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Abstract: In this work anexample-basedutlier detection method exploiting both positive (that is, outlier) and negative
(that is, inlier) examples in order to guide the search for anomalies in an unlabelled data set, is introduced.
The key idea of the method is to find the subspace where positive examples mostly exhibit their outlierness
while at the same time negative examples mostly exhibit their inlierness. The degree to which an example
is an outlier is measured by means of well-known unsupervised outlier scores evaluated on the collection of
unlabelled data.
A subspace discovery algorithm is designed, which searches for the most discriminating subspace. Experi-
mental results show that the method is able to detect a near optimal solution, and that the method is promising
from the point of view of the knowledge mined.

1 INTRODUCTION to be single out are anomalous, that is their occurrence
frequency is very low, e.g. consider people affected
Unsupervised outlier detection techniques search forby a rare disease.
the objects most deviating from the data population The degree to which an example is an outlier is
they belong to. These techniques are employed onmeasured by means of well-known unsupervised out-
unlabelled data sets, that is when no a priori infor- lier scores evaluated on the collection of unlabelled
mation about what should be considered normal and data. A distance-based unsupervised outlier scores is
what should be considered exceptional is available, employed, that is the mean distance of the object from
and outliers are singled out on the basis of cerain its k nearest neighbors (Angiulli and Pizzuti, 2002).
lier scoresthat can be assigned to each single object. A subspace is then deemed to comply with the pro-

However, in addition to the unlabelled data set, vided examples if a separation criterium between out-
very often alscexamples of normalitandexamples  lier scores associated with positive examples and out-
of abnormalityare available. In this scenario itis then lier scores associated with negative examples is sat-
of interest to modify the mining technique in order to isfied, and, moreover, the difference between the for-
take advantage of these examples. mer and the latter ones is positive.

In this work anexample-basedutlier detection The most discriminating subspace is that which
method exploiting both positive (that is, outlier) and maximizes the above difference. Note that this mea-
negative (that is, inlier) examples in order to guide sure is not monotonic with respect to subspace con-
the search for anomalies in an unlabelled data set,tainment. While from a semantic point of view this
is introduced. The task here introduced is novel, in property can be considered a desideratum, from the
that previous methods are able to exploit only posi- algorithmic point of view the above property makes
tive examples. The key idea of the method is to find very difficult to guide search towards the right sub-
the subspace where positive examples mostly exhibitspace.
their outlierness while at the same time negative ex- A subspace discovery algorithm is designed,
amples mostly exhibit their inlierness. which searches for the most discriminating sub-

The method can be useful when a small amount of space. As already noted, finding this subspace is a
labelled data is available, e.g. a few patients for which formidable problem due to the huge search space,
an ascertained diagnosis is known, and the individualswhile the non-monotonicity of the measure to op-
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timize makes difficult to alleviate the cost of the mapped into the MDEF feature space (Papadimitriou
search. The introduced mining technique is based onet al., 2003), and both user-provided examples and
the paradigm of genetic algorithms, which are able to outstanding outliers, i.e. those that can be regarded
provide good approximate solutions to the problem of as outliers at some granularity level, are collected to
optimizing a multidimensional objective function. form the positive training data. Then the SVM algo-
The rest of the work is organized as follows. Inthe rithm is employed in order to build a classifier sepa-
rest of this section, work related to the one here pre- rating the normal data from the positive training data.
sented is briefly surveyed and major differences are This technique employs only positive examples, is
pointed out. In Section 2, the novel task tackled with based on the MDEF measure, and does not work on
in this work is formally defined. Subsequent Section subspaces, but instead searches for anomalies in the

3 presents th&xampleBasedOutlierDetecti@igo-
rithm. Section 4 describes experiments on both syn-
thetic and real data sets. Finally, Section 5 draws con-
clusions and future work.

1.1 Redated Work

Next some outlier detection methods working on
subspaces and/or exploiting examples are briefly re-
called. Contributions of this work are clarified by
pointing out differences with related methods while
discussing them.

