
sets in which it does not exist one author that is also
editor.

let metadata field$is-editor :=
not(empty(doc("dblp")//editor[.=$aut]))

having exactly$ALL item satisfiesnot($is-editor).

The versatility of the<mine itemsets> operator per-
mits to comply easily with the nature of the domain
and the interpretation of the items. In the next exam-
ple, we exploit themondial dataset as a source for
constraint-based frequent itemset mining.

Example 2. In the mondial dataset, we are in-
terested in finding correlations among the countries
that appear frequently as members of the 168 mon-
dial organizations (e.g. FAO, ONU, etc.). For in-
stance, the itemset{country=FR, country=USA}
supp=0.2 means that France and USA occurred
about 20% of the times together as members of some
organization. Also, we require that in each itemset
at least one item is an European country and that ev-
ery country in the itemset is a republic. The query of
Figure 2.2 accomplishes this task. ⊳

Notice that in the example above, the transactions
are all the countries located in the<organization>
XML tags, items are the car codes of the countries

XQUAKE - An XQuery-like Language for Mining XML Data

23

and the metadata information is the set of<country>
elements (see Figure 1).

2.3 XML Classification

The next example focuses on the XML classification
task, and in particular on the issue of specifying the
input to a decision tree algorithm. In the example, we
select themondial database as an XML table suit-
able as an input to a classification algorithm intended
to build a model of the geographical, economic and
political information of the countries.

Example 3. The goal is to classify new countries in
two different categories: the countries that are good
candidates to become a new member of the UNESCO
and those that are not. The classification scenario is as
follows. Records of the training set are the countries
located by means of the homonymous XML element.
The set of the attributes includes country’s properties
like (i) the government type; (ii) the values of the level
of inflation and the population of the capital city; (iii)
a binary attribute indicating whether the capital of the
country has an extension greater than a fixed value.
The DM task for generating the classification model
can be specified by means of the<mine tree> opera-
tor, as shown in Figure 3. ⊳

The statement can be read as follows. The<using>
clause specifies the mining algorithm, ID3 (Mitchell,
1997) in this case, and the confidence for pruning
as parameter. The<for> clause identifies the XML
nodes that denote the records of the training set.
Each <let> element specifies the attributes in the
source data set that are considered for mining, i.e. the
mining schema. Since the ID3 algorithm is restricted
to deal with discrete sets of values, the operator
forces the type of each field to bexs:string or one
of its subtypes (e.g. discrete or ordinal). An example
of discrete attribute definition is the last clause above,
that specifies the target attribute$is-unesco, whose
only admitted values are “yes” or “no”.

XQuake also offers operators to apply the gener-
ated itemsets and classification trees to further data or
to do preprocessing.

3 THE PHYSICAL LEVEL

3.1 The XQuake System Prototype

XQuake is supported by atightly-coupledarchitecture
designed directly over BaseX (Holupirek et al., 2009),

a Java-based open source native XML database devel-
oped by the Database and Information Systems Group
at the University of Konstanz. Basically, the XQuake
system prototype defines and implements the mining
operations via extended XQuery programs. On the
one hand, complex operations over data structures are
implemented in Java and the I/O of such operators
is integrated within the XQuery program by external
functions.

On the other hand, such an extension regards a
new iterative construct, namedwfor, encapsulated
into XQuery, whose aim is to provide a better imple-
mentation of the mining tasks. It tries to overcome
two main deficiencies of the traditional FLOWR ex-
pressions in order to define queries over windows of
data (useful in data preparation tasks) and to manage
local temporary variables in an iterative computation.
The general schema of thewfor is the following.

wfor $binding-var in <sequence>
declare state variable $state-var

as <type> := <expression>
init <expression>
iterate <expression> while <condition>
return <expression>.

It iterates over an input sequence of lengthN > 0 and
it binds a variable to each item of the sequence. The
effect of thedeclare clause is to introduce a new
variable - saystate variable- and to initialize it with
the value of the given expression body. The state vari-
able is in the scope of all the rest of thewfor expres-
sion. Also, it is updated at each iteration with the re-
sult of theiterate clause, whose aim is to consume
the sequence item by item. Thewhile breaks the cy-
cle and forces the execution of thereturn clause,
that returns an output value. At this point, if addi-
tional items exist in the input sequence, the compu-
tation continues by re-initializing the state variable
with the result of theinit statement and by evalu-
atingiterate again. Intuitively, thewhile specifies
when thereturn clause should be evaluated and a
new value returned as output. At one extreme, if it is
true() or absent, then a single value is returned (e.g.
for model extraction operators). At the other extreme,
if it is false(), a sequence of lengthN is returned as
the answer (e.g. for preprocessing operators). More-
over,wfor expressions can be nested to iterate over
an input sequence several times. Due to space restric-
tions, the syntax and the semantic aspects ofwfor are
out of the core of this paper.

