
FORMAL MODEL TO INTEGRATE MULTI-AGENT SYSTEMS AND
INTERACTIVE GRAPHIC SYSTEMS

Gabriel López-Garcı́a, Rafael Molina-Carmona and Javier Gallego-Sánchez
Grupo de Informática Industrial e Inteligencia Artificial, Universidad de Alicante, Ap.99, E-03080, Alicante, Spain

Keywords: Virtual Reality, Virtual Worlds generation, Formal model, Interaction.

Abstract: A formal grammar-based model is presented to integrate the essential characteristics of a Multi-Agent System
with the visualization given by an Interactive Graphic Systems. This model adds several advantages, such
as the separation between the implementation of the system activity and the hardware devices, or the easy
reusability of components. To illustrate the model, a practical case is presented.

1 INTRODUCTION

The growing influence of Multi-Agent Systems
(MAS) in several fields of research has led to a signif-
icant evolution in its development. On the other hand,
the spectacular progress of the Interactive Graphic
Systems (IGS) has contributed to present the infor-
mation in a more friendly way using new forms of
analysis. The entertainment industry have had a deci-
sive influence on this progress (Rhyne, 2000).

Agents are usually considered to have some
generic characteristics that make them difficult to
model (Gilbert, 2008). Although there are some com-
mon strategies, there is a lack of a unified design pat-
tern. Hence, some problems arise, such as the difficult
reproduction of results (Axelrod, 1997), the lack of a
suitable visual representation or the limited capabili-
ties of interaction.

There are many work environments to develop
MASs, but they seldom include advanced visual fea-
tures. For instance, in Sociology (Axelrod, 1997;
Gilbert, 2008), very specific solutions are used
(Ulicny, 2001; Reynolds, 2000). Netlogo (Wilensky,
1999) is a useful tool with some basic graphics to
study complex systems.

Some applications of the MASs to Virtual Reality
(VR) can also be found. (Maes, 1997) proposes an
implementation of a virtual world where objects re-
act to gestures of the user. The work of (Wachsmuth,
1995) uses the concept of MASs perception applied

to VR. In entertainment industry, agents are usually
called bots (Khoo, 2002) and they are programmed as
characters of the game. These systems are so success-
ful that they are being used in research (Rhyne, 2000).
An growing variety of generic development environ-
ments are emerging: they implement the most impor-
tant features of agents (Gilbert, 2008). Repast (North,
2005) and MASON (Luke, 2005) are examples.

As a conclusion, there are a variety of environ-
ments, but a model that unifies the definition of MASs
and IGSs has not been proposed. This paper describes
our proposal for an integral model based on grammars
to develop complex environments that take advantage
of the MASs and the IGSs features. This system uses
a descriptive language and discrete events to specify
agents. It will the interaction with the user and it is
independent from the display and the interaction de-
vices. It could also incorporate a physics engine and
the agents could be easily reused.

2 PROPOSED MODEL

In our model, a scene is a set of dynamic and static
elements. They are all represented by a sequence of
primitives an transformations of a geometric system
G. A primitive is not just a draw primitive but an ac-
tion on the geometric system that can be visual or not.
A transformation is a modification on the primitives

264
López-García G., Molina-Carmona R. and Gallego-Sánchez J. (2010).
FORMAL MODEL TO INTEGRATE MULTI-AGENT SYSTEMS AND INTERACTIVE GRAPHIC SYSTEMS.
In Proceedings of the 2nd International Conference on Agents and Artificial Intelligence - Agents, pages 264-267
DOI: 10.5220/0002702102640267
Copyright c© SciTePress

inside its scope of application.
Agents are the dynamic part and they are made

of activities and a set of internal states. Each activ-
ity is executed as a reaction to an event. The agents
can have a geometrical representation, defined using
primitives and transformations. They also provide
different ways of communication.

Formally, each element in the scene is represented
by a symbol, which are used to build strings to de-
scribe the scene. The strings follow a language syn-
tax, which is presented as a grammar (Martin, 1994)
defined by the tuple M = < Σ,N,R,s >, where Σ =
P∪T ∪O∪AD

ST is the set of terminal symbols (P: set
of symbols for primitives, T : set of symbols for trans-
formations, O = {·()}: set of symbols of separation
and operation, AD

ST : set of symbols for agents with D
the set of all possible types of events and ST the set of
possible states), N = {WORLD, OBJECTS, OBJECT,
AGENT, TRANSFORMATION, FIGURE } is the set
of non-terminal symbols, s = WORLD is the initial
symbol and R is the set of grammar rules defined in
the following table.

