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Abstract: Assume a population partitioned in two subpopulations, e.g. a set of normal individuals and a set of abnormal
individuals, is given. Assume, moreover, that we look for a characterization of the reasons discriminating one
subpopulation from the other. In this paper, we provide a technique by which such an evidence can be mined,
by introducing the notion of discriminating rule, that is a kind of logical implication which is much more valid
in one of the two subpopulations than in the other one. In order to avoid mining a potentially huge number
of (not necessarily interesting) rule, we define a preference relationship among rules and exploit a suitable
graph encoding in order to single out the most interesting ones, which weutsfanding rulesWe provide
an algorithm for detecting the outstanding discriminating rules and present experimental results obtained by
applying the technique in several scenarios.

1 INTRODUCTION out justifications for the individuals to be longevous
or not. In this respect, this technique can be regarded

In domains where there is no well assessed knowl- @s an extension to groups of anomalies of the tech-
edge, and given a population partitioned in two sub- nique presented in (Angiulli et al., 2009), where out-
populations, it is of interest to single out the expla- lying properties of a single anomalous individual are
nations distinguishing the members of one subpopu- searched for, as accounted for next in this section.
lation from the members of the other subpopulation. A common problem of any knowledge extractor
Such a knowledge can be suitably expressed in thesystem is that the size of mined knowledge might be
form of rules Here, we introduce the conceptdis- so huge to be useless for the analysis purposes. And,
criminating rule Intuitively, a rule is a discriminat-  in fact, also the number of discriminating rules can be
ing one if it is “much more valid” in one of the two  very large, whereas only a subset thereof are usually
given subpopulations than in the other one. Te interesting enough to be prompted to the analyst, inas-
criminating powernof a rule is related to the difference much as most of them will encode redundant knowl-
between the confidences it attains over the two sub-edge. However, selecting the rules which maximize
populations under analysis, and can indeed be used tdhe discriminating power value is too a weak criterion
characterize its quality. In particular, a rule is said to to isolate only interesting ones. Indeed, in most cases,
bediscriminatingif its discriminating power is above by augmenting the body of a rule with an arbitrary
a user-provided threshold. In this respect, outstand-simple condition, the discriminating power value as-
ing discriminating rules are pieces of mined knowl- sociated with that rule slightly increases due to sta-
edge which appear to be promising as building blocks tistical fluctuations of the confidence value. To over-
for the induced domain knowledge to be eventually come this problem, we define a noyekference re-
reconstructed by the domain expert analyst. lation notion relating discriminating rules in order to
An interesting application scenario thereof con- single out the most interesting ones, also catiett
cerns the analysis of anomalous subpopulations,standing rulesThe novelty of this preference relation
where it is needed to detect the motivations making is thatit is based on a statistical significance test rather
some given individuals anomalous. As an example, than on generality/specificity criteria.
assume a population containing genetic information ~ We point out that, even if a general analogy holds
about both longevous and non-longevous human indi- between the kind of knowledge we consider and sev-
viduals is given; here, it would be very useful to single eral pattern discovery tasks, such as those of emerg-
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ing patterns, contrasts sets and frequent pattern-basedescribes the DRUID algorithm for mining outstand-
classification ((Dong and Li, 1999; Zhang et al., 2000; ing rules. Section 6 presents experimental results. Fi-
Bay and Pazzani, 2001; De Raedt and Kramer, 2001;nally, Section 7 concludes the work.

Cheng et al., 2008), to cite a few), our task consider-

ably differs from the mentioned ones. First, we notice

that, to a closer look, the knowledge mined by the

techniques we are presenting below is actually dif- 2 PRELIMINARIES

ferent. Indeed, emerging patterns, contrast sets and

discriminative patterns can be vyell represented in the |, this section some preliminary notions are pre-
form of rules, but the only attribute allowed to oc-
cur in their heads is the class attribute, wheras we
search for generic rules with any attribute in their
head, while the class attribute is not considered at
all. Moreover, the interestingness measure charac-
terizing patterns searched for in the cited literature
is based on measuring the frequency gap for the pat-
tern in the two classes, while we use the confidence
gap. While the former measures are (anti-)monotonic
with respect to pattern generality, the latter one is non-
monotonic and, hence, much more challenging to deal
with. Also, these patterns tend to capture knowledge
characterizing the data inglobal sense, since they tionsc of C
are based on the notion of absolute frequency. Con- : F .