The high level XQuake architecture is shown in
Figure 4. A mining task is expressed in XQuake via
a specifictext editor. A compilerautomatically gen-
erates the appropriate (extended) XQuery code that is
then interpreted. The compiler is designed to provide
a good level of extensibility to accomodate the defini-
tion of new algorithms. The core of the mining pro-

ICAART 2010 - 2nd International Conference on Agents and Artificial Intelligence

24

Figure 3: Extraction of a classification tree from themondial dataset.

Figure 4: The XQuake system architecture.

cess is performed by themining enginethat contains
the run-time support of the BaseX XQuery engine ex-
tended with thewfor iterator. This component uses
theexternal function modulesresponsible for provid-
ing an XQuery interface to external user-defined Java
functions over data structures. At the bottom, we have
the BaseX native XML database containing the input
and output of mining tasks, as well as XML meta-
data. The database is accessed by means of theXML
access optimizercomponent that will contain (propri-
etary or native) indexing techniques to speed-up the
access to input data. Finally, theXML visualizer mod-
ule translates an XML document stored in the DB into
a visualization form, accepted by data and model vi-
sualization tools, and presented by means of anoutput
GUI to the user. Currently, the XML result is trans-
formed into HTML browsable format via XSL style
sheets.

3.2 Performance Evaluation

In the following, we analyze the impact of the archi-
tecture on the frequent itemsets problem. In order to
compare the performance with an existent Apriori im-
plementation, we tested the effects of a very simple
XQuake query, without considering the encapsulation
of any kind of constraints.

Table 1: Summary of datasets for experiments.

Name Real Avg Num Num Min Num

trans trans items supp patterns

census yes 15 48841 135 2 70826

mushroom yes 23 8122 119 10 574513

connect-4 yes 43 67556 129 88 55115

T20I6D100K no 20 100K 1K 0.2 25820

T30I10D100K no 30 100K 1K 0.2 108634

T20I6D300K no 20 300K 3K 0.2 7457

We used both real and synthetic datasets. The real
datasets are from the UCI repository5. The synthetic
databases are generated by means of the IBM gener-
ator6. These datasets are named “TxIyDz” according
to the parametersx,y,z indicating the average number
of items in the transactions, the average number of
items in the large itemsets, and the number of transac-
tions in the database, respectively. A summarization
of the databases used in our experiments is outlined
in Table 1, in which the last two columns identify the
lower minimum threshold of the support used in the
experiments and the number of extracted patterns.

We carried out our tests on a dual core Athlon
4000+ running Windows XP. We assigned 1.5Gbyte
of memory to the Java Virtual Machine. Figures 5,
6, 7 and 8 report the performance obtained on the
datasets by varying the value of the minimum sup-
port. In order to have an idea of the performance of
XQuake, we compared its execution time on the three
real datasets with those obtained by running the well-
known Java-based Weka system7 (Figures 5, 6 and 7).

The first group of experiments shows good and
promising results. When the mining becomes hard,
XQuake outperforms Weka and the differences be-
tween the two implementations tend to increase with
respect to lower values of the minimum support
threshold. The scalability is also acceptable on artifi-
cial datasets (Figure 8), on which the performance of
the algorithm resulted to be quite stable. The perfor-

5http://archive.ics.uci.edu/ml/
6www.almaden.ibm.com/cs/disciplines/iis/
7http://www.cs.waikato.ac.nz/ml/weka

XQUAKE - An XQuery-like Language for Mining XML Data

25

Figure 5: Runtime comparison among XQuake and Weka
on thecensus dataset.

Figure 6: Runtime comparison among XQuake and Weka
on themushroom dataset.

Figure 7: Runtime comparison among XQuake and Weka
on theconnect dataset.

Figure 8: XQuake performance on the synthetic datasets.

mance overhead introduced by external Java functions
integrated in XQuery is modest. This is confirmed

by the graphs of Figures 3.2, 3.2 and 3.2, which re-
port the overall execution time on the test datasets as
a sum of: (i) theinitialization time, i.e. the time to
compile the query and to prepare the data structures;
(ii) the data iteration time, i.e. the time to iterate over
the data several times, according to the number of cy-
cles of the Apriori; (iii) themining time, i.e. the time
to update data structures at each iteration; (iv) an esti-
mation of theoverhead due to external functionsand
finally (v) theserialization timeto produce the output.
The performance of the Apriori tends to worsen when
the number of generated patterns is very large - more
than 500,000 itemsets (Figure 3.2) . Such a behaviour
is mainly due to the context-switching overhead due
to their serialization.

4 FINAL REMARKS

4.1 Related Work

An important issue in DM is how to make all the het-
erogeneous patterns, sources of data and other KDD
objects coexist in a single framework. A solution
considered in the last few years is the exploitation
of XML as a flexible instrument for IDBs (Meo and
Psaila, 2006; Romei et al., 2006; Euler et al., 2006;
Braga et al., 2003).

