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Abstract: Assume a population partitioned in two subpopulations, e.g. a set of normal individuals and a set of abnormal
individuals, is given. Assume, moreover, that we look for a characterization of the reasons discriminating one
subpopulation from the other. In this paper, we provide a technique by which such an evidence can be mined,
by introducing the notion of discriminating rule, that is a kind of logical implication which is much more valid
in one of the two subpopulations than in the other one. In order to avoid mining a potentially huge number
of (not necessarily interesting) rule, we define a preference relationship among rules and exploit a suitable
graph encoding in order to single out the most interesting ones, which we calloutstanding rules. We provide
an algorithm for detecting the outstanding discriminating rules and present experimental results obtained by
applying the technique in several scenarios.

1 INTRODUCTION

In domains where there is no well assessed knowl-
edge, and given a population partitioned in two sub-
populations, it is of interest to single out the expla-
nations distinguishing the members of one subpopu-
lation from the members of the other subpopulation.
Such a knowledge can be suitably expressed in the
form of rules. Here, we introduce the concept ofdis-
criminating rule. Intuitively, a rule is a discriminat-
ing one if it is “much more valid” in one of the two
given subpopulations than in the other one. Thedis-
criminating powerof a rule is related to the difference
between the confidences it attains over the two sub-
populations under analysis, and can indeed be used to
characterize its quality. In particular, a rule is said to
bediscriminatingif its discriminating power is above
a user-provided threshold. In this respect, outstand-
ing discriminating rules are pieces of mined knowl-
edge which appear to be promising as building blocks
for the induced domain knowledge to be eventually
reconstructed by the domain expert analyst.

An interesting application scenario thereof con-
cerns the analysis of anomalous subpopulations,
where it is needed to detect the motivations making
some given individuals anomalous. As an example,
assume a population containing genetic information
about both longevous and non-longevous human indi-
viduals is given; here, it would be very useful to single

out justifications for the individuals to be longevous
or not. In this respect, this technique can be regarded
as an extension to groups of anomalies of the tech-
nique presented in (Angiulli et al., 2009), where out-
lying properties of a single anomalous individual are
searched for, as accounted for next in this section.

A common problem of any knowledge extractor
system is that the size of mined knowledge might be
so huge to be useless for the analysis purposes. And,
in fact, also the number of discriminating rules can be
very large, whereas only a subset thereof are usually
interesting enough to be prompted to the analyst, inas-
much as most of them will encode redundant knowl-
edge. However, selecting the rules which maximize
the discriminating power value is too a weak criterion
to isolate only interesting ones. Indeed, in most cases,
by augmenting the body of a rule with an arbitrary
simple condition, the discriminating power value as-
sociated with that rule slightly increases due to sta-
tistical fluctuations of the confidence value. To over-
come this problem, we define a novelpreference re-
lation notion relating discriminating rules in order to
single out the most interesting ones, also calledout-
standing rules. The novelty of this preference relation
is that it is based on a statistical significance test rather
than on generality/specificity criteria.

We point out that, even if a general analogy holds
between the kind of knowledge we consider and sev-
eral pattern discovery tasks, such as those of emerg-
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ing patterns, contrasts sets and frequent pattern-based
classification ((Dong and Li, 1999; Zhang et al., 2000;
Bay and Pazzani, 2001; De Raedt and Kramer, 2001;
Cheng et al., 2008), to cite a few), our task consider-
ably differs from the mentioned ones. First, we notice
that, to a closer look, the knowledge mined by the
techniques we are presenting below is actually dif-
ferent. Indeed, emerging patterns, contrast sets and
discriminative patterns can be well represented in the
form of rules, but the only attribute allowed to oc-
cur in their heads is the class attribute, wheras we
search for generic rules with any attribute in their
head, while the class attribute is not considered at
all. Moreover, the interestingness measure charac-
terizing patterns searched for in the cited literature
is based on measuring the frequency gap for the pat-
tern in the two classes, while we use the confidence
gap. While the former measures are (anti-)monotonic
with respect to pattern generality, the latter one is non-
monotonic and, hence, much more challenging to deal
with. Also, these patterns tend to capture knowledge
characterizing the data in aglobal sense, since they
are based on the notion of absolute frequency. Con-
versely, the knowledge mined by means of discrim-
inating rules characterizes the data in alocal sense.
Indeed, the confidence is related to the frequency of
the condition in the head of a rule in the subpopula-
tion of the data selected by its body. Finally, we define
an innovative preference relation based on a statistical
significance test, while most pattern discovery meth-
ods prefer patterns on the basis of generality and/or
measure maximization.

As already noted, the technique presented here
can be regarded as an extension to groups of anoma-
lies of the technique presented in (Angiulli et al.,
2009). Indeed, being the confidence insensitive to ab-
solute frequency, it is more suitable for characterizing
unbalanced subpopulations, as usually occurs when
a group of anomalous individuals is compared to a
whole normal population, than the support. The ma-
jor differences between this work and (Angiulli et al.,
2009) are as follows. In this work two subpopulations
are compared, while in (Angiulli et al., 2009) only a
single (outlier) object can be compared with the over-
all (normal) population; the discriminating measure
adopted there is very different from the one developed
here, since it is designed for a single object, and it is
not at all clear ho to generalize it, if even possible, to
deal with more than a very limited number of anoma-
lous individuals.

