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Abstract: This paper presents a novel approach for electroencephalogram (EEG) signal prediction. It combines 
temporal and frequency based prediction to achieve a good final prediction result. Artificial neural networks 
are used as the predictive model for signals both in the temporal and frequency domain. In frequency based 
prediction, the amplitude and the phase of the frequency response are predicted separately. Experiments 
were conducted on the prediction of EEG data recorded from 13 subjects. Eight performance measures were 
used to evaluate the performance of our proposed method. Experiment results show that the proposed 
combined prediction method gives the overall best performance compared with the temporal based 
prediction alone and the frequency based prediction alone. 

1 INTRODUCTION 

Time series prediction problem has wide range of 
research interest due to its diverse potential 
applications such as electroencephalogram (EEG) 
signal analysis, financial data prediction, and 
environmental monitoring. To measure brain 
activity, non-invasive EEG is one of the most 
important bio-signals and many researchers are 
working on EEG signal prediction.  

Researchers have used time series prediction 
methods to check the linearity of EEG signals. They 
found that nonlinear properties are present in EEG 
signals and that some data are not predictable using 
linear stochastic system (Robert A. Stêpieñ, 2002). It 
was found that EEG recordings from subjects with 
schizophrenia contain some degree of determinism 
(low order chaotic), but are not completely 
deterministic and contain properties of nonlinearity 
(Ying-Jie Li, 2005). The linear EEG model cannot 
perfectly describe the spontaneous EEG that 
displays nonlinear phenomena (Ou Bai, 2000). 

 Time series prediction methods were also 
applied to find the occurrence of seizures from the 

EEG of epilepsy patients (Florian Mormann, 2007). 
EEG time series prediction also has been used to 
extract features for motor imagery task classification 
in Brain Computer Interfaces (Stefan Cososchi, 
2006). EEG time series prediction pre-processing 
shows better performance compared with Common 
Spatial Pattern (Damien Coyle, 2008). From 
previous research, it is clear that EEG time series 
prediction has a high impact on medical and 
engineering applications.  

Different algorithms for EEG signal prediction 
have been proposed to enhance the predictive 
model’s convergence performance in the time 
domain, such as Least Square Support Vector 
Machine (LS-SVM), Support Vector Regression 
(SVR), Neuro-Fuzzy System, recurrent or time delay 
network, and feature selection methods such as 
mutual information based feature selection. 
(Nicholas I., 2009) Researchers also combine 
Principal Component Analysis (PCA) (Paul Cristea, 
2008), Kernel PCA and SVM (Qisong Chen, 2008), 
Independent Component Analysis (ICA) (Juan M. 
Gorriz, 2003), for feature selection purpose in the 
time domain. Future EEG signal prediction is 
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necessary to predict the future brain activity in 
which users may have different stages of intention. 
In this work, the EEG to be predicted is recorded 
during a time in which tasks conditions are 
changing. At some points in time, subjects 
are responding to rewards or making decisions, 
making movements, or doing none of these things.  
To predict the EEG would be related to what task 
conditions the subject was performing at particular 
points in the prediction interval.   

 For nonlinear time series prediction, the future 
to some extent may be predicted, but the accuracy of 
the non-linear forecast falls off with increasing 
intervals of prediction time for uncorrelated noise 
(K.J. Blinowska, 1991). On the other hand, the EEG 
reflects thousands of simultaneous ongoing brain 
processes. The brain’s response to a single stimulus 
or event of interest is not usually visible in the EEG 
recording of a single trial. To see the brain response 
to the stimulus, many trials are typically averaged 
(Coles, 1996).  

We propose a method for EEG signal prediction 
that combines temporal and frequency based 
prediction. In our problem, a segment of future EEG 
signals is predicted given some known values of the 
EEG signal in the past. Using only time domain 
data, prediction causes high prediction error for 
noise and for the model error. On the other hand, 
brain activities such as internal and external 
cognitive processing have great impact on particular 
frequency bands. This provides good motivation to 
perform the prediction in the frequency domain. The 
prediction from the temporal domain and the one 
from the frequency domain are combined by 
considering their performance in the training data.   

The remainder of the paper is organized as 
follows. The proposed method is described in 
Section 2. Experiments and results are provided in 
Section 3. The conclusions and future work are 
stated in Section 4. 

2 PROPOSED METHOD 

2.1 Input Data Representation 

Time series prediction is a well known problem for 
forecasting future value. One-step-ahead time series 
prediction can be presented by Equation (1): 
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where yt is predicted based on the past L values in 
the time series. 