The work (Aggarwal and Yu, 2001) detects

anomalies searching for subspaces in which the datae

density is exceptionally lower than the mean den-
sity of the whole data. Promising subspaces are de-
tected by employing a technique based on genetic al-
gorithms. Although this method works on the sub-

spaces, it does not contemplate the presence of exam

ples.

In (Zhang and Wang, 2006) the interest is on
searching for the subspaces in which the sum of the
distances between a fixed object andhigairest neigh-
borsexceeds a given threshold. A dynamic subspace

full feature space.

In (Zhu et al., 2005), given an input set of exam-
ple outliers, i.e. of objects known to be outliers, the
authors search for the objects of the data set which
mostly exhibit the same exceptional characteristics.
In order to single out these objects, they search for
the subspace maximizing the average value of sparsity
coefficients, that is the measure introduced in (Aggar-
wal and Yu, 2001), of cubes containing user exam-
ples. This method is suited only for numerical at-
tributes, it is based on the notion of sparsity coeffi-
cient, which is different from the notion of distance-
based score, and it can take advantage only of pos-
itive examples, while negative ones are not consid-
red. Moreover, it must be noted that the sparsity co-
efficient is biased towards small subspaces. Indeed,
in order to prefer larger ones it should take place that
the number of objects is exponentially related to the
number of attributes, a very unlikely situation.

2 PROBLEM STATEMENT

First some preliminary definitions are provided, and

search exploiting sampling is presented and comparedthen the example-based outlier score is introduced.

with top-down and bottom-up like techniques. This
work exploits only one positive example and it has no

A featureis an identifier with an associated do-
main. A space Fis a set of features. Aobjectof

negative ones. Furthermore, subspaces in which thethe spacéd- is a mapping among featurésc F and

example is exceptional are searched for, while discov-
ery of additional outliers is not accomplished.

The work (Wei et al., 2003) focuses on discover-
ing sets of categorical attributes, calledmmon at-
tributes being able to single out a portion of the data

base in which the value assumed by an object on a sin-

gle additional attribute, calledxceptional attribute
becomes infrequent with respect to the mean of the

values in the domain oA. The value of the objeai
on the featuré\ € F is denoted bya. A subspace S
of F is any subset oF. Theprojectionof the object
0in the subspacs, denoted byS, is an object of the
spaceSsuch thaby = oa, for eachA € S Note that
oF = o0. The projection of a set of objec® in the
subspacs, denoted by0S, is {0%| 0 € O}.

A distancedist on the spacé& is a semimetric

frequencies of the values assumed by the same at-defined on each pair of objects of each subspace of

tribute. Common attributes are determined by select-
ing the sets of frequent attributes of the data base.

In (Zhu et al., 2005) theOutlier by Example
method is introduced. Given a data set and user-
provided outlier examples, the goal of the method
is to find the other objects of the data set exhibiting
the same kind of exceptionality. Data set objects are

F, that is a real-valued function which satisfies the
non-negativity, identity of indiscernibles and symme-
try axioms.

Let a set of object®S of the spacé-, calleddata
setin the following, be available. Le > 1 be an
integer. TheK-th nearest neighboof o° (in the data
setDS), denoted bynnk (0°), is the objectp of DS
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EXAMPLES
such that there exist exactly — 1 objectsq of DS In order to measure the relevance of the subspace
with dist(0%, %) < dist(05, pS). Swith respect to the above criterium, next the concept

of subspace score is introduced. Tbspace score
sqS) of the spac&Swith respect to set of positive ex-

Outliq Score.. In this work, we employ a w_eII— amplesO and set of negative exampleis
established distance-based measures of outlierness, S S o .
. . . . sq0>) —sq1®) , if Sis p-consistent w.r.tO andl
also saicbutlier scorein the following. s¥9 =1 o otherwise
Theoutlier score 0fo) of o is defined as follows '