The rest of the work is organized as follows. Sec-
tion 2 presents preliminary definitions. Section 3 de-
fines discriminating rule. Section 4 introduces the
notion of outstanding discriminating rule. Section 5

describes the DRUID algorithm for mining outstand-
ing rules. Section 6 presents experimental results. Fi-
nally, Section 7 concludes the work.

2 PRELIMINARIES

In this section some preliminary notions are pre-
sented.

Let A = {a1, . . . ,am} be a set of attributes andT
a database onA (multi-set of tuples onA). A simple
condition con A is an expression of the forma = v,
wherea ∈ A and v belongs to the domain ofa. A
condition Con A is a conjunctionc1 ∧ . . .∧ ck of k
(k ≥ 0) simple conditions onA. A condition with
k = 0 is called anempty condition. In the following,
for a conditionC of the formc1∧ . . .∧ck, cond(C) de-
notes the set of simple conditions{c1, . . . ,ck}, while
attr(C) denotes the set{ai | (ai = vi) ∈C}, that is the
subset of attributes ofA appearing in simple condi-
tionsci of C.

Let T be a database on a set of attributesA, let t
be a tuple ofT. Let c ≡ a = v be a simple condition
on A. The tuplet satisfies ciff t[a] = v, wheret[a]
denotes the value the tuplet assumes ona. Let C be
a condition onA. The tuplet satisfies Ciff t satis-
fies each simple conditionci of C. If C is an empty
condition then each tuplet satisfiesC. TC denotes the
database including the tuples ofT which satisfyC.

Let A = {a1, . . . ,am} be a set of attributes, arule
on A is an expression of the formB⇒ h, whereB is
a condition onA andh is a simple condition onA.
B andh are called thebodyand theheadof the rule,
respectively. Thesizeof the ruleR≡ B⇒ h, denoted
by |R|, is the cardinality of the setcond(B). Let T be
a database on a set of attributesA, let t be a tuple of
T, and letR≡ B⇒ h be a rule onA. t satisfiesR iff
t satisfiesB∧h. Let R≡ B⇒ h andR′ ≡ B′ ⇒ h′ be
two rules such thath = h′ andcond(B) ⊃ cond(B′).
ThenR is said to be asuperruleof R′ andR′ is said to
be asubruleof R.

Let T be a database on a set of attributesA, and let
C be a condition onA. Thesupportof C in T, denoted
by supT(C), is the ratio |TC|

|T| of the number of tuples
of T satisfyingC over the size ofT. Given a database
T onA and a thresholdσ, 0≤ σ ≤ 1, a conditionC is
said to beσ-supportedby T iff supT(C) ≥ σ.

Let T be a database on a set of attributesA, and
let Rbe a ruleB⇒ h onA. Theconfidenceof R in T,
denoted bycnfT(R), is the ratio|TB∧h|

|TB|
of the number

of tuples ofT satisfyingR over the number of tuples
satisfyingB.
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Figure 1: Hair color databases.

3 DISCRIMINATING RULES

In this section the notion of discriminating rule is in-
troduced . We will make use of a running example in
order to help illustrating the discussed matter.

Example 1. Figure 1 shows two databases reporting hair
colors of wives and children of some male individuals.
Specifically, the first database,Tbr, is associated with males
with brown hair whereas the second one,Tbl , is associated
with males with blonde hair. We aim at discovering rules
characterizing only one of the two databases.

We start by providing the definition of discriminating
power. LetT ′ andT ′′ be two databases on a set of
attributesA, and letR be a rule onA. Thediscrimi-
nating powerof R (with respect toT ′ andT ′′) is:

pow(R) =
|cnfT ′(R)−cnfT ′′(R) |

max{cnfT ′(R), cnfT ′′(R)}
.

The discriminating power measures the relative gap
between the confidence value associated with a rule
when we move from a database to the other. Note that,
the larger the absolute difference betweencnfT ′(R)
andcnfT ′′(R), the larger the discriminating power of
R.
Example 1(continued). Consider Figure 1 again, and the
rule Rex:

MotherHair= “blonde”⇒ ChildHair= “blonde”.