versely, the knowledge mined by means of discrim- L€t T be a database on a set of attributedet t
inating rules characterizes the data ifoeal sense. D€ @ tuple off. Letc =a=v be a simple condition
Indeed, the confidence is related to the frequency of ©N A- The tuplet satisfies dff t[a] = v, wheret[a]
the condition in the head of a rule in the subpopula- denotes the value the tupi@ssumes oa. LetC be
tion of the data selected by its body. Finally, we define & condition onA. The tuplet satisfies Gff t satis-
an innovative preference relation based on a statisticalfi€S €ach simple conditiog of C. If C is an empty
significance test, while most pattern discovery meth- condition then each tuplesatisfiesC. Tc denotes the
ods prefer patterns on the basis of generality and/or database including the tuples biwhich satisfyC.
measure maximization. LetA = {a]_, - ,am} be a set of attributes, ralle
on A is an expression of the forl =- h, whereB is
a condition onA andh is a simple condition om\.
B andh are called thdodyand theheadof the rule,
respectively. Thaizeof the ruleR= B = h, denoted
by |R], is the cardinality of the setond(B). Let T be

sented.

LetA = {ai,...,am} be a set of attributes arid
a database oA (multi-set of tuples o). A simple
condition con A is an expression of the form=v,
wherea € A andv belongs to the domain . A
condition Con A is a conjunctiorncy A ... A ¢k of k
(k > 0) simple conditions orA. A condition with
k =0 is called arempty condition In the following,
for a conditiorC of the formcy A. .. Ack, cond(C) de-
notes the set of simple conditiofs;, ..., c}, while
attr(C) denotes the sdtg; | (ai = Vi) € C}, that is the
subset of attributes oA appearing in simple condi-

As already noted, the technique presented here
can be regarded as an extension to groups of anoma
lies of the technique presented in (Angiulli et al.,
2009). Indeed, being the confidence insensitive to ab-

solute frequency, it is more suitable for characterizing a database on a set of attributeslett be a tuple of
unbalanced subpopulations, as usually occurs WhenT and letR= B = h be a rule om. t satisfiesR iff
a group of anomalous individuals is compared to a t éatisfiesB/\ih LetR=B= h and.R/ —B = N be
whole normal population, than the support. The ma- two rules sucH that ;h, andcond(B)B condB).

jor differences between this work and (Angiulli et al., ThenRis said to be auperruleof R andR is said to
2009) are as follows. In this work two subpopulations |, -« /b ruleof R

are compared, while in (Angiulli et al., 2009) only a .
. . : : . LetT be a database on a set of attributesnd let
single (outlier) object can be compared with the over C be a condition o Thesupporiof Cin T, denoted

all (normal) population; the discriminating measure ) Y

adopted there is very different from the one developed by supr(C), is the ratio of the number of tuples
here, since it is designed for a single object, and it is of T satisfyingC over the size off . Given a database
not at all clear ho to generalize it, if even possible, to T onA and a threshold, 0 < ¢ < 1, a conditiorC is
deal with more than a very limited number of anoma- said to bes-supportedby T iff sup; (C) > o.

lous individuals. Let T be a database on a set of attribufesand

The rest of the work is organized as follows. Sec- €tRbearule8=honA. Thec‘cT)nfidence)f RinT,

tion 2 presents preliminary definitions. Section 3 de- denoted bycnfr (R), is the ratio‘BT—g‘h‘ of the number
fines discriminating rule. Section 4 introduces the of tuples ofT satisfyingR over the number of tuples
notion of outstanding discriminating rule. Section 5 satisfyingB.
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[ MotherHair | ChildHair for a child having a blonde mother, the probability of be-
brown blonde ing blonde is much higher if its father is blonde rather than
MotherHair | ChildHair | brown blonde brown. And, in particular, such a probability is 1 in the for-
brown brown brown blonde mer case and.@5 in the latter case. This knowledge hidden
brown brown brown brown in the data at hand is clearly expected by the well-known
brown brown brown brown Mendelian inheritance lawSince brown hair is dominating
brown brown brown brown L . .
brown brown brown brown over blonde hair, if both parents are blonde haired the child
brown blonde brown brown is blonde. This justifies the value 1 for the confidence of
brown blonde brown brown on Ty. Conversely, if the father is brown and the mother is
blonde brown brown brown blonde, than two cases can arise: the genotype of the father
blonde brown brown brown (i) includes two genes associated with brown hair, idr (
E:O”de brown brown brown includes one gene associated with brown hair and one asso-
onde brown brown brown ciated with blonde hair. In the cas@ the child is brown for
blonde brown brown brown o . 7 ]
blonde brown blonde blonde sure, while in caseii) the probability of being brown (or,
blonde blonde blonde blonde equivalently, blonde) is about fifty percent. Summarizing,
blonde blonde blonde blonde if (for the sake of simplicity) we assume that casgsafd
(a) Tpr : Brown father blonde blonde (i) occur with the same frequency in the considered popu-
blonde blonde lation, than the probability of having a blonde haired child
(b) Ty, : Blonde father with a brown father and a blonde mother is about twenty-
Figure 1: Hair color databases. five percent, which agrees with the valu@®for the confi-

dence ofr onTy,,. We also note thaRey is more interesting

than the empty-body rulé = ChildHair = “blonde”, cor-

responding to the frequency of the value “blonde” on the
3 DISCRIMINATING RULES attribute “ChildHair” which is approximatively.Q7 onTy,