For future brain activity or event prediction 
segments of multiple time samples are predicted. As 
illustrated in Figure 1, the time segment YM 
containing M sample points is predicted based on N 
sample points in the past.  

 
Figure 1: A time segment with M sample points to be 
predicted from N known sample points. 

2.2 Overview of the Proposed System 

Figure 2 presents a block diagram of the prediction 
process. After preprocessing, the EEG data are 
divided into training, validation and test sets. The 
trained predictor is then validated using the 
validation data set. Different predictors are trained 
for the temporal based prediction and the frequency 
based prediction separately. The resulting 
predictions are then combined using weights that 
optimize the results in the training data. Based on 
the validation performance, a set of weights is 
selected and used to generate the final result in the 
testing process.  

 
Figure 2: Block diagram of the prediction system. 

The following sections explain each of the 
system modules in more detail.  

2.3 Pre-processing 

The raw EEG data are normalized by rescaling the 
signal to the range [0,1] to meet the high 
convergence in the neural network based training 

YM 
1  2  3 ....    N N+1    ...     N+M  N+1+M          ...             

       y1 y2  ...  ...  ... yM 
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process. This pre-processing step is illustrated by 
Equation (2):  

minmax

min
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−

=                 (2)   

2.4 Proposed Prediction Algorithm 

Figure 3 shows the workflow of our proposed 
prediction algorithm. Our proposed prediction 
algorithm is divided into two main steps. In the first 
step, the temporal domain data and its corresponding 
frequency domain data are predicted separately. In 
the frequency based prediction, Fast Fourier 
Transformation is used to convert the time signal 
into the frequency domain. From the frequency 
response data, the amplitude and the phase are 
computed. Two neural networks are built to predict 
the amplitude and the phase separately. In Figure 3, 
these predictors are shown in two blocks named 
Amplitude Predictor and Phase Predictor.  The 
predicted frequency response data are reconstructed 
using the predicted amplitude and the predicted 
phase as shown in Equation (3). 

)()()( tphaseietamplitudetf ××=            (3) 
 

Inverse Fast Fourier Transformation is applied to get 
the frequency based predicted data in time domain. 

In the second step, the temporal and frequency 
based predicted data are combined by using weights 
obtained from the analysis of the prediction error for 
each frequency band of each predicted signal during 
the validation process.  

 
Figure 3: Workflow of the proposed prediction algorithm. 

2.5 Predictive Model 

The Neural Network parameters are obtained using a 
two fold cross validation process. For the temporal 
and frequency based predictions, gradient descent 
with momentum and adaptive learning rate back-
propagation is used. Parameters are optimized 
separately to get the best performance in each 
domain. Learning rate in the range 0.01-0.03 and 
momentum of 0.3-0.9 gives better performance. 
Iteration range is 2000-2500 to train the predictor. A 
three layered back-propagation neural network is 
used for the system. The number of the input and 
output nodes are equal to the known segment length 
and predicted segment length respectively. The 
number of hidden nodes is optimized both in 
temporal and frequency domain. The number 
optimized hidden nodes are in the range of 36-120. 
Log-sigmoid functions are used as transformation 
function.  

Our proposed prediction algorithm is a general 
framework and it can work regardless of the 
predictive model to be applied. The proposed 
method is checked with the gradient decent learning 
without momentum and the overall performance is 
lower than the case of gradient decent with 
momentum. The neural network parameters such as 
the value of momentum and transformation function 
are varied and it is found that the performance is 
very similar with negligible difference. 

2.6 Weighted Combining 

From the predicted results of the temporal and 
frequency domains, the weights are optimized from 
the validation set. There are two possible ways to 
combine the temporal and frequency based predicted 
data: 1) in frequency domain and 2) in time domain. 
Combining in the frequency domain has the 
advantage of being able to put more emphasis in a 
particular frequency band if the corresponding 
prediction signal is shown to be more accurate. Next 
we will show how we calculate the weights.  

Figure 4 illustrates the process for computing the 
weights used to combine the temporal-based 
predicted frequency response and the frequency-
based predicted frequency response. Each frequency 
response is divided into n frequency bands. The 
frequency bands FRt1,FRt2,......,FRtn represent the 
frequency response of the signal predicted in the 
temporal domain. The frequency bands 
FRf1,FRf2,......,FRfn represent the frequency response 
of the signal predicted in the frequency domain. 
With the validation set, the ground truth frequency 
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response FRg1,FRg2,......,FRgn of the actual signal  is 
known. During the validation, this ground truth 
information is compared with the prediction from 
the temporal domain and the prediction from the 
frequency domain at each frequency band.  