The confidence ofr on Tbr is 2
8 = 0.25 whereas onTbl

is 5
5 = 1, and then the discriminating power ofRex is

pow(Rex) = |0.25−1|
max{0.25,1} = 0.75. The ruleRex asserts that

for a child having a blonde mother, the probability of be-
ing blonde is much higher if its father is blonde rather than
brown. And, in particular, such a probability is 1 in the for-
mer case and 0.25 in the latter case. This knowledge hidden
in the data at hand is clearly expected by the well-known
Mendelian inheritance law. Since brown hair is dominating
over blonde hair, if both parents are blonde haired the child
is blonde. This justifies the value 1 for the confidence ofr
on Tbl . Conversely, if the father is brown and the mother is
blonde, than two cases can arise: the genotype of the father
(i) includes two genes associated with brown hair, or (ii )
includes one gene associated with brown hair and one asso-
ciated with blonde hair. In the case (i) the child is brown for
sure, while in case (ii ) the probability of being brown (or,
equivalently, blonde) is about fifty percent. Summarizing,
if (for the sake of simplicity) we assume that cases (i) and
(ii ) occur with the same frequency in the considered popu-
lation, than the probability of having a blonde haired child
with a brown father and a blonde mother is about twenty-
five percent, which agrees with the value 0.25 for the confi-
dence ofr on Tbr. We also note thatRex is more interesting
than the empty-body rule/0 ⇒ ChildHair= “blonde”, cor-
responding to the frequency of the value “blonde” on the
attribute “ChildHair” which is approximatively 0.27 onTbr

and 0.42 onTbl , resulting in a discriminating power of about
0.37.

The definition of discriminating rule builds on that
of discriminating power.

Let T ′ and T ′′ be two databases on a set of at-
tributesA, let θpow be athreshold(real number in the
range[0,1]), and letR≡ B⇒ h be a rule onA. Then,
R is adiscriminating ruleiff pow(R) ≥ θpow.

Intuitively, a discriminating rule characterizes suf-
ficiently well the tuples of one database with re-
spect to those of the other. Optionally, we may
require that the rule satisfies some additional con-
straints concerning support and confidence, that are
(c1) supT ′(B) ≥ θ′sup, (c2) supT ′′(B) ≥ θ′′sup, and (c3)
max{cnfT ′(R),cnfT ′′(R)} ≥ θcnf, where θ′sup, θ′′sup,
andθcnf are suitable thresholds.

Example 1(continued). For instance, the ruleRex is dis-
criminating forθ′sup= θ′′sup= 0.25, θcnf = 0.5, andθpow =

0.7, sincesupTbr
(r) = 8

15 = 0.533,supTbl
(r) = 5

19 = 0.263,
cnfTbr

(r) = 8
15 = 0.533, andpow(r) = 0.75.

4 OUTSTANDING RULES

As already remarked, while the number of discrimi-
nating rules can be very large, only a subset thereof
can be considered interesting enough to be prompted
to the analyst. Hence, in order to single out the most
interesting rules out of a set of discriminating ones,
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we are next defining a preference relation between
discriminating rules.

4.1 Preference Relation

The preference relation is defined only between pairs
of rules which are one the superrule of the other.

Let T ′ and T ′′ be two databases defined on the
same set of attributesA, letRbe a rule onA and letR′

be a subrule ofR. Then,R is preferredto R′, denoted
R≺ R′, iff

1. pow(R) > pow(R′), and

2. either the differencecnfT ′(R)− cnfT ′(R′) or the
difference cnfT ′′(R) − cnfT ′′(R′) is statistically
significative.

Otherwise,R′ is preferredto R, and denotedR′ ≺ R.
According to the above definition, a subrule is always
to be preferred to a superrule having a smaller or equal
discriminating power value. To be preferred, a super-
rule needs not only to have a greater discriminating
power than the subrule, but also a significative gap in
confidence.

The significance of the gap between two confi-
dences can be measured by exploiting a suitablesta-
tistical test. We will describe next in this section the
statistical test employed in the current implementa-
tion of the algorithm.

The rationale underlying this definition is that
shorter rules are generally preferable over longer ones
since longer rules tend to overfit and, also, to be
less intelligible. Moreover, a notion of preference
solely based on the discriminating power is seemingly
far too weak to be practically effective. As already
pointed out, indeed, augmenting the body of a rule
with a randomly selected simple conditions may of-
ten increase the discriminating power associated with
the rule due simply to statistical fluctuations of the
confidence values. Hence, the definition states that a
longer rule is to be preferred only if there is evidence
for at least one of the confidence values associated
with it to be undoubtedly higher.

Note that the relation is not transitive since, for
some three rulesr, r ′ andr ′′, even if both the differ-
ences|cnf(r)−cnf(r ′)| and|cnf(r ′)−cnf(r ′′)| do not
pass the test, it can be the case that the difference
|cnf(r)− cnf(r ′′)| is indeed large enough to pass the
test.

Significance Test. The statistical significance of
the difference between two confidence values can be
computed by means of thebinomial testas described
in the rest of this section.

Let T be a database onA. LetR≡ B⇒ h andR′ ≡
B′ ⇒ h be two rules onA such thatR is a superrule of

R′. LetnB be the value|TB| andnR be the value|TB∧h|.
Then,cnfT(R) = nR

nB
. Moreover, letnB′ be the value

|TB′ | andnR′ be the value|TB′∧h|. Then,cnfT(R′) =
nR′
nB′

.

SinceR is a superrule ofR′, then the tuples inTB
are a subset ofTB′ and, hence,nB is smaller than or
equal tonB′ . Analogously, the tuples inTB∧h are a
subset ofTB′∧h and, hence,nR is smaller than or equal
to nR′ .