. . . T w and 042 onTy, resulting in a discriminating power of about
In this section the notion of discriminating rule is in- 4 37

troduced . We will make use of a running example in
order to help illustrating the discussed matter.

Example 1. Figure 1 shows two databases reporting hair
colors of wives and children of some male individuals.
Specifically, the first databasg,,, is associated with males
with brown hair whereas the second oilg, is associated
with males with blonde hair. We aim at discovering rules
characterizing only one of the two databases.

The definition of discriminating rule builds on that
of discriminating power.

Let T" and T” be two databases on a set of at-
tributesA, let 80w be athreshold(real number in the
rangel0, 1]), and letR= B = h be a rule orA. Then,
Ris adiscriminating ruleiff pow(R) > 60w

Intuitively, a discriminating rule characterizes suf-
ficiently well the tuples of one database with re-
We start by providing the definition of discriminating spect to those of the other. Optiona”y, we may
power. LetT" andT” be two databases on a set of require that the rule satisfies some additional con-

attributesA, and letR be a rule omA. Thediscrimi-  straints concerning support and confidence, that are
nating powerof R (with respect tol’ andT”) is: (c1) supr(B) > 8Ly, (C2) supr(B) > 6%, and ¢3)
|enfr/(R) —enfrr (R) | max{cnfr: (R),cnfrr(R)} > Bcnr, where 65, 85y
powR) = : andBgns are suitable thresholds.

~ max{ cnfr/(R), enfry(R) }
L . Example 1(continued) For instance, the rul&®ey is dis-
The discriminating power measures the relative gap criminating for6,= 8%, = 0.25, B¢yt = 0.5, andBpow =

between the confidence value associated with a rule . P g 5

when we move from a database to the other. Note that,o'7f’ S'nce_sugrbf_(g 5_355 = 0533, Sipg‘érs) = 19 = 0263,
the larger the absolute difference betwetiy (R) oM (f) = 15 = 0-533, andpow(r) = 0.75.
andcnf;/(R), the larger the discriminating power of

E;<ample 1(continued) Consider Figure 1 again, andthe 4 QUTSTANDING RULES
rule Rex:

MotherHair= “blonde” = ChildHair= “blonde”. As already remarked, while the number of discrimi-
] o, nating rules can be very large, only a subset thereof
The confidence of on Ty is g = 0.25 whereas orilp, can be considered interesting enough to be prompted
is 2 =1, and then the discriminating power &sx is o the analyst. Hence, in order to single out the most
POW(Rex) = % = 0.75 The ruleRex asserts that  interesting rules out of a set of discriminating ones,
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we are next defining a preference relation between R. Letng be the valugTg| andng be the valuéTgap|.

discriminating rules. Then,cnfr (R) = 2—; Moreover, letng be the value

) |Te'| andng be the valugTgp|. Then,cnf (R) =
4.1 Preference Relation i

n_B/-
o . . SinceR is a superrule oR/, then the tuples iffg
The preference relation is defined only between pairs gre a subset ofg and, henceng is smaller than or

of rules which are one the superrule of the other. equal tong. Analogously, the tuples ifig\, are a
Let T" and T” be two databases defined on the subset offg ., and, henceng is smaller than or equall

same set of attribute, letRbe a rule orA and letR’ to Nk

be a subrule oR. Then,Ris preferredto R, denoted If the attributes belonging to the set

R<R, iff attr(B)\attr(B') were not correlated to the at-

1. pow(R) > pow(R), and tributes inattr(B'), then the tuples irflg could be

assumed as generated by a sequencesafaindom
extractions fromlg.. Hence, the random variab}e
representing the number of tuplesTig satisfyingh,

is distributed according to a binomial distribution,
Otherwise R is preferredto R, and denoted? < R. where a success represents the extraction of a tuple
According to the above definition, a subrule is always satisfyingh. The number of extractions ig and the

to be preferred to a superrule having a smaller or equal probability of success is the probability of extracting
discriminating power value. To be preferred -asuper- a tuple satlsfylng1 WhICh corresponds tcﬂﬁ. The