 
Figure 4: Weight calculation and the combining process of 
predicted frequency response data. 

Errors are then computed in order to determine 
how good the prediction is in each domain. The 
error Eti denotes the error between the i-th frequency 
band of the temporal based predicted frequency 
response and that of the ground truth frequency 
response. Similarly, the error Efi denotes the error 
between the i-th frequency band of the frequency 
based predicted frequency response and that of the 
ground truth frequency response. The smaller the 
error is, the better the corresponding prediction is. 
The weights for combining the temporal based 
predicted frequency response and the frequency 
based predicted frequency response for the i-th 
frequency band are denoted by Wti and Wfi 
respectively. These weights are calculated by 
Equations (4) and (5): 

fiti
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It can be seen from Equations (4) and (5) that if 
the error for a particular prediction method is small 
at a frequency band, then the corresponding weight 
will be set to be higher. For example, if temporal 
based prediction yields a small error Eti, then this 
means that the error from the frequency based 
prediction Efi is relatively larger. From Equations (4) 
and  (5), it can be observed that the weight Wti will 
become larger than the Wfi thus putting more 
emphasis on the temporal based prediction.  

After calculating the weights, the corresponding 
frequency bands are then multiplied and added to get 
the combine frequency band FRc1,FRc2,......,FRcn. 
Inverse Fourier Transformation is used to transform 
the combined response back to the time domain 
signal. 

2.7 Performance Measures 

Eight different performance measures are used to 
check the system performance. These performance 
measures are defined by Equations (6)-(13). For the 
first five measures MSE, NMSE, MAE, NMAE, 
MAPE, the larger the values are, the worse the 
performance is. For the last three measures SNR, 
PSNR, CCORR, the larger the values are, the better 
the performance is.  
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2.8 Effect of Weight on Performance 

We examine how the performance is affected by the 
number of frequency bands n considered. Figure 5 
shows the effect of number of frequency bands on 
the performance with different error measures. From 
the analysis of the results, we found that for all 
performance measures if the number of frequency 
bands increases then the performance also increases. 

 
Figure 5: Performance with different number of frequency 
bands n. 

3 EXPERIMENT AND RESULTS 

3.1 Data Acquisition 

The EEG signals were collected with a Biosemi 
EEG system with 10/20 international standard 
(http://www.biosemi.com) from a total of 13 young 
adult subjects. The sampling frequency (fs) was 
512Hz. The behavioural task was an instrumental 
reward-based learning task adapted for humans 
(Peterson et al., 2009), based on a primate study 
designed to examine the firing rates of dopamine 
cells during decision making (Morris et al., 2006). 
The task is a modification of the classic two-armed 
bandit (Robbins, 1952). Subjects were presented 
with a series of trials in which they chose abstract 
visual images with a possibility of accruing a small 
reward on each trial. The task consists of two phases 
of 256 trials of reference and decision. Subjects were 
first given a brief practice session, with eight 
reference and four decision trials.  The practice 
stimuli were four simple geometric shapes that were 
different from any of the stimuli used in the actual 

experiment. There were no feedback signals or 
rewards in this practice session in order to avoid 
teaching any associations prior to the actual 
experiment. Table 1 shows the number of sample 
points as well as the total time in second in which 
the EEG signal for each of the 13 subjects is 
recorded. 

Table 1: Number of sample points and time in EEG 
recoding for the subjects. 

Subject Number of 
Sample Points 

(fs=512Hz) 

Time (second) 
 

1 1285120 2510 
2 1126400 2200 
3 949760 1855 
4 1172480 2290 
5 1246720 2435 
6 1141760 2230 
7 1077760 2105 
8 1100800 2150 
9 1226240 2395 
10 1044480 2040 
11 1231360 2405 
12 1044480 2040 
13 1008640 1970 

3.2 Data Preparation 

The data for each subject are segmented into 
different sections as shown in Figure 6. Each section 
is further divided into two equal subsections, one 
used for training and the other used for validation 
purpose. 

The unused portions of the data shown in Figure 
6 are used to for testing. Figure 7 illusrates the test 
set generation for a subject. 
After splitting the data for a subject, the training sets 
are processed for input into the predictive model 
(Neural Network in our case). Based on the N 
known sample points, M sample points are to be 
predicted. 

 
Figure 6: Training and validation set spliting for a subject. 
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Figure 7: Test set genaration for a subject. 

Eight different pairs of parameters (N, M) are 
used to check the performance of the proposed 
method: (128, 32), (128, 64), (256, 32), (256, 64), 
(256, 128), (512, 64), (512, 128), (512, 256). 