If the attributes belonging to the set
attr(B)\attr(B′) were not correlated to the at-
tributes in attr(B′), then the tuples inTB could be
assumed as generated by a sequence ofnB random
extractions fromTB′ . Hence, the random variableX,
representing the number of tuples inTB satisfyingh,
is distributed according to a binomial distribution,
where a success represents the extraction of a tuple
satisfyingh. The number of extractions isnB and the
probability of success is the probability of extracting
a tuple satisfyingh, which corresponds tonR′

nB′
. The

expected valueE[X] is the product of the number of
extractions and the probability of success, namely
nR = nB ·

nR′
nB′

. Hence, the expected confidence of the
ruleR is

cnfT(R) =
nB ·

nR′

nB′

nB
=

nR′

nB′

which is equal to the confidence ofR′.
Clear enough, due to statistical fluctuations, the

numbernR of tuples satisfyingB∧ h will not be ex-
actly equal tonR, and then the value ofcnfT(R) can
be slightly different from the value ofcnfT(R′).

In order to test if such a difference is due to sta-
tistical fluctuation, it must be checked if it is statisti-
cally significative. To this end the binomial test can
be employed. LetX be a random variable following
the binomial distribution with parametersn = nB and
p =

nR′

nB′
. This test computes the probability to get a

value for the binomial random variableX farther from
nR thannR, and then checks if this probability is lower
than the significance level 0.05. In other words, it
must be verified if the following inequality holds:

Pr (|X−nR| ≥ |nR−nR|) < 0.05.

Let F (x,y) denote the cumulative binomial distribu-
tion function with parametersx andy. The relation
above can be rewritten as:

F (nR+ |nR−nR|)−F (nR−|nR−nR|) ≥ 0.95. (1)

Clear enough, within the proposed approach, any
other sensible statistical significance test could re-
place the adopted one.

Example 1(continued). Consider rulesRex andR′
ex again.

Let us check the significance of the difference between the
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confidence values associated toRex andR′
ex on the database

Tbl . Thus, nRex = 5, nB = 5, nR′
ex

= 8 andnB′ = 19. nR

can be computed as 5· 8
19 and thennR = 2. In order to

evaluate the test the following value has to be determined:
F (2+ |5−2|) − F (2−|5−2|). Since the value of the
above expression is 1, hence greater than 0.95, then it can
be concluded thatRex is actually preferred toR′

ex.

4.2 Outstanding Rules

Here, we define the notion of preferability graph,
which encodes discriminating rules (by means of
nodes) and preferability relations (by means of arcs).
The preferability graph will be exploited to single out
theoutstandingdiscriminating rules.

We have already noted that the number of discrim-
inating rules can be very large, but in general only a
subset thereof can be considered interesting enough
to be prompted to the analyst. In that respect, loosely
speaking, the outstanding discriminating rules will
represent rules whose interestingness for the analyst
is maximal.

Given databasesT ′ andT ′′, and a conditionh, a
preferability graphG h = (V,U,E) w.r.t. the condition
h (whenever the head conditionh is clear by the con-
text, we will omit the superscript ofG in referring to
a graph), is a directed graph, withV a set of prefer-
ability nodes (or, simply, nodes – see, below, the defi-
nition of preferability node),U ⊆V a set of (blocked)
preferability nodes, andE a set of arcs onV.

A preferability node nof a graphG h is a node hav-
ing associated a discriminating ruleR(n) ≡ B ⇒ h.
Hence, all the rules associated with nodes of a prefer-
ability graphG h have the same conditionh in their
head. For each discriminating rule of the formB⇒ h
there exists at most one node inG h associated with it.
There exists an arc(n,m) in G h from noden to node
m iff R(n) is preferred toR(m).

By Ĝ h we denote the preferability graph(V, /0,E)
whereall discriminating rulesR≡ B ⇒ h are repre-
sented.

Given two nodesn andm, m is reachablefrom n
in G h, denotedn→ m, iff there exists a directed path
from n to m in G h It is assumed that, for each node
n, it holds thatn→ n. Otherwise,m is not reachable
from n, denoted asn 6→ m. A noden is said to be
a supernode(subnode, resp.) of a nodem if R(n) is
a superrule (subrule, resp.) ofR(m). Note that by
definition of preferability graphG h, for each pairs of
nodesn andm of G h such thatm is a supernode of
n there exists inG h either the arc(n,m) or the arc
(m,n), but not both. Aconnected componentC of
G is a maximal subset of the nodes ofG such that,

R

1

:
 c


1


R

2

:
 c


1

,
c


2


(a)

R

1

:
 c


1


R

3

:
 c


1

,
c


2

,
c


3


R

2

:
 c


1

,
c


2


R

4

:
 c


1

,
c


2

,
c


4


(b)

Figure 2: Preferability Graph - Example.

for eachn,m∈ C , n → m hold. Given a noden, the
connected component inG h whichn belongs to is de-
notedconn(n,G h) (or, simply,conn(n) in the follow-
ing).