(Angiulli and Pizzuti, 2002): !\Iote that for a consistelnt subspéieh.e. correspond-
ing subspace scoexS) is always positive.
1K Moreover, it is worth to point out that the subspace
050) = ,Zd'St(o’ nni(0)). score is not monotonic with respect to subspace con-
= tainment.
The outlier score is given by the sum of the distances
betweerp and itsK nearest neighbors in the data set. o tjiers by Example Problem. We are now in the

Its value provides an estimate of the data set density inition of defining the main task we are interested in.
the neighborhood of the object The object® scor- Given an integen > 1, and a subspac® the top-
ing the greatest values of outlier sc@®o) are also 1, g liers of DS in S are then objectso of DS with
called outliers since they be considered anomalous ,4imum value of outlier scores(05).
with respect to the population under consideration. Theoutlying subspacesSis defined as

Let E be a set of objects. Thautlier score s¢E)
of E is defined as the mean of the outlier scores asso- arg msa>ss(8).

i ith the el : . -
ciated with the elements & Given a data sddS, a set of positive exampl€ a set

sqE) = 1 oge). of negative examples and a positive integer number
|E]| eg; n, the Distance-Based Outlier Detection by Example
Problemis defined as follows: find the topoutliers

Subspace Score.  Assume a seD of outlier exam- N the outlying subspacg™
ples(or positive examplgsand a set of inlier exam-
ples(or negative examplgare available.

We are interested in finding subspaces where the3 ALGORITHM
outlier examples deviate from the data set population,
the inlier examples comply with the data set popu- Finding the outlying subspace is in general a
lation, and the separation between these examples iformidable problem. We decided to face it by exploit-
large. ing the paradigm afenetic algorithmgHolland et al.,

In order to formalize the above intuition, the fol- 1986; Holland, 1992), a methodology also pursued by
lowing definition of consistent (with respect to a set of other subspace finding methods for outlier detection
positive and negative examples) subspace is needed. (Aggarwal and Yu, 2001; Zhu et al., 2005). Genetic

We say that a subspa&és p-consistentor simply algorithms are based on the theory of evolution and
consistentwherep € [0,1] is a user-provided param-  they are probabilistic optimization methods based on
eter, with respect to a s€tof positive examplesand a the principles of evolution. These algorithms have
setl of negative examples, if th@percent of the ob-  been successfully applied to different optimization
jects inOS, that are the positive exampl@sprojected tasks. In the optimization of non-differentiable or
in the subspacs, is globally more outlying than the  even discontinuous functions and discrete optimiza-
set of objects inS, that are the negative examples  tion they outperform traditional methods since deriva-
projected in the subspa&while the remaining +p tives provide misleading information to conventional
percent of the objects i@° is individually more out-  optimization methods.

lying than all the objects ihS, that is to say, Genetic algorithms maintain a population of po-

1. sc(OE) > s(1), whereOy, is the set of thép|O]] tential solutions. In our context, a potential solution
objectso of O having the smallest outlier scores IS @ subspace and it is encoded by means of a binary
05(0), and string, also said ahromosomgof length|F|. Theith

bit of the binary string being 1 (0, resp.) means that

S 'S
2. 050°) > max¢| 05(i>), for eacho € (O — Op). theith feature offF is (is not, resp.) in the subspace

where the first condition does not applyit= 0 orOy encoded by the chromosome. At each iteratidit-a
is empty, and, dually, the second condition does not nessvalue is associated with each chromosome, rep-
apply if p=1 orO— Oy is empty. resenting a measure of the goodness of the potential
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Algorithm ExampleBasedOutlierDetection

Input: data seDSon the set of featurds, setO of positive examples, sétof negative examples, numbigrof
nearest neighbors to consider, numberf top outliers to return, parameter

Output: the example-based outliersbB

D

1. LetP the initial population of subspaces having sMe obtained by selecting at randadwh subsets of the
overall set of featureB