3.3 Results 

The performance averaged over all subjects with 
different values of (N, M) using our proposed 
method is shown in Figure 8. Temporal based 
prediction performance is better than the frequency 
based prediction for MSE, MAE, SNR and CCORR. 
On the other hand, frequency based prediction gives 
better performance for NMSE, NMAE, MAPE, and 
PSNR. It can be seen from Figure 8 that the case 
with N=128 and M=32 gives the best average result. 
It can also be observed that the performance 
degrades when the number of samples to be 
predicted becomes larger, i.e., when M is larger. An 
example prediction with a large value of M=256 is 
shown in Figure 11 (Appendix). Another example 
prediction with a small value of M=32 is shown in 
Figure 12 (Appendix).  

Figure 9 compares the performance with 
different values of M (M=32, 64, 128) at a fixed 
value of N=256. From the analysis of the results, we 
found that for long segments, frequency based 
prediction gives better performance than temporal 
based prediction. For example, with the measures 
NMSE, NMAE and CCORR, frequency based 
prediction gives better performance with N=256 and 
M=128. With the measures MSE and MAE, 
temporal based prediction gives better performance 
in this case. The other three measures SNR, PSNR 
and MAPE give similar performance in both 
temporal and frequency based prediction. Similar 
results are found from the analysis of the cases 
(N=512 and M=64, 128, 256) shown in Figure 13 
(Appendix). 

Figure 10 shows the performance averaged 
among all subjects and among all the 8 parameter 
pairs of (N, M). 

 
Figure 8: Performance averaged among all subjects under 
different values of N-M shown in the x-axis. 

 
Figure 9: Performance comparison for different values of 
M at a fixed value of N=256. 

It can be observed from Figure 10 that the 
performance of proposed combined prediction 
approach is better than the performance with the 
temporal based prediction or the frequency based 
prediction alone with all the 8 measures. Frequency 
based prediction gives better performance than 
temporal based prediction for the performance 
measures NMSE, MAPE, NMAE, SNR and PSNR.  
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Figure 10: Performance averaged over all subjects and all 
parameter pairs (N, M).  

For the other three measures MSE, MAE and 
CCORR, temporal based prediction gives better 
performance than frequency based prediction. 

3.4 Statistical Test 

The t-tests (one tailed and paired) were performed to 
test the statistical significance of the final results of 
the eight different performance measures. We tested 
the significance of differences between Std-Scd and 
Sfd-Scd pairs, where Std, Sfd and Scd are performance 
of all subjects in temporal, frequency and combined 
domain based prediction results, respectively. The 
differences in test scores had approximately normal 
distributions. A significance level of α=0.1 was 
used. Table 2 shows the t-values and p-values for 
different performance measures. We have accepted 
most of the measures, because in most of the cases 
p<0.1. Subscript of error measures R and L 
represent right and left tailed test respectively. 

Table 2: Statistical t-Test Result. 

Error 
Measure 
 

t-Value(df=12) p-Values 
Std -Scd Sfd-Scd Std -Scd Sfd-Scd 

MSER 3.037 1.502 0.0052 0.0794 
NMSER 5.003 1.662 0.0002 0.0611 
MAER 6.003 1.647 0.0000 0.0628 

NMAER 4.191 0.629 0.0006 0.2706 
MAPER 4.611 0.935 0.0003 0.1841 
SNRL 4.429 1.612 0.0004 0.0665 

PSNRL 4.427 1.612 0.0004 0.0665 
CCORRL 3.103 3.422 0.0046 0.0025 

 

4 CONCLUSIONS AND FUTURE 
WORK 

In this paper, we propose a method for predicting 
time series data. Our approach works by combining 
temporal based prediction and frequency based 
prediction. We apply our proposed method to the 
prediction of EEG signals recorded from 13 
subjects. From the experiments, it is found that 
frequency based prediction gives better performance 
than the temporal prediction and that the combined 
final result gives the best performance. In our 
experiments, eight different performance measures 
were used to evaluate the performance since 
different performance measure may be preferred in 
different applications.  

In future studies, we will apply the system to 
predict future brain activity, future user intention for 
decision-making and arm movements in an 
instrumental reward-based learning task. We will 
also use different methods of signal decomposition 
to acheive better prediction performance. 
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APPENDIX 

 
Figure 11: Prediction result of a longer segment (M=256) . 

 
Figure 12: Prediction result of a shorter segment (M=32) . 

 
Figure 13: Performance comparison for different values of 
M at a fixed value of N=512. 
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