Given a subsetN of V, the restrictionG N of the
graphG = (V,U,E) on the set of nodesN, is the
subgraph ofG induced by the nodes inN, that is
G N = (N,U ∩N,{(n,m) | n,m∈ N∧ (n,m) ∈ E}).

Example 2.Consider two databasesT ′ andT ′′. For the sake
of simplicity, assume that all the rules considered in the fol-
lowing score confidence 1 onT ′′, so that whenever we need
to evaluate the statistical significance of the difference be-
tween two confidences, we restrict our attention onT ′ only.
Suppose that the setR of rules complying with the support
constraints consists in the following two rules:

• R1 ≡ c1 ⇒ h, |T′
c1
| = 250,|T′

c1∧h| = 100;

• R2 ≡ c1∧c2 ⇒ h, |T′
c1∧c2

| = 250,|T ′
c1∧c2∧h| = 100,

wherec1, c2 andh are simple conditions.
In order to establish the preference relation betweenR1

andR2, first their discriminating power has to be computed.
The confidence ofR1 on T ′ is 100

250 = 0.4, whereas it is 1 on
T ′′. Then,pow(R1) = 0.6. Conversely, the confidence ofR2

onT ′ is 50
150 = 0.3, and it is 1 onT ′′. Then,pow(R2) = 0.7.

Sincepow(R1) < pow(R2) and sinceR1 is a subrule ofR2,
we need to evaluate if the gap between the confidences of
R1 andR2 is statistically significative in at least one of the
two databases. Because of the gap between the confidences
of R1 andR2 onT ′′ is 0, we compute the binomial test only
onT ′: F (60+ |50−60|)−F (60−|50−60|) = 0.9036<

0.95. Since this gap is not statistically significative,R1 is
preferred toR2. The associated preferability graph is re-
ported in Figure 2(a).

Suppose, now, thatR contains two further rules:

• R3 ≡ c1∧c2∧c3 ⇒ h, |T ′
c1∧c2∧c3

| = 45, |T ′
c1∧c2∧c3∧h| =

9,

• R4 ≡ c1∧c2∧c4 ⇒ h, |T ′
c1∧c2∧c4

| = 45, |T ′′
c1∧c2∧c4∧h| =

9,

and let us compute the discriminating powers ofR3 andR4.
We obtain thatpow(R3) = 0.8 andpow(R4) = 0.8.

First, note that no preferability relation holds forR3
andR4 and, then, no arc connects them in the preferability
graph. Note that all the rules have confidence 1 onT ′′. Con-
sider, now, the pairR2 andR3. Sincepow(R2) < pow(R3)
andR2 is a subrule ofR3, we compute the binomial test ob-
taining: F (15+ |9−15|)− F (15−|9−15|) = 0.9410<

0.95, asserting thatR2 is preferred toR3, and then an arc
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from R2 to R3 is there in the preferability graph. Consider
the pairR1 and R3. Sincepow(R1) < pow(R3) but R1 is
a subrule ofR3, we compute the binomial test obtaining:
F (18+ |9−18|)−F (18−|9−18|) = 0.9942> 0.95, as-
serting thatR3 is preferred toR1, and then an arc fromR3 to
R1 is there in the preferability graph. This example confirms
that, in general, the preferability relation is not transitive.

As far asR4 is concerned, its relations withR1 andR2

are exactly the same asR3. The resulting preferability graph
is reported in Figure 2(b). Observe thatR1, R2, R3 andR4

form a connected component.

In order to characterize outstanding discriminat-
ing rules, we next introduce the concept ofcandidate
rule.

First of all, it is considered the basic situation in
which the graph is a single connected component, and
the notion of candidate node in such a graph is de-
fined. Intuitively, a candidate node is associated with
a potentially outstanding rule.

Let G = (V,U,E) be a preferability graph such
thatV is a connected component ofG ; a noden in
V is said to becandidatein G iff both the two follow-
ing conditions hold:

1. for each supernodeu of n, it holds that
pow(R(n)) ≥ pow(R(u)), and

2. for each subnodeu of n, it holds thatpow(R(n)) >

pow(R(u)).

The rationale underlying this definition is that, for
each noden in a connected component, there exists an
other noden′ in the same component such thatR(n′)
is preferred toR(n), thus from the point of view of the
preference relation, within the same connected com-
ponent, there is no node which is preferable to all
the others. Hence, it is seemingly sensible to single
out as candidates those nodes whose associated rules
score the maximal discriminative power value among
their associated supernodes and subnodes. Moreover,
the equal sign in condition 1 makes it shortest rules
preferable when ties are there in the inclusion hierar-
chy.

Example 2(continued). Consider the graph of Figure
2(b). This graph forms a connected component. Accord-
ing to the definition provided above, the candidate nodes
are R3 and R4, since their discriminating power is maxi-
mum among those associated with the nodes of the graph
and each of their subrules has strictly smaller discriminat-
ing power. Note that, if the discriminating power ofR1

(or, equivalently,R2, resp.) were larger than that of all the
other rules, then the candidate node would only ben1 (or
n2, resp.).

