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Abstract: This paper presents a new MIMO instantaneous blind identification algorithm based on third-order temporal 
property. Third-order temporal structure is reformulated in a particular way such that each column of the 
unknown mixing matrix satisfies a system of nonlinear multivariate homogeneous polynomial equations.  
The nonlinear system is solved by improved steepest descent method.  We construct a general goal of the 
nonlinear system and convert the nonlinear problem into an optimal problem.  The optimal solutions are 
obtained one by one by adding a penalty item to the general goal, which is Gaussian function characterized 
with valley-filled feature. Our algorithm allows estimating the mixing matrix for scenarios with 3 sources 
and 2 sensors, etc.  Finally, simulations and comparisons show its effectiveness. 

1 INTRODUCTION 

Multiple-input multiple-output (MIMO) 
instantaneous blind identification (MIBI) is one of 
the attractive blind signal processing (BSP) 
problems, where a number of source signals are 
mixed by an unknown MIMO instantaneous mixing 
system and only the mixed signals are available, i.e., 
both the mixing system and the original source 
signals are unknown.  The goal of MIBI is to recover 
the instantaneous MIMO mixing system from the 
observed mixtures of the source signals (Cichocki, 
A., Amari S I. 2002) (van de Laar J, Moonen M, 
Sommen P C W., 2008) (Shen Xizhong, Hu Dachao, 
and Meng Guang., 2009).  In this paper, we focus on 
developing a new algorithm to solve the MIBI 
problem by using third-order statistics. 

Many researchers have investigated the use of 
third-order cumulant temporal structure (TOCTS) 
for MIBI (Cichocki, A., Amari S I. 2002).  The 
greater majority of the available algorithms are 
based on the generalized eigenvalue decomposition 
or joint approximate diagonalization of three- or 
fourth- order cumulant-based matrix for different 
lags and/or times arranged in the conventional 

manner.  Most of them can only identify 
overdetermined problem.  An MIBI based on second 
order temporal structure (SOTS) (van de Laar J, 
Moonen M, Sommen P C W., 2008) (Shen Xizhong, 
Hu Dachao, and Meng Guang., 2009) has been 
proposed to be applied to the estimation of the more 
columns than sensors.  Our work is a continuation of 
their work presented in (van de Laar J, Moonen M, 
Sommen P C W., 2008) and we apply third-order 
cumulant to construct our algorithm. 

In this paper, we exploit TOCTS by considering 
third-order cumulant.  Then we project the MIBI 
problem on the system of homogeneous polynomial 
equations of degree three.  At last steepest descent 
method is improved to estimate the columns of the 
mixing matrix, which is different from the algorithm 
in (van de Laar J, Moonen M, Sommen P C W., 
2008) which applied SOTS.  The MIBI method 
presented in this paper allows estimating the mixing 
matrix for several underdetermined mixing scenarios 
with 3 sources and 2 sensors.  Simulations show its 
effectiveness. 
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2 MIBI MODEL AND ITS 
ASSUMPTIONS 

Let us use the usual model (Cichocki, A., Amari S I., 
2002) (van de Laar J, Moonen M, Sommen P C W., 
2008) in MIBI problem as follows 

 ( ) ( ) ( )t t t= +x As ν  (1) 

where [ ]1, , n m
m

×= ∈A a a  is an unknown mixing 
matrix with m  n -dimentional array response 

vectors ( )T

1 , 1, 2, ,j j nja a j m= =a , 

( ) ( ) ( ) ( ) T
1 2, , , mt s t s t s t= ⎡ ⎤⎣ ⎦s

 
is the vector of 

source signals, ( ) ( ) ( ) T
1 , , nt t tν ν= ⎡ ⎤⎣ ⎦ν  is the 

vector of noises, and 

( ) ( ) ( ) ( ) T
1 2, , , nt x t x t x t= ⎡ ⎤⎣ ⎦x  is the vector of 

observations.  Without knowing the source signals 
and the mixing matrix, the MIBI problem is to 
identify the mixing matrix from the observations by 
estimating A  as Â . 

The mixing matrix is identifiable in the sense of 
two indeterminacies, which are unknown 
permutation of indices of each column of the matrix 
and its unknown magnitude.  The usual convention 
is to assume that each column ja  satisfy the 
normalization conditions, i.e. 