2. While the convergence criterion is not meet do

(a) For each subspacin P, determine ifSis already stored in the hash tal8&Tableand, in the positive
case, retrieve its fitness value

(b) LetPhew={S1,...,Sn} be the subset d® composed of the subspaces which are not stor&sifable

(c) For each negative example in | = {iy,...,iN}, determine simultaneously the outlier scores

(d) Let B denote the numbefp|O|], and letay,..., Om (B1,---,Pm, resp.) denote the maximum (mean,

resp.) outlier scores associated with the negative exanpléhe subspaces, ..., Sy, respectively, that
is aj = maxe o(i%) (Bj = sdI%), resp.), forj =1,...,m
(e) For each positive examptg in O = {og,...,0N, } dO
i. Determine simultaneously the outlier scof@s(o}) | S€ Prew}
ii. Foreach subspac$ in Phewdo
A. Let Oy j be the set composed of precisely B@bjectso of {oy,...,0¢} having the smallest outlig

scorens(0% ), and letoy j be the object having theB -+ 1)—th smallest outlier scores(o ;)

B. Ifeither (1)aj > os(ok_ﬁ) or(2)Bj > sc(OE'j), then sePrew = Phew— {Pj}, and set the fitness of the
subspace®; to zero and store it in the hash tald&Table

(f) For each subspac®remained irPey compute its fitness a&({0%) — s(15) and store it in the hash table
SSTable

(g) From the seP, selectM pairs(Sh ), ... (Sy, ) of parent subspaces for the next generat&sie(ction
step)

(h) Compute the set of subspad@sxt={S,,...,S,} where each subspaéi’; is obtained by crossover 0
the parent subspacé% and<?, fori =1,...,M (crossoverstep)

(i) Mutate some of the subspaces in theRgk: (mutationstep)

() Setthe current populatioR to the next generatioRnext

=

=

3. Select the subspa&?®in P scoring the maximum fitness value
4. Determine the top-outliers in the subspac®®and return them as the set of the example-based outliers

Figure 1: TheExampleBasedOutlierDetecti@hgorithm.

solution. The current population is iteratively updated cost, which are explained next.
by means of the selection, crossover, and mutation  First of all, an hash tabl8STablef sizeT main-
mechanisms till a convergence is me®electioris a tains the latesT subspaces visited by the algorithm,
mechanism for selecting chromosomes for reproduc- together with their fitness, and with a timestamp
tion according to their fithessCrossoverdenotes a  which is exploited to implement the insertion policy.
method of merging the genetic information of two in- This table is used as follows. Before computing the
dividuals; if the coding is chosen properly, two good fitness associated to a subspace, it is searched for in
parents produce good children. In genetic algorithms, the hash table. If the subspace is found, then its times-
mutationcan be realized as a random deformation of tamp is updated and then the fitness stored in the table
the strings with a certain probability. The positive ef- is employed. Vice versa, when a novel subspace has
fect is preservation of genetic diversity and, as an ef- to be stored in the hash table, but no more space is
fect, that local maxima can be avoided. available in the selected entry, the timestamps are ex-
Figure 1 shows the algorithiEixampleBasedOut-  ploited in order to determine the subspace (that is, the
lierDetectionwhich solves theOutliers by Example  oldest one) that will be replaced with the latest sub-
Problem We employed the subspace score as fithessspace.
function for the genetic algorithm. Since computing In this work we employed the Euclidean distance
the subspace score is expensive, some optimizationsas distance function. L&y, ..., Sy the subspaces of
are accomplished in order to practically alleviate its the current population which are not already stored