Clear enough, in general, a graph does not include
a single connected component. Thus, we provide next
the definition of source node, which is conducive to
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Figure 3: Example Graph.

the definition of candidate node in a general prefer-
ability graph.

Let G be a preferability graph; a noden of G is a
sourceif the following condition holds: for each node
m such thatm→ n, it holds thatn→ m.

Hence, a source node is a node that reaches all the
nodes that reach it in turn. Note that there might be
nodes that are reached from a source but not reach the
source.

Example 3. Consider Figure 3a. The noden2 is a source
since nodes reachingn2 (namelyn1 andn3) are also reached
from it. Conversely,n6 is not a source since it is reached,
for example, byn2 butn6 does not reachn2.

Now we are in the position of providing the defi-
nition of candidate node in a general graph.

Let G be a preferability graph. A noden of G is
said to becandidatein G iff n is a source node ofG
andn is candidate inG conn(n) (according to Def. 4.2
above).

Clear enough, if a node in a connected compo-
nentC is source, then all the nodes inC are sources
as well. Hence, in the graph, there are no nodes out-
side C which are preferable to the nodes inC and,
therefore, the candidate nodes have to be singled out
among those inC .

Example 3(continued). Consider Figure 3a again. In the
graph the source nodes aren1, n2 andn3, all belonging to
the same connected component. Then, the candidate node
is that node amongstn1, n2 andn3 scoring the highest dis-
criminating power.

Next the definition of transformed graph associ-
ated with a preferability graphG , leading to the defi-
nition of outstanding rule, is given.

Let G = (V,U,E) be a preferability graph. The
transformed graph t(G ) = (V ′,U ′,E′) associated
with G is the graph obtained as follows:

• V ′ is obtained fromV by removing both the can-
didate nodes inG and all their supernodes,

• U ′ is (U ∪S)∩V ′, whereS is the set containing all
the subnodes of the candidate nodes inG , and

• E′ is the subset of the arcs inE linking the nodes
in V ′.
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Since for eachG = (V,U,E), with V 6= /0, there exists
at least one candidate node inG , the set of nodes of
the grapht(G ) is always a strict subset ofV (unless
V = /0).

Note that the transformed grapht(G ) is again a
preferability graph, hence the operatort(·) can be ap-
plied also to it. Then, given a non-negative integer
numberk ≥ 0, it can be defined the concept oftrans-
formed graph of order k associated withG , tk(G ),
which is defined recursively as follows:t0(G ) is G ,
and, fork > 0, tk(G ) is t(tk−1(G )).

Let G /0 be the preferability graph( /0, /0, /0). We
note thatt(G /0) = G /0. Moreover, sincet(G ) is a strict
subgraph ofG (unlessG = G /0), it follows that for
each preferability graphG , there exists a finite inte-
ger numberK ≤ |V| such thattK(G ) = G /0. Hence,
the operatort(·) always finitely converges to the graph
G /0.

Now we are in the position of providing the notion
of outstanding node and outstanding rule. A noden is
said to beoutstandingin G iff there exists an integer
k ≥ 0 such that the noden is candidate intk(G ) =
(V,U,E) and does not belong toU . A ruleR≡ B⇒ h
is outstandingiff there exists an outstanding noden in
Ĝ h such thatR= R(n).

Example 3(continued). Consider the grapĥG h shown
in Figure 3(a), thenĜ h = ({n1,n2,n3,n4,n5,n6,n7}, /0,

{(n1,n2), (n1,n4), (n1,n5), (n2,n3), (n2,n4), (n3,n1),
(n3,n4), (n4,n6), (n5,n4), (n6,n5), (n1,n7)}). Assume that
the discriminating power ofR3 is greater than that of both
R1 andR2. Thus, the only candidate node in̂G h is n3, and,
hence,t1(Ĝ h) = (V ′,U ′,E′) where:

V ′ = {n1,n2,n5,n6,n7},

U ′ = ( /0∪{n1,n2})∩{n1,n2,n5,n6,n7} = {n1,n2}, and

E′ = {(n1,n2), (n1,n5), (n6,n5), (n1,n7)}.

The resulting graph is that reported in Figure 3(b). More-
over, n3 is an outstanding node, since it is a candidate in
t0(Ĝ h) = Ĝ h and does not belong toU and, as such,R3

is an outstanding rule. Int1(Ĝ h) there are two source
nodes: n1 and n6 which are also candidate nodes. Nev-
ertheless,n1 is not an outstanding node int1(Ĝ h) since it
belongs toU ′, while n6 is. By applying thet(·) operator
again, we obtaint2(Ĝ h) = (V ′′,U ′′,E′′) where: V ′′ = /0,
U ′′ = {n1,n2}∩V ′′ = /0, andE′′ = /0. Hence,t2(Ĝ h) = G /0.

Summarizing, inĜ h there are two outstanding nodes,
that are,n3 andn6 and, hence,R3 andR6 are the outstanding
rules.