1.WORLD → OBJECTS
2.OBJECTS → OBJECT | OBJECT · OBJECTS
3.OBJECT → FIGURE | TRANSF. | AGENT
4.AGENT → ad

st (OBJECTS), ad
st ∈ AD

ST ,d ∈ D,st ∈ ST
5.TRANSFORMATION → t (OBJECTS), t ∈ T
6.FIGURE → p+, p ∈ P

A string w ∈ Σ∗ is generated by M, if it can be
obtained from the initial symbol using the given rules.
The language L(M) is the set of all the strings which
can be generated L(M) = {w ∈ Σ∗ | WORLD ∗→ w}.
M is a context-free grammar, so there is a procedure
to verify if a scene is correctly described.

Apart from the language syntax, it is necessary to
define the semantics. It will be defined with a denota-
tional method, through mathematical functions.

Rule 6 defines the syntax of a figure as a sequence
of primitives. Primitive semantics is defined by func-
tion α : P → G. Each symbol in P runs a primitive
on a geometric system G. So, depending on α and on
the geometric system G, the result may be different.
G represents actions on a specific geometric system
(e.g. a graphical library such as OpenGL).

The scope of a transformation is limited by the
symbols “()”. Two functions are used to describe the
semantics of a transformation: β : T → G (run when
the symbol “(” is processed), and δ : T →G (run when
the symbol “)” is found). These two functions have
the same features as α, but they are applied to trans-
formations T , on the same geometric system G.

Given a string w ∈ L(M), a new function ϕ is de-
fined to run a sequence of primitives P and transfor-

mations T in a geometric system G:

ϕ(w) =





α(w) if w ∈ P
β(t);ϕ(v);δ(t) if w = t(v)∧ v ∈ L(M)∧

∧ t ∈ T
ϕ(s);ϕ(v) if w = s·v∧ s,v ∈ L(M)





(1)
One of the most important features of this system

is the independence from a specific graphics system.
The definition of α, β and δ provides the differences
in behaviour, encapsulating the implementation de-
tails. Therefore, the strings to define a scene may be
reused in other systems.

The semantics of agents is a function which de-
fines its evolution in time. It is called evolution func-
tion λ and is defined as: λ : L(M)× ED → L(M),
where ED is the set of events for the device D. By
applying λ(w,e f), w ∈ L(M) is transformed into an-
other string u, which allows the system to evolve. It
has a different expression depending on its evolution,
but the general expression is:

λ(ad
st(v),e

f) =
{

u ∈ L(M) if f = d
ad

st(v) if f 6= d

}
(2)

The result u may contain or not the own agent, it
can generate other event for the next frame or change
the agent state ‘st’.

The function λ defines the function of the system
evolution η. Given a set of events ei,e j,ek, . . . ,en (de-
noted as ev, where v∈D+) and a string w, it describes
the evolution at a frame. This algorithm uses the op-
erator ∏∀ f∈v to concatenate strings.

η(w,ev) =





w if w ∈ P
t(η(v,ev)) if w = t(v)
∏
∀ f∈v

(λ(ad
st(η(y,ev)),e f)) if w = ad

st(y)

η(s,ev) ·η(t,ev) if w = s · t





(3)

For the visualization of an agent, it must be first
converted into a string of primitives and transforma-
tions. This conversion is done by the visualization
function θ : L(M)× EV → L(E), where V ⊆ D are
events used to create different views, EV are events
created in the visualization process, and L(E) is the
language L(M) without agents. It is defined as:

θ(ad
st(v),e

f) =
{

w ∈ L(E) if f = d∧d ∈V
ε if f 6= d

}
(4)

As with the function λ, an algorithm is defined for
θ. It returns a string z∈ L(E), given a string w∈ L(M)
and a set of events ev, where v ∈V + and V ⊆ D. This
function is called function of system visualization π
and it is defined as: π : L(M)×EV → L(E)