 2

1

1, 1, 2, ,
n

ij
i

a j m
=

= =∑ ; (2) 

and leave the permutation undetermined. 
To solve the MIBI problem, we define the 

following concepts Def 1~2 for the derivation of the 
algorithm, and make the following assumptions AS 
1~4 (van de Laar J, Moonen M, Sommen P C 
W.,2008) on noise-free region of support (ROS) Ω . 
Def 1 Third-order cumulant ( ), 1 2, ,s ijkc t τ τ  of 

( ) , 1, 2, ,is t i m=   with zero mean at time instant t  

and lag 1 2,τ τ  is defined as, 1 2, ,t τ τ∀ ∈  and 
, , 1, 2, ,i j k m∀ =  

 
( ) ( ) ( ) ( )( )

( ) ( ) ( )
, 1 2 1 2

1 2

, , cum , ,

=E .

s ijk i j k

i j j

c t s t s t s t

s t s t s t

τ τ τ τ

τ τ

− −

⎡ ⎤− −⎣ ⎦
  (3) 

When i j k= = , that is, auto-cumulant, it is 
defined as 
  ( ) ( ) ( ) ( ), 1 2 1 2, , E .s i i i ic t s t s t s tτ τ τ τ− −⎡ ⎤⎣ ⎦   (4) 

Def 2 Included angle between the j -th column 

ja of A  and its estimate ˆ ja  is defined as 

 
ˆ,

, 1, 2, ,
ˆ

j j
j

j j

j mθ = ∀ =
⋅

a a

a a
,  (5) 

where ,⋅ ⋅  is dot product and ⋅  is norm-2 of a 
vector. 
AS 1 Source signals have zero cross-cumulant, that 
is, for , ,ori j j k k i∀ ≠ ≠ ≠ , 
  ( ), 1 2, , 0.s ijkc t τ τ =   (6) 
AS 2 Auto-cumulants of source signals are linearly 
independent 

 
( ), 1 2

1
, , 0 0,

1,2, ,

m

j s jjj j
j

c t

j m

ξ τ τ ξ
=

= ⇒ =

∀ =

∑   (7) 

AS 3 The noise signals have zero auto- and cross- 
cumulants, 
  ( ), 1 2, , 0, 1 , ,ijkc t i j k mν τ τ = ∀ ≤ ≤ .  (8) 
AS 4 The cross-cumulant between the source and 
noise signals are zero: 

( ) ( ), 1 2 , 1 2, , , ,

0, , ,
ss ijk s ijkc t c t

i j k
ν νντ τ τ τ=

= ∀
  (9) 

The procedure of our proposed algorithm 
includes two steps, that is, step 1 is that the problem 
of MIBI is formulated as the problem of solving a 
system of homogeneous polynomial equations; and 
step 2 is that steepest descent method is improved to 
solve the system of polynomial equations on the unit 
vector.  We detail these steps respectively in section 
3 and 4. 

3 PROJECTION ON 
POLYNOMIAL EQUATIONS 

3.1 Third-order Cumulant Related 
Matrix Definition and Structure 

Consider the following third-order cumulant of 
sensor signals, 
  ( ) ( ) ( ) ( ), 1 2 1 2, , Ex ijk i j jc t x t x t x tτ τ τ τ⎡ ⎤= − −⎣ ⎦ .(10) 

Using AS1~4, it follows on Ω , 

  ( ) ( ), 1 2 , 1 2
1

, , , ,
m

x ijk ip jp kp s p
p

c t a a a c tτ τ τ τ
=

= ∑ .  (11) 

We now stack all those third-order cumulant 
values in the 3n -dimensional vector that is defined 
as, 
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  ( ) ( ) ( ) ( )1 2 1 2, , Et t t tτ τ τ τ⊗ − ⊗ −⎡ ⎤⎣ ⎦xc x x x (12) 

where ⊗  denotes the Kronecker product.  When the 
time-lag three-way ( )1 2, ,t τ τ  are chosen in a 

specified ROS Ω , we could obtain the following 
3

ROSn N×  cumulant matrix where ROSN  is the 
length of the ROS, 
  ( ) ( )ROS1 Nω ω⎡ ⎤

⎣ ⎦x x xC c c ,  (13) 

where ( )1 2, ,i tω τ τ=  is the i th three-way element 

in Ω . 
Likewise, the source cumulant matrix sC  is 

defined as follows, 
  ( ) ( )ROS1 Nω ω⎡ ⎤

⎣ ⎦s s sC c c ,  (14) 

where ( ) ( ) ( ) T

,1 ,i s i s m ic cω ω ω⎡ ⎤= ⎣ ⎦sc . The 

linear space spanned by the rows of the source 
cumulant matrix in (14) is called the source three-
way subspace matrix, which is different from the 
definition of source subspace formed by source 
autocorrelation matrix 0.  The dimension m  of 

( )iωsc  equals the rank of sC  provided that 

ROSN m≥  and AS 2, that is, 

  ( )rankm = sC .  (15) 
From eq.(14) and (13), it follows immediately 

that 
  3⊗=x sC A C .  (16) 

Here, [ ]3 1 1 1 m m m⊗ = ⊗ ⊗ ⊗ ⊗A a a a a a a  is 

third-order Khatri-Rao product of A named after 
second-order Khatri-Rao product (van de Laar J, 
Moonen M, Sommen P C W., 2008). 