2. either the differencenf;/(R) — cnfr(R) or the
difference cnfy/(R) — cnf#(R) is statistically
significative.

confidence.  MrR=ng- R’ Hence, the expected confidence of the
The significance of the gap between two confi-
. . ruleRis
dences can be measured by exploiting a suitatale ng- & n
tistical test We will describe next in this section the cnfr(R) = y _ R
statistical test employed in the current implementa- N8 N/
tion of the algorithm. which is equal to the confidence Bf.
The rationale underlying this definition is that Clear enough, due to statistical fluctuations, the

shorter rules are generally preferable over longer onesnumberng of tuples satisfying3 A h will not be ex-
since longer rules tend to overfit and, also, to be actly equal tong, and then the value afnf(R) can
less intelligible. Moreover, a notion of preference be slightly different from the value ainfr (R').
solely based on the discriminating power is seemingly ~ In order to test if such a difference is due to sta-
far too weak to be practically effective. As already tistical fluctuation, it must be checked if it is statisti-
pointed out, indeed, augmenting the body of a rule cally significative. To this end the binomial test can
with a randomly selected simple conditions may of- be employed. LeX be a random variable following
ten increase the discriminating power associated with the binomial distribution with parametems= ng and
the rule due simply to statistical fluctuations of the p= f. This test computes the probability to get a
confidence values. Hence, the definition states that avalue for the binomial random variab¥efarther from
longer rule is to be preferred only if there is evidence ng thanng, and then checks if this probability is lower
for at least one of the confidence values associatedthan the significance level.@5. In other words, it
with it to be undoubtedly higher. must be verified if the following inequality holds:
Note that the relation is not transitive since, for
some three rules, r’ and”, even if both the differ- Pr(|X—ng| > [nr —TiR|) < 0.05.
encegenf(r) —cnf(r’)| and|cnf(r’) —cnf(r”)| do not Let 7 (x,y) denote the cumulative binomial distribu-
pass the test it can be the case that the differencetion function with parameters andy. The relation
lenf(r) —cnf(r”)| is indeed large enough to pass the above can be rewritten as:
test.

Significance Test. The statistical significance of 7 MR+ Ink —TiR]) = 7 (TR — Ik —TiR[) 2 0.95. (1)
the difference between two confidence values can beClear enough, within the proposed approach, any
Computed by means of tﬂnnom|a| testas descnbed other sensible statistical S|gn|f|cance test could re-
in the rest of this section. place the adopted one.

LetT be adatabase oh. LetR=B=-handR = Example 1(continued) Consider ruleRex andR., again.
B’ = hbe two rules oA such thaRis a superrule of  Let us check the significance of the difference between the
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confidence values associatedig andR;, on the database
Tpi. Thus,ng, =5, ng =5, NR, = 8 andng = 19. NR

can be computed as-f'a% and thenngr = 2. In order to
evaluate the test the following value has to be determined:
F (2+]5-2|) — F (2—|5—-2|). Since the value of the
above expression is 1, hence greater th&3,0then it can

be concluded thaRex is actually preferred t&,.

4.2 Outstanding Rules

Here, we define the notion of preferability graph,
which encodes discriminating rules (by means of
nodes) and preferability relations (by means of arcs).
The preferability graph will be exploited to single out
the outstandingdiscriminating rules.

We have already noted that the number of discrim-
inating rules can be very large, but in general only a
subset thereof can be considered interesting enoug
to be prompted to the analyst. In that respect, loosely
speaking, the outstanding discriminating rules will
represent rules whose interestingness for the analys
is maximal.

Given database§’ andT”, and a conditiorh, a
preferability graphg " = (V,U, E) w.r.t. the condition
h (whenever the head conditidris clear by the con-
text, we will omit the superscript of in referring to
a graph), is a directed graph, witha set of prefer-
ability nodes (or, simply, nodes — see, below, the defi-
nition of preferability node)}J CV a set of blocked
preferability nodes, anH a set of arcs oK .

A preferability node rof a graphg " is a node hav-
ing associated a discriminating ruR{n) = B = h.
Hence, all the rules associated with nodes of a prefer-
ability graphg" have the same conditiamin their
head. For each discriminating rule of the foBr= h
there exists at most one nodedf associated with it.
There exists an ar@, m) in ¢" from noden to node
miff R(n) is preferred tdR(m).

By &h we denote the preferability gragh,0,E)
whereall discriminating ruleR = B = h are repre-
sented.