FORMAL MODEL TO INTEGRATE MULTI-AGENT SYSTEMS AND INTERACTIVE GRAPHIC SYSTEMS

265

π(w,ev) =





w if w ∈ P+

t(π(y,ev)) if w = t(y)
∏
∀ f∈v

(θ(av
st(π(y,ev)),e f)) if w = av

st(y)

π(s,ev) ·π(t,ev) if w = s · t





(5)

The activities are run by agents and activated by
events under certain conditions. An event is defined
as: ed

c is an event of type d ∈ D with data e, which
is carried out when the condition c is fulfilled. The
condition is omitted if c = true. Events may include
information identifying who sent the message. So,
it provides a generic communication system that can
implement FIPA or KMQL (Genesereth, 1995).

It is necessary to establish the independence be-
tween the system and the input devices that generate
events (hardware or software). So, the events needed
to make the system respond to the input devices must
be defined. A new function called event generator is
defined: Let Cd(t) be a function which creates events
of type d at the time instant t, where d ∈ D and D is
the set of event types which can be generated.

It is important to note that event generators en-
capsulate the device-dependent code. They also can
model the communication processes that exist in a
MAS (agent-agent and agent-environment).

The process which obtains the events produced by
the generators is defined as: Let C∗ be the set of all
the event generators which are associated with input
devices and E(C∗, t) the function that collects all the
events from all the generators, then:

E(C∗, t) =
{

e(z,Ci(t)) if z = E(C∗−Ci, t)
ε if C∗ = /0

}

e(z,ei) =
{

z · ei if ei /∈ z
z if ei ∈ z

} (6)

Once all the elements involved in the model have
been defined, the algorithm which carries out the en-
tire system can be established:

1. w = wo; t = 0
2. e∗ = E(G∗, t)
3. ev = events of e∗ where v ∈V+

4. eu = e∗− ev

5. wnext = η(w,eu)
6. v = π(w,ev)
7. g = ϕ(v)
8. w = wnext ; t = t +1
9. If w = ε then go to 11
10. Go to 2
11. End

where wo is the intial string, e∗ are the events gener-
ated at a frame t, G∗ = {All the event generators}, D =
{All the possible events}, V = {All the visual events};
V ⊆ D, ev all the visual events, eu all the non-visual
events and g the output device.

Steps 2, 3 and 4 manage the system events. In
step 5, the evolution algorithm is called to obtain the
string for the next frame. In steps 6 and 7, the visu-
alization of the system is performed. In step 8, the
next iteration is prepared. The algorithm finishes if
the following string is empty.

3 CASE OF STUDY

This example is an application to simulate fires in
forests caused by lightning (Miller, 2007). The sys-
tem consists of an agent to define the forest that can
create other agents: trees (with a given probability g)
and lightning (with a probability f). If lightning are
created in the same position as a tree, it will burn as
well as the trees around it (Figure 1).

Figure 1: Examples of different simulation states.

To model this example, four elements are defined:
events, event generators, agents and primitives.

Events are used to produce the necessary activity
of system. The events defined for this example are:

t Event generated to increase the time.
c Creates a tree at the position (i, j) of the forest.
f Creates a bolt of lightning at position (i, j).
e Eliminates the tree of the position (i, j).
b Burns the tree at position (i, j).
v Draws using a graphics library (e.g. OpenGL).

The next step is to define the event generators:

(Ctime) Generate an event et at instant t
(C f orest) Create tree (ec) or lightning (e f)
(Cdraw) Generate draw event

The following table shows the primitives and the
transformations that make up the scene. The functions
α, β and δ define them.

The evolution function λ and the graphical repre-
sentation π are presented next. The agent defined for
trees (T R) has three internal states st = {s1,s2,s3}:
s1 growth, s2 adult tree and s3 burning tree. This is
an example of different representation for an agent de-
pending on its internal state. The function Nbo sends
burn events eb to all the neighbour trees, creating a

ICAART 2010 - 2nd International Conference on Agents and Artificial Intelligence

266

Primitive Description
T R Draw a tree
T Rb Draw a burning tree
FA Draw a bolt of lightning
BO Draw a grid of NxN
Transformations Description
D(i, j) Translate (i,j)
S(s) Scale (n) units

chain reaction (agent-agent communication). An ex-
ample of agent-environment communication is made
between the forest and the generator C f orest .