In (Meo and Psaila, 2006) XML has been used
as the basis on which a semi-structured data model
designed for KDD, called XDM, is defined. In this
approach both data and mining models are stored in
the same XML database. This allows the reuse of pat-
terns by the inductive database management system.
The perspective suggested by XDM is also taken in
KDDML (Romei et al., 2006) and RapidMiner (Euler
et al., 2006). Essentially, the KDD process is mod-
eled as an XML document and the description of an
operator application is encoded via an XML element.
Both KDDML and XDM integrate XQuery expres-
sions into the mining process. For instance, XDM
encodes XPath expressions into XML attributes to se-
lect sources for the mining, while KDDML uses an
XQuery expression to evaluate a condition on a min-
ing model. In our opinion, XQuake offers a deeper
amalgamation with the XQuery language and conse-
quently a better integration among DM and XML na-
tive databases.

Finally, the XMineRule operator (Braga et al.,
2003) defines the basic concept of association rules
for XML documents. Two are the main differ-
ences with respect to XQuake. From the physical
point of view, XMineRule requires that the data are
mapped to the relational model and it uses SQL-

ICAART 2010 - 2nd International Conference on Agents and Artificial Intelligence

26

Figure 9: Time breakdown on thecensus dataset (a),mushroom dataset (b) andT20I6D300K dataset (c).

oriented algorithms to do the mining. Also the out-
put rules are translated into an XML representation.
As a consequence, the loosely-coupled architecture
of XMineRule makes it difficult to use optimiza-
tions based on the pruning of the search space, since
constraints can be evaluated only at pre- or post-
processing time. From the semantics perspective,
items have an XML-based hierarchical tree structure
in which rules describe interesting relations among
fragments of the XML source (Feng and Dillon,
2004). In contrast, in our approach, items are denoted
by using simple structured data from the domains of
basic data types, favouring both the implementation
of efficient data structures and the design of powerful
domain-specific optimizations evaluated as deeper as
possible in the extraction process. Domain knowledge
is linked to items through XML metadata elements.

4.2 Conclusions and Future Work

In this paper, we proposed a new QL as a solution to
the XML data mining problem. In our view, an XML
native database is used as a storage for KDD entities.
DM tasks are expressed in an XQuery-like language.
The syntax of the language is flexible enough to spec-
ify a variety of different mining tasks by means of
user-defined functions in the statements. These ones
provide to the user personalized sophisticated con-
straints, based, for example, on domain knowledge.
The first empirical assessment reported in Section 3.2
exhibits promising results, even if only related to the
XML frequent itemsets mining problem.

Summing up, our project aims at a completely
general solution for DM. Clearly, the generality is
even more substantial in XML-based languages, since
no general-purpose XML mining language has been
yet proposed (at the best of our knowledge). An in-
teresting on-going work includes the exploitation of
ontologies to represent the metadata. As an example,
ontologies may represent enriched taxonomies, used
to describe the application domain by means of data
and object properties. As a consequence, they may
provide enhanced possibilities to constrain the mining
queries in a more expressive way. This opportunity is

even more substantial in our project, since ontologies
are typically represented via the Web Ontology Lan-
guage (OWL) (W3C World Wide Web Consortium,
2004), de facto an XML-based language.

REFERENCES

Agrawal, R. and Srikant, R. (1994). Fast algorithms for
mining association rules. InVLDB ’94, pages 487–
499, Santiago de Chile, Chile.

Braga, D., Campi, A., Ceri, S., Klemettinen, M., and
Lanzi, P. (2003). Discovering interesting information
in XML data with association rules. InSAC ’03, pages
450–454, Melbourne, Florida.

Euler, T., Klinkenberg, R., Mierswa, I., Scholz, M., and
Wurst, M. (2006). YALE: rapid prototyping for com-
plex data mining tasks. InKDD ’06, pages 935–940,
Philadelphia, PA, USA.

Feng, L. and Dillon, T. S. (2004). Mining Interesting XML-
Enabled Association Rules with Templates. InKDID
’04, pages 66–88, Pisa, Italy.

Holupirek, A., Grün, C., and Scholl, M. H. (2009). BaseX
and DeepFS joint storage for filesystem and database.
In EDBT ’09, pages 1108–1111, Saint Petersburg,
Russia.

Imielinski, T. and Mannila, H. (1996). A database perspec-
tive on knowledge discovery.Comm. Of The Acm,
39(11):58–64.

Meo, R. and Psaila, G. (2006). An XML-based database for
knowledge discovery. InEDBT ’06, pages 814–828,
Munich, Germany.

Mitchell, T. M. (1997).Machine Learning. McGraw-Hill.

Romei, A., Ruggieri, S., and Turini, F. (2006). KDDML: a
middleware language and system for knowledge dis-
covery in databases.Data Knowl. Eng., 57(2):179–
220.

The Data Mining Group (2009). The Predictive
Model Markup Language (PMML). Version 4.0.
www.dmg.org/v4-0/GeneralStructure.html.

W3C World Wide Web Consortium (2004). OWL Web On-
tology Language. W3C Recommendation 10 Febru-
ary 2004.http://www.w3.org/TR/owl-features.

W3C World Wide Web Consortium (2007). XQuery 1.0:
An XML Query Language. W3C Recommendation
23 January 2007.http://www.w3.org/TR/Query.

XQUAKE - An XQuery-like Language for Mining XML Data

27