Given two nodes andm, mis reachablefrom n
in g", denotech — m, iff there exists a directed path
fromntomin " It is assumed that, for each node
n, it holds thatn — n. Otherwisemis not reachable
from n, denoted a:m /4~ m. A noden is said to be
a supernodgsubnoderesp.) of a noden if R(n) is
a superrule (subrule, resp.) B{m). Note that by
definition of preferability graph; ", for each pairs of
nodesn andm of ¢" such thatm is a supernode of
n there exists ing" either the arqn,m) or the arc
(m,n), but not both. Aconnected componemt of
G is a maximal subset of the nodes @fsuch that,

DETECTION OF DISCRIMINATING RULES

@)

(b)
Figure 2: Preferability Graph - Example.

for eachn,m € ¢, n — mhold. Given a noda, the
connected component ip" whichn belongs to is de-
notedconn(n, ") (or, simply,conn(n) in the follow-
ing).

Given a subsel of V, therestriction g, of the
graphg = (V,U,E) on the set of noded|, is the
subgraph ofg induced by the nodes iN, that is

v = (NJUNN, {(n,m) [n,me NA(n,m) € E}).
Example 2Consider two databasd@$ andT”. For the sake

of simplicity, assume that all the rules considered in the fo
lowing score confidence 1 of’, so that whenever we need

tto evaluate the statistical significance of the differenee b

tween two confidences, we restrict our attentionTéonly.
Suppose that the sa&t of rules complying with the support
constraints consists in the following two rules:

o Ry=cy=h, [T | =250,[T7 | = 100;

o Ro=C1AC =, [T ] = 250, [T, ¢, il = 100,

wherecy, ¢, andh are simple conditions.

In order to establish the preference relation betwRen
andRy, first their discriminating power has to be computed.
The confidence oR; on T’ is 338 = 0.4, whereas itis 1 on
T”. Then,pow(R;) = 0.6. Conversely, the confidence®j
onT'is 2% =0.3, and itis 1 oriT”. Then,pow(R,) = 0.7.
Sincepow(R;) < pow(Ry) and sinceR; is a subrule oRy,
we need to evaluate if the gap between the confidences of
R; andR; is statistically significative in at least one of the
two databases. Because of the gap between the confidences
of Ry andR, on T is 0, we compute the binomial test only
onT’: ¥ (60+ |50—60]) — ¥ (60— |50—60]) = 0.9036<
0.95. Since this gap is not statistically significatir, is
preferred toR,. The associated preferability graph is re-
ported in Figure 2(a).

Suppose, now, that contains two further rules:

_ / /
e R3=cCciACoAC3=h, ‘TC1/\C2/\C3‘ =45, |Tc1/\czAC3Ah| =

9,
— ! "
o Re=CciAC2ACs= 0, [Te neyne,| =45, [T neoneannl =
9,

and let us compute the discriminating powerfgfandR;.
We obtain thapow(R3) = 0.8 andpow(R4) = 0.8.

First, note that no preferability relation holds By
andR4 and, then, no arc connects them in the preferability
graph. Note that all the rules have confidence T6nCon-
sider, now, the paiR; andR3. Sincepow(Rz) < pow(Rs3)
andR; is a subrule oR3, we compute the binomial test ob-
taining: # (154 |9—15)) — # (15—|9—15) = 0.9410<
0.95, asserting thaR, is preferred toRs, and then an arc
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from Ry to R3 is there in the preferability graph. Consider
the pairR; andRs. Sincepow(R;) < pow(Rgz) but R is
a subrule ofR3, we compute the binomial test obtaining:
F (184|9—18)) — ¥ (18—|9—18) = 0.9942> 0.95, as-
serting thaRgs is preferred tdR;, and then an arc frorRs to
R, is there in the preferability graph. This example confirms
that, in general, the preferability relation is not traisit

As far asR4 is concerned, its relations witR, andR,
are exactly the same &s. The resulting preferability graph
is reported in Figure 2(b). Observe tiat, Ry, Rz andRy
form a connected component.

In order to characterize outstanding discriminat-
ing rules, we next introduce the conceptcahdidate
rule.

First of all, it is considered the basic situation in

Figure 3: Example Graph.

the definition of candidate node in a general prefer-
ability graph.

Let g be a preferability graph; a nodeof g is a
sourceif the following condition holds: for each node

which the graph is a single connected component, andm such thatm — n, it holds thatn — m.

the notion of candidate node in such a graph is de-
fined. Intuitively, a candidate node is associated with
a potentially outstanding rule.