Before leaving the section, we provide the ratio-
nale underlying the asymmetry of the operatort(·) in
treating supernodes and subnodes of candidate nodes.

Assume that the supernodes{n′} of a candidate
noden are maintained in the transformed grapht(G )

Phase 1:
Determine the setB of conditions co-supported
by the databasesT ′ andT ′′

Phase 2:
For each simple conditionh that can be built on
the set of attributesA:

a. build the grapĥG h

b. Determine the outstanding nodesN in Ĝ h

c. Augment the solution setR with the set of
rules{R(n) | n∈ N }

Return the rules inR ranked by decreasing dis-
criminating power

Figure 4: The Discriminating RUle InDuctor (DRUID) al-
gorithm.

and marked as blocked, as it is the case for the subn-
odes ofn. Thus, if one such a noden′ becomes can-
didate int(G ), then all its subnodesn′′ are marked as
blocked and prevented to be selected as outstanding.
Clearly, while the ruleR(n′) is not interesting enough
to be prompted to the analyst since its (better) subrule
R(n) has been already selected, this is not the case for
the ruleR(n′′) which, conversely, is neither a subnode
nor a supernode ofR(n).

Assume, conversely, that the subnodes{n′} of a
candidate noden are deleted from the transformed
grapht(G ), as it is the case for the supernodes ofn.
Moreover, assume thatn′ has a supernoden′′ in G
such thatR(n′) is preferred toR(n′′). Since the noden′

is not int(G ), n′′ could become an outstanding node.
Recall that the ruleR(n′) is a subrule of both rules
R(n) andR(n′′). SinceR(n) is preferred toR(n′), it is
the case that the ruleR(n) significantly increases the
discriminating power ofR(n′) by augmenting its body
with some interesting, that is to say correlated, simple
conditions. Furthermore, sinceR(n′) is preferred to
R(n′′), it is also the case that the ruleR(n′′) augments
the body ofR(n′) with some simple conditions, but
this time they cannot be considered interesting, as the
discriminating power ofR(n′′) is worse than that of
R(n′).

5 ALGORITHM

Given two databasesT ′ and T ′′ on the same set of
attributesA, we are interested in finding the outstand-
ing rules discriminatingT ′ from T ′′. In this section
we present the algorithm DRUID (for Discriminating
RUle InDuctor) solving this task. The algorithm con-
sists in two main phases (see Figure 4).

We say that a condition is co-supported by
databasesT ′ andT ′′ if its support on databaseT ′ is
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above thresholdθ′sup and its support on databaseT ′′

is above thresholdθ′′sup. First of all the setB of co-
supported conditions in the two databases has to be
determined (phase 1). This can be done by adapt-
ing any efficient frequent itemset mining algorithm
to work simultaneously on two databases in order to
take into account only co-supported conditions. In
our current implementation an A-priori like algorithm
(Rakesh et al., 1993) is employed to compute the set
B of co-supported conditions. The setB is mined
only once, since it can be “reused” for each potential
head.

During Phase 2 the outstanding discriminating
rules are mined. For each simple conditionh employ-
able as head of a discriminating rule, phase 2a of the
algorithm builds the grapĥG h associated withh. Sub-
sequent phase 2b determines the outstanding nodes in
Ĝ h by applying the operatort(·), until the graph be-
comes empty. The outstanding nodes in the graphs
Ĝ h are collected into the setR , and the associated
outstanding rules are eventually presented to the user.

As for the temporal cost of the method, the cost
of Phase 1, corresponding to the execution of the A-
priori algorithm, is in general exponential with re-
spect to the number of database attributes. As for the
cost of Phase 2, it is polynomial in the size of the
graph, whose number of nodes is upper bounded by
the size|B | of the output of the A-priori algorithm,
and linear in the number of tuples of the database, due
to the need of computing the confidence of the rules.

6 EXPERIMENTAL RESULTS

In this section, we present experimental results ob-
tained by applying the proposed technique on some
real databases. We considered two extensively used
test datasets, that areMushroom1 andCensus2 (also
referred to in the following asDS1 andDS2, respec-
tively). The Mushroom dataset includes descriptions
of 8,124 hypothetical samples corresponding to 23
species of gilled mushrooms in the Agaricus and Lep-
iota Family. There are 22 categorical attributes. Each
species is identified asedible(4,208 instances) orpoi-
sonous(3,916 instances). On the basis of this clas-
sification, the data was partitioned in two databases
Te andTp. The Census dataset contains information
about old people. It consists of 333,011 tuples each
of which is composed of 10 categorical attributes plus
one class attributeIncome, which represents the an-

1http://archive.ics.uci.edu/ml/.
2http://www.cs.waikato.ac.nz/ml/weka/

index datasets.html.
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(a) DS1: discriminating rules
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(c) DS1: outstanding rules
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(e) DS1: execution time
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Figure 5: Experimental results.

nual income, assuming two distinct values, that are
“below50K” and “over50K” . Hence, we split it in
two databases,T<50 (consisting of 327,216 tuples)
and T>50 (consisting of 5,795 tuples), on the basis
of the value of the class attribute. We considered
this dataset in order to verify the technique on two
significantly unbalanced subpopulations. Indeed, the
T>50 subpopulation can be considered here as includ-
ing “anomalous” individuals to be compared against
the ”normal” subpopulationT<50.