FINDING DISTANCE-BASED OUTLIERS IN SUBSPACES THROUGH BOTH POSITIVE AND NEGATIVE
EXAMPLES

in SSTable In order to save distance computations, placed so that the outlying subspace coincides with
the outlier scoress(e™), ..., oge™) associated with  a randomly selected subspace having dimensionality
a positive or negative exampke are computed si- (%1.
multaneously as follows: first the sdtis computed We varied the dimensionaliy from 10 to 20 and
as S U...USy and, for eachA € U, the values  run our algorithm three times on each data set. We
da = (Xa —ya)? are obtained, and then the distances recall that the size of the search space exponentially
dist(x5i,yS ) are computed 3 Acs; da. increases with the number of dimensidds We set

the population size to 50 and the number of genera-

As a further optimization, the outlier scores as- tions to 50 in all the experiments. The paraméger

sociated with the negative examples are computed
first (see steps 2(c) and 2(d)). Then, while comput- was setto 10. )
ing outlier scores associated with positive examples _ 1able 1 reports the results of these experiments.
(see step 2(e)), the outlier scores of the negative onednterestingly, the algorithm always found the optimal
are immediately exploited in order to filter out sub- Solution in at least one of the runs. Up to 15 dimen-
spaces which are ngi-consistent (see step 2(e)ii) SIONS it alway§ termlnated Wlth the right outlying sub-
and, hence, avoiding useless distance computations. SPace. For higher dimensions it reported also some
As selection-crossover-mutation strategies we d|fferen_t subspace_s, but in all cases the solution re-
used proportional selection, one-point crossover, and tUrned is a suboptimal one. Indeed, the second and
mutation by inversion of a single bit, while as conver- third solutions concerning the data Synth18Dare
gence criterion was used an a-priori fixed number of SuPsets of the optimal solution both having only a sin-
iterations, also saigenerationgHolland, 1992). gle missing feature, while the second solution con-
As far as the temporal complexity of the algorithm  C€Ming the data s&@ynth200s a superset of the op-

is concerned, sail the number of data set objects, j[imal . having two extra featurgs. By these exper-
Ne the total number of examples, the number of iments it is clear that the method is able to return the

features in the spade, andg the number of gener- ~ OPtimal solution or a suboptimal one.
ations. In the worst case, for each generation in or-  The subsequent experiment was designed to val-
der to determine outlier scores the distances amongidate the quality of the solution returned by the pro-
all the examples and all the data set objects are com-Posed method. In this experiment we considered the
puted, with a total cogD(g* N « N xd). After hav- Wisconsin Diagnostic Breast Cancer data set from the
ing determined the outlying subspag®, in orderto ~ UCI Machine Learning Repository. This data set is
compute the tom outliers in that subspace, all the Ccomposed of 569 instances, each consisting in 30 real-
pairwise distances among data set objects are to bevalued attributes, grouped in two classes, thatbere
computed, and, then, the tapeutliers are to be sin-  Nign (357 instances) anthalignant(212 instances).
gled out, with a total cosD(N2 «d). Summarizing, ~ The thirty attributes represent mean, standard error,
the temporal cost of the algorithExampleBasedOut-  @nd largest value associated with the following ten
lierDetectionis O(g+ Ng N+ d -+ N2 d). cell nucleus features: radius, texture, perimeter, area,

smoothness, compactness, concavity, concave points,

symmetry, and fractal dimension.

We normalized the values of each attribute in the
4 EXPERIMENTAL RESULTS range[0,1]. Moreover, we randomly selected ten be-
i y . ) nign instances as the set of negative examples:

In the experiments reported in the following, if N0t 5nq twenty malignant instances as the set of posi-
otherwise specified, t_he crossover probability was settive exampleDypde Moreover, we built a data set
to 0.9 and the mutation probabll!ty was s?t tad0. . DSyapcOf 357 objects by merging together all the re-
Moreover, the parametg; determining the “degree”  5ining benign instances (that are 347) with other
of consistency of the subspace, was set o 0 ten randomly selected malignant examples, say them

First of all, we tested the ability of the algorithm D%dbc’
to compute the optimal solution (that is the outlying We set the number of neighbdfsto 50, and the
subspace). With this aim, we considered a family of number of top outliers to 20. First of all, we com-
synthetic data sets, call&@ynthin the following. puted the distance-based outliers in the full feature