Let ¢ = (V,U,E) be a preferability graph such
thatV is a connected component gf, a noden in
V is said to becandidatdn ¢ iff both the two follow-
ing conditions hold:

1. for each supernodeas of n, it holds that

pOoW(R(n)) > pow(R(u)), and
2. for each subnodeof n, it holds thatpow(R(n)) >
POW(R(U)).
The rationale underlying this definition is that, for
each noda in a connected component, there exists an

other node"’ in the same component such ti{n’)
is preferred tdr(n), thus from the point of view of the

preference relation, within the same connected com-

ponent, there is no node which is preferable to all
the others. Hence, it is seemingly sensible to single

Hence, a source node is a node that reaches all the
nodes that reach it in turn. Note that there might be
nodes that are reached from a source but not reach the
source.

Example 3. Consider Figure 3a. The nod is a source
since nodes reaching (hamelyn; andng) are also reached
from it. Converselyng is not a source since it is reached,
for example, byn, butng does not reachs,.

Now we are in the position of providing the defi-
nition of candidate node in a general graph.

Let g be a preferability graph. A nodeof g is
said to becandidatein ¢ iff nis a source node of
andn is candidate ing ., (according to Def. 4.2
above).

Clear enough, if a node in a connected compo-
nentc is source, then all the nodes inare sources
as well. Hence, in the graph, there are no nodes out-
side ¢ which are preferable to the nodes ¢nand,
therefore, the candidate nodes have to be singled out

out as candidates those nodes whose associated rulegmong those irr .

score the maximal discriminative power value among

their associated supernodes and subnodes. Moreove

the equal sign in condition 1 makes it shortest rules
preferable when ties are there in the inclusion hierar-
chy.

Example 2(continued) Consider the graph of Figure
2(b). This graph forms a connected component. Accord-
ing to the definition provided above, the candidate nodes
are Rz and Ry, since their discriminating power is maxi-

r

Example 3(continued) Consider Figure 3a again. In the
draph the source nodes aig n, andng, all belonging to
the same connected component. Then, the candidate node

is that node amongsh, n; andns scoring the highest dis-
criminating power.

Next the definition of transformed graph associ-
ated with a preferability grapl, leading to the defi-
nition of outstanding rule, is given.

Let ¢ = (V,U,E) be a preferability graph. The

mum among those associated with the nodes of the graphtransformed graph (tg) = (V',U’,E’) associated

and each of their subrules has strictly smaller discriminat
ing power. Note that, if the discriminating power Bf
(or, equivalently,R,, resp.) were larger than that of all the
other rules, then the candidate node would onlynpéor

np, resp.).

Clear enough, in general, a graph does not include

with g is the graph obtained as follows:

o V' is obtained fronV by removing both the can-
didate nodes i and all their supernodes,

e U’is (UUS)NV’, whereSis the set containing all
the subnodes of the candidate nodeg jrand

a single connected component. Thus, we provide next e E’ is the subset of the arcs B linking the nodes

the definition of source node, which is conducive to
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Since for eacty = (V,U,E), withV = 0, there exists
at least one candidate nodedn the set of nodes of
the grapht(g) is always a strict subset & (unless

V =0).

Note that the transformed grapty ) is again a
preferability graph, hence the operat6n can be ap-
plied also to it. Then, given a non-negative integer
numberk > 0, it can be defined the concepttedins-
formed graph of order k associated with, t*(g),
which is defined recursively as follows®(g) is G,
and, fork > 0,t%(g) ist(t“1(g)).

Let g% be the preferability grapli0,0,0). We
note that(6®) = °. Moreover, sincé(g ) is a strict
subgraph ofg (unlessg = ?), it follows that for
each preferability graplg, there exists a finite inte-
ger number < |V| such thatX(g) = 6% Hence,
the operatot(-) always finitely convergesto the graph
G°
Now we are in the position of providing the notion
of outstanding node and outstanding rule. A nade
said to beoutstandingn ¢ iff there exists an integer
k > 0 such that the node is candidate irt*(g)
(V,U,E) and does not belong td. AruleR=B=-h
is outstandingff there exists an outstanding nodén
" such thaR = R(n).