Agent Function λ and π

BO
Forest

λ(BOc f e,ei) =



T Rt=1
s1 ·BOc f v i = c

FAt=1 ·BOc f v i = f
BOc f e i = e
BOc f e i 6= c, f ,e





π(BOv,ei) ={
BO i = v
ε i 6= v

}

TR
Tree

λ(T Rx
st ,e

i) =



T Rt+1
s1 i = t ∧ t +1 6 N∧ s = s1

T Rb
s2 i = t ∧ t +1 > N ∧ s = s1

T Rt=1
s3 ∧

∧∆Nbob i = b > N∧ s = s2
T Rt+1

s3 i = t ∧ s = s3
∆ee i = t ∧ t +1 > N ∧ s = s3
T Rt

st i 6= t ∧ i 6= b





π(T Rv
st ,e

i) =



D(i, j)(S(n)(T R)) i = v∧ st = s1
D(i, j)(T R) i = v∧ st = s2
D(i, j)(S(−n)(T R)) i = v∧ st = s3
ε i 6= v





FA
Light-
ning

λ(FAt ,ei) =



FAt+1 i = t ∧ t +1 6 N
∆eb i = t ∧ t +1 > N
FAt i 6= t





π(FAv,ei) ={
D(i, j)(FA) i = v
ε i 6= v

}

4 CONCLUSIONS

In this paper a proposal to unify the most relevant fea-
tures of MASs and IGSs has been presented. The
proposed model uses a context-free language to de-
fine the elements. Although further work needs to
be done, the use of a descriptive language seems to
have several advantages. Firstly, the definition of the

scene is reusable and independent from the platform.
The use of event generators also makes the interaction
with the user independent from the hardware. Event
generators are also used to implement the communi-
cation, both agent-agent and agent-environment.

As future work the model will be applied to other
problems to validate its features. New possibilities
such as probabilistic learning strategies or genetic al-
gorithms will be considered.

REFERENCES

R. Axelrod (1997). Advancing the Art of Simulation in
the Social Sciences. Simulating Social Phenomena,
Springer.

Michael R. Genesereth, Steven P. Ketchpel (1995). Soft-
ware Agents. Communications of the ACM.

N. Gilbert (2008). Agent-Based Models. SAGE Publica-
tions.

John H. Miller (2007). Complex Adaptative Systems.
Princeton University Press.

Aaron Khoo, Robert Zubek (2002). Applying Inexpensive
AI Techniques to Computer Games. IEEE Intelligent
Systems July-August.

Sean Luke, Claudio Cioffi-Revilla, Liviu Panait, and Keith
Sullivan (2005). MASON: A New Multi-Agent Sim-
ulation Toolkit. Vol. 81, SAGE Journals.

P. Maes, T. Darrell, B. Blumberg, A. Pentland (1997).
The ALIVE System:Wireless, Full-body Interaction
with Autonomous Agents. ACM Multimedia Systems,
Vol.5, No.2, pp.105-112.

M.J. North, T.R. Howe, N.T. Collier, J.R. Vos (2005). The
Repast Simphony Runtime System. Generative Social
Processes, Models, and Mechanisms.

Craig Reynolds (2000). Interaction with Groups of Au-
tonomous Characters. Game Developers Conference.

Theresa-Marie Rhyne (2000). Computer GamesInfluence
on Scientific and Information Visualization. Enter-
tainment Computing.

B. Ulicny, D. Thalmann (2001). Crowd simulation for inter-
active virtual environments and VR training systems.
Computer Animation and Simulation, Springer.

Wilensky, U. (1999). NetLogo. User Manual.

Ipke Wachsmuth, Yong Cao (1995). Interactive Graphics
Design with Situated Agents. Graphics and Robotics.

D.Martin, R.Sigal, E.J.Weyuker (1994). Computability,
Complexity, and Languages, Fundamentals of Theo-
retical Computer Science, 2nd ed, Elsevier Science.

FORMAL MODEL TO INTEGRATE MULTI-AGENT SYSTEMS AND INTERACTIVE GRAPHIC SYSTEMS

267