Experiments are organized as follows. First of
all, we present a sensitivity analysis of the method
by measuring execution time, number of discriminat-
ing rules, and number of outstanding rules, for vari-
ous combinations of the threshold parametersθsupand
θcnf. Following that, we shall comment upon some
outstanding rules.

Figure 5 reports the results of the sensitivity anal-
ysis. The parameterθsup was varied between 0.1 and
1.0, while three distinct values for the parameterθcnf
were considered: 0.0, 0.5, and 0.9. Figures 5(a) and
5(b) report the number of discriminating rules. Fig-
ures 5(c) and 5(d) report the number of outstanding
rules. Finally, Figures 5(e) and 5(f) report the execu-
tion time (in seconds). The time required by Phase 2
clearly depends on the number of discriminating rules
in the databases. This number increases sensibly only
for low support values, but in all cases the DRUID al-
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gorithm terminated its work in a reasonable amount
of time. It employed about three hours on the hardest
instance considered onCensus. We point out that this
execution time was reached for very low values of the
thresholds and, in particular, forθcnf = 0. Indeed, for
more sensible values of the parameters it rapidly de-
creases to few seconds. Finally, the following table
shows the execution times (in seconds) of the Phase
1 of the algorithm, that is the variant of the A-priori
algorithm for mining co-supported conditions.

θsup = 0.1 0.2 0.3 0.5 0.7 0.9 1.0

Mushroom 0.41 0.24 0.16 0.05 0.03 0.01 0.01

Census 4.30 2.55 2.19 1.28 0.54 0.01 0.01

Next we comment upon some oustanding rules re-
turned by running DRUID. Consider theMushroom
dataset. The rulecap−sur f ace= f ∧ cap−shape=
x ⇒ odor= n, haspow= 0.99, cnfe = 0.97, cnfp =
0.01, supe = 0.17, supp = 0.11. It concerns mush-
rooms with fibrous cap surface and convex cap shape.
The rule asserts that edible mushrooms thereof are
very likely to be odorless, while poisonous are very
likely to be odorous.

The rulecap−color = g∧ gill−spacing= c ⇒
ring−type= p, haspow= 0.84,cnfe = 1.00,cnfp =
0.16, supe = 0.15, supp = 0.20. It concerns mush-
rooms with gray cap color and closed gills. The
rule asserts that edible mushrooms thereof are more
likely to have a pendant ring than poisonous ones.
The rulestalk−sur f ace−b−r = s∧ ring−number=
o ⇒ gill−size= n, has pow = 0.92, cnfe = 0.07,
cnfp = 0.90, supe = 0.72, supp = 0.37. It concerns
mushrooms with smooth surface of the stalk under
the ring and one ring. The rule asserts that poisonous
mushrooms thereof are more likely to have narrow
gills than edible ones.

Consider now theCensusdataset. The rule
immigr = be f ore75 ⇒ english= poor, has pow=
0.83,cnfT<50

= 0.42,cnfT>50
= 0.07,supT<50

= 0.10,
supT>50

= 0.12. It concerns people immigrated be-
fore year 1975. The rule asserts that the individ-
uals thereof whose income is below 50K are more
likely to speak a poor English than those having in-
come above 50K. The ruleurban= f alse⇒ race=
black, haspow(R2) = 0.80,cnfT<50

= 0.42,cnfT>50
=

0.09, supT<50
= 0.23, supT>50

= 0.15. It concerns
people living in rural areas. The rule asserts that
the individuals thereof whose income is below 50K
are more likely to be black than those having in-
come above 50K. The ruleregion= midw∧ age=
below75⇒ sex= male, haspow= 0.80, cnfT<50

=
0.27,cnfT>50

= 0.55,supT<50
= 0.11,supT>50

= 0.12.
It concerns people whose age is below 75 years and
living in the Midwest. The rule asserts that the indi-

viduals thereof whose income is above 50K are more
likely to be male than those having income below
above 50K.

7 CONCLUSIONS

In this paper, the problem of characterizing the fea-
tures distinguishing two given populations has been
analyzed. We introduced the notion of discriminating
rule, a kind of logical implication which is much more
valid in a population than in the other one. We sug-
gested their use for characterizing anomalous subpop-
ulations. In order to avoid for the analyst to be over-
whelmed by the potentially huge number of rules dis-
criminating the two populations, we defined an orig-
inal notion of preference relation among discriminat-
ing rules, which is interesting from a semantical view-
point, but it is challenging to deal with since it is
not transitive and, hence, no monotonicity property
can be exploited to efficiently guide the search. We
proposed the DRUID algorithm for detecting the out-
standing discriminating rules, and discussed prelimi-
nary experimental results.
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