Example 3(continued) Consider the grapht}h shown
in Figure 3(a), theng" = ({ny,np, N3, 4, ns,ng,N7},0,
{(n1,m2), (n1,ng), (ng,ns), (n2,nz), (nz,na), (n3,m),
(n3,ng), (Ng,Nng), (N5,N4), (Ne,Ns5), (N1,N7)}). Assume that
the discriminating power oR; is greater than that of both
R; andRy. Thus, the only candidate node@ﬁ1 is n3, and,

hencetl(g") = (V/,U’,E') where:
V' = {ng,nz,ns,ng, N7},
U’ = (0U{n,n2}) N {nz,nz,ns,ng, N7} = {ng, Nz}, and

E' = {(n1,n2), (n1,ns), (ne,ns), (N1,n7)}

The resulting graph is that reported in Figure 3(b). More-

over, nz is an outstanding node, since it is a candidate in

t9(G") = g" and does not belong td and, as suchRs

is an outstanding rule. |m1(§h) there are two source

nodes: n; and ng which are also candidate nodes. Nev-

erthelessn; is not an outstanding node tﬁ(&“) since it

belongs taU’, while ng is. By applying thet(-) operator

again, we obtairt?(g") = (V”,U” E”) where: V/ = 0,

U” = {n;,m}NV” =0, andE” = 0. Hencet2(g") = °.
Summarizing, ing" there are two outstanding nodes,

that arenz andng and, henceRs andRg are the outstanding

rules.

Before leaving the section, we provide the ratio-
nale underlying the asymmetry of the operaiey in

DETECTION OF DISCRIMINATING RULES

Phase 1:
Determine the ses of conditions co-supported
by the databaseF’ andT”

Phase 2:
For each simple conditioh that can be built on
the set of attributeA:

a. build the graphg "

b. Determine the outstanding nodesin "

c. Augment the solution set with the set of
rules{R(n) [ne a( }

Return the rules iR, ranked by decreasing dis;
criminating power

Figure 4: The Discriminating RUle InDuctor (DRUID) al-
gorithm.

and marked as blocked, as it is the case for the subn-
odes ofn. Thus, if one such a nod# becomes can-
didate int(g ), then all its subnodes’ are marked as
blocked and prevented to be selected as outstanding.
Clearly, while the ruldR(n’) is not interesting enough

to be prompted to the analyst since its (better) subrule
R(n) has been already selected, this is not the case for
the ruleR(n”) which, conversely, is neither a subnode
nor a supernode d®(n).

Assume, conversely, that the subnode§ of a
candidate noda are deleted from the transformed
grapht(g ), as it is the case for the supernodesof
Moreover, assume that has a supernode’ in g
such thaR(n') is preferred tdr(n”). Since the nodg/
is notint(g ), n” could become an outstanding node.
Recall that the ruleR(n') is a subrule of both rules
R(n) andR(n”). SinceR(n) is preferred tdR(n'), it is
the case that the rulR(n) significantly increases the
discriminating power oR(n’) by augmenting its body
with some interesting, that is to say correlated, simple
conditions. Furthermore, sindg(n’) is preferred to
R(n"), it is also the case that the ruRén”) augments
the body ofR(n’) with some simple conditions, but
this time they cannot be considered interesting, as the
discriminating power oR(n”) is worse than that of
R(r).

5 ALGORITHM

Given two database®’ and T” on the same set of
attributesA, we are interested in finding the outstand-
ing rules discriminating’ from T”. In this section
we present the algorithm DRUID (for Discriminating
RUIe InDuctor) solving this task. The algorithm con-

treating supernodes and subnodes of candidate nodesists in two main phases (see Figure 4).

Assume that the supernodés’} of a candidate
noden are maintained in the transformed graph )

We say that a condition is co-supported by
database3’ andT” if its support on databas¥ is
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above threshold;,, and its support on databa3é
is above threshold,, First of all the sets of co-

supported conditions in the two databases has to be

determined (phase 1). This can be done by adapt-
ing any efficient frequent itemset mining algorithm
to work simultaneously on two databases in order to
take into account only co-supported conditions. In
our currentimplementation an A-priori like algorithm
(Rakesh et al., 1993) is employed to compute the set
3 of co-supported conditions. The setis mined
only once, since it can be “reused” for each potential
head.

During Phase 2 the outstanding discriminating
rules are mined. For each simple condittoemploy-
able as head of a discriminating rule, phase 2a of the

algorithm builds the grapl_§h associated with. Sub-

sequent phase 2b determines the outstanding nodes in 3 -

6" by applying the operatdi(-), until the graph be-

comes empty. The outstanding nodes in the graphs

6" are collected into the set, and the associated
outstanding rules are eventually presented to the user
As for the temporal cost of the method, the cost
of Phase 1, corresponding to the execution of the A-
priori algorithm, is in general exponential with re-
spect to the number of database attributes. As for the
cost of Phase 2, it is polynomial in the size of the
graph, whose number of nodes is upper bounded by
the size|s| of the output of the A-priori algorithm,
and linear in the number of tuples of the database, due
to the need of computing the confidence of the rules.