Each data set of the family is characterized by the space. We found that among the top twenty outliers,
sizeD of its feature space. Each data set consists of six of them belong to the s&IS) ;.. (corresponding to
1,000 real dimensional vectors in tiledimensional  the 60% oDS),,,)- Next, we run théxampleBased-
Euclidean space, and is associated with aboposi- OutlierDetectionalgorithm. The outlying subspace
tive examples anD negative examples. Examplesare Sy, . found was composed of seventeen features. In
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Table 1: Experimental results on the synthetic data setyami

Dataset || Outlying subspace| Outlier score || Algorithm output | Outlier score
0000100001 1.121307
Synth10D 0000100001 1.121307 0000100001 1.121307

0000100001 1.121307
101000010000 1.428615
Synth12D 101000010000 1.428615 101000010000 1.428615

101000010000 1.428615
000010011000000| 1.522407
Synth15D 000010011000000 1.522407 000010011000000] 1.522407

000010011000000| 1.522407
00010000001000110( 1.667848
Synth18D 000100000010001104 1.667848 000100000010001004 1.424176

00010000001000100( 1.424176
0001100000000100001 1.701322
Synth20D || 0001100000000100001! 1.701322 || 00011000100001000011 0.995888
0001100000000100001 1.701322

this subspace, nine objects of the dec belong Angiulli, F. and Pizzuti, C. (2002). Fast outlier detection

to the top twenty distance-based outliersD$ (that large high-dimensional data sets Rroc. Int. Conf. on
is the 90%). Principles of Data Mining and Knowledge Discovery
pages 15-26.

Thus, by exploiting our method we singled out a
subspace in which the anomalies detected by usingHolland, J. (1992)Adaptation in Natural and Artificial Sys-
the distance-based definition are of better quality with tems J@IE MIT Press, Cambridge, MA.
respect to those detected in the full feature space byHolland, J., Holyoak, K., Nisbett, R., and Thagard, P.
using the same definition. (198_6). Computational Models of Cognition and Per-

ception chapter Induction: Processes of Inference,
Learning, and Discovery. The MIT Press, Cambridge,
MA.
5 CONCLUSIONS Papadimitriou, S., Kitagawa, H., Gibbons, P. B., and Falout
sos, C. (2003). Loci: Fast outlier detection using the
We presented an example-based outlier detection ~ '0cal correlation integral. MCDE, pages 315-326.
method exploiting both positive and negative exam- Wei, L., Qian, W., Zhou, A., Jin, W, and Yu, J. (2003). Hot:
ples in order to search for anomalies in an input data Eypergfr?ﬁhg)as_?d X”.t“eé te?t foriateglor('fa' g?‘ta- In
set. The task here introduced is novel, in that previous e:;’gn% Daeta ?Acilnli%-g ;;Zesoggg’_nﬂg_owe ge Discov-
methods are able to exploit only positive examples, _ _
and, moreover, are based on different outlier defini- Zhangbé]éeznf%rvr\q%nrgbil_r:rie(r?gigggl dzf;‘?‘;ﬂggngxﬂtﬁgf ngb(;_
tion§. We presented a SUbSpace discovery algorithm rithms, and performancda(nowledgé and Informat’ion
designed to search for the optimal subspace, and ex- Systemgto appear.
periments showgd that the method is abl_e to deFe_ct 8Zhuy, C., Kitagawa, H., and Faloutsos, C. (2005). Example-
suboptimal solution, and that the method is promising based robust outlier detection in high dimensional
from the point of view of the knowledge mined. datasets. IrProc. Fifth IEEE International Confer-

As a future work, it is of interest to investigate ence on Data Miningpages 829-832.
the inclusion in our framework of other outlier defini-
tions, and the design of policies for selecting outliers
in the outlying subspace guided by the examples. Fi-
nally, we plan to execute a more extensive experimen-
tal campaign concerning both from the computational
and the semantic point of view.
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