6 EXPERIMENTAL RESULTS

In this section, we present experimental results ob-
tained by applying the proposed technique on some

real databases. We considered two extensively usedaII

test datasets, that aMushroom and Censu$ (also
referred to in the following a®Sl andDX2, respec-
tively). The Mushroom dataset includes descriptions
of 8,124 hypothetical samples corresponding to 23
species of gilled mushrooms in the Agaricus and Lep-
iota Family. There are 22 categorical attributes. Each
species is identified axlible(4,208 instances) quoi-
sonous(3,916 instances). On the basis of this clas-
sification, the data was partitioned in two databases
Te andT,. The Census dataset contains information
about old people. It consists of 3831 tuples each

of which is composed of 10 categorical attributes plus
one class attributéncome which represents the an-

Lhttp://archive.ics.uci.edu/ml/.

2http://www.cs.waikato.ac.nz/ml/weka/
index datasets.html.
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Figure 5: Experimental results.

nual income, assuming two distinct values, that are
“below50K” and “over50K”. Hence, we split it in
two databases].sg (consisting of 32216 tuples)
and Ts50 (consisting of 5795 tuples), on the basis
of the value of the class attribute. We considered
this dataset in order to verify the technique on two
significantly unbalanced subpopulations. Indeed, the
T.50 subpopulation can be considered here as includ-
ing “anomalous” individuals to be compared against
the "normal” subpopulatiofi. 5.

Experiments are organized as follows. First of
we present a sensitivity analysis of the method
by measuring execution time, number of discriminat-
ing rules, and number of outstanding rules, for vari-
ous combinations of the threshold paramegggsand
Bcni. Following that, we shall comment upon some
outstanding rules.

Figure 5 reports the results of the sensitivity anal-
ysis. The parametds,p was varied between.D and
1.0, while three distinct values for the paramdigi;
were considered:.0, 0.5, and 09. Figures 5(a) and
5(b) report the number of discriminating rules. Fig-
ures 5(c) and 5(d) report the number of outstanding
rules. Finally, Figures 5(e) and 5(f) report the execu-
tion time (in seconds). The time required by Phase 2
clearly depends on the number of discriminating rules
in the databases. This number increases sensibly only
for low support values, but in all cases the DRUID al-
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gorithm terminated its work in a reasonable amount viduals thereof whose income is above 50K are more
of time. It employed about three hours on the hardest likely to be male than those having income below
instance considered @ensusWe point out that this  above 50K.

execution time was reached for very low values of the

thresholds and, in particular, f6g,; = 0. Indeed, for

more sensible values of the parameters it rapidly de- 7 CONCLUSIONS

creases to few seconds. Finally, the following table

shows the execution times (in seconds) of the Phase,
1 of the algorithm, that is the variant of the A-priori
algorithm for mining co-supported conditions.

In this paper, the problem of characterizing the fea-
tures distinguishing two given populations has been
analyzed. We introduced the notion of discriminating

8p= | 01 [ 02 [ 03 [ 05 ] 07 | 08 | 10 rule, a kind of logical implication which is much more
Mushroom | 0.41 | 024 | 0.16 | 0.05 | 0.03 | 0.01 | 0.01 valid in a population than in the other one. We sug-
Census | 430 | 255 | 219 | 1.28 | 054 | 001 | 001 gested their use for characterizing anomalous subpop-

ulations. In order to avoid for the analyst to be over-

Next we comment upon some oustanding rules re- Whelmed by the potentially huge number of rules dis-
turned by running DRUID. Consider tHdushroom  Criminating the two populations, we defined an orig-
dataset. The ruleap—surface= f A cap—shape= !nal notion of prefe_rence r.elatlon among dls_cr|m|.nat-
x = odor = n, haspow= 0.99, cnf, = 0.97,cnf , = ing rules, w_h|_ch is interesting froma se_man_tlcal view-
001, SUFE — 017, Supp = 0.11. It concerns mush_ pOInt, bu-t-|t IS Cha”eng|ng to deal W|th -S|nce It Is
rooms with fibrous cap surface and convex cap shape.not transitive and, hence, no monotonicity property
The rule asserts that edible mushrooms thereof arecan be exploited to efficiently guide the search. We
very likely to be odorless, while poisonous are very Proposed the DRUID algorithm for detecting the out-

likely to be odorous.

The rulecap-color = g A gill —spacing= ¢ =
ring—type= p, haspow= 0.84,cnf, = 1.00,cnf, =
0.16, sup, = 0.15, sup, = 0.20. It concerns mush-
rooms with gray cap color and closed gills. The

standing discriminating rules, and discussed prelimi-
nary experimental results.
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