Because the kronecker product in 3⊗A  is a 

vector of length 3n  containing only N  unique rows 
of 3⊗A , where 

  ( )( )1 1 2
6

N n n n= + + .  (17) 

For simplicity, we use the same symbol 3⊗A  as the 

matrix combined by unique rows of 3⊗A  without 
confusion.  In general, if the mixing matrix is row 
full rank and if m N≤ , then ( )3rank m⊗ =A .  
Using matrix analysis (Horn R A, Johnson C R., 
1985), it follows from eq.(15) and (16) that 

  ( ) ( )3rank rankm ⊗= =xC A .  (18) 

The rank of the Khatri-Rao product matrix has been 
studied in several works, eg,. (Sidiropoulos and R. 
Bro., 2000). 

3.2 Deriving the System of 
Homogeneous Polynomial 
Equations 

If the number of rows of the sensor cumulant matrix 
is larger than the dimension of the subspace spanned 
by its rows, xC has a nonzero left null space ( )N xC .  

Let Φ  be a matrix such that its rows form a basis 
for ( )N xC , that is, 

  =xΦC 0 .  (19) 
The matrix Φ  can be determined directly from 

the singular value decomposition (SVD) of xC .  
The maximum number of linearly independent rows 
of the Φ  equals ( )( )dim N N m= −xC .  
Substituting eq.(16) into eq.(19), and using the fact 
of eq.(15), it follows immediately that 

3⊗ =ΦA 0 . (20) 
This system in (20) describes the relation 

between the unknown coefficients of the mixing 
matrix A  and the known coefficients of the matrix 
Φ . Let qφ  be the q th row of Φ , and for all 

columns pa  of the mixing matrix, define the 
functions 

  ( ) ,
1

0
n n n

q p q ijk ip jp kp
i j i k j

f a a aϕ
= = =

=∑∑∑a ,(21) 

with 1 q Q≤ ≤ , and Q N m= − . 
The MIBI problem has been projected onto the 

problem of solving the system of equations in (21) 
for the columns of the mixing matrix. 

There are Q  unique equations in system (21) by 
generic consideration in (van de Laar J, Moonen M, 
Sommen P C W., 2008), and we find the constraint 

1Q n≥ −  by eq.(21).  Therefore, the maximum 
number of columns that can be identified with n  
sensors equals 

 
( )

( ) ( ) ( )

max 1
1 1 2 1
6

m N n

n n n n

= − −

= + + − −
.  (22) 
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4 APPLICATION AND ITS 
IMPROVEMENT OF STEEPEST 
DESCENT METHOD 

By steepest descent method (Richard L. Burden; J. 
Douglas Faires., 2001), a solution at ∗a  of the 
system in (21) satisfies the function g  defined by 

  ( ) ( )2

1

n

q
i

g f∗ ∗

=

= ∑a a .  (23) 

To satisfy the constraint (2), we normalize ja in 
each iterative step to unit vector, rather than take it 
as a penalty item which performs worse in our 
experiments in the sense that the optimal point is far 
away the ideal one. 

There are many algorithms for the solution of the 
sequential unconstrained minimization problem 
(Byrne, C., 2008) in (23) to obtain the sequential 
optimal solutions one after one.  Consider that we 
have had solutions , 1, 2, , 1i i j= −a , and try to 
find next solution ,j i i≠ ∀a a .  To avoid converging 
to the same existing solution, we here improve the 
objective function in (23) by adding a penalty item 
for each known solution ia  to the objective function 
(23), that is, 

  ( ) ( ) ( )( )
1

1

,

1, ,

j

p j g j i g j i
i

f f f

j m

−

=

= − + +

∀ =

∑a a a a a
.  (24) 

Here, ( )
2

2
2

1 exp
2gf σπσ

⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

a
a  is a Gaussian 

function, .  is norm-2 of one vector, exp is 
exponential base and σ  is variance coefficient of 
estimate vector.  Then, we get a novel objective 
function, 

 

( ) ( ) ( )all ,

1, ,
j j p jf g f

j m

γ= +

∀ =

a a a
,  (25) 

where γ  is penalty factor. 
We now derive the solution of the optimal 

problem.  The direction of greatest decrease in the 
value of ( )jg a  at ( )k

ja  with k -th iteration is the 

direction given by its minus gradient ( )( )all
k

jf−∇ a  of 

( )all jf a  (Byrne, C., 2008).  The gradient is expressed 

as 
  ( ) ( ) ( ) ( )T

all 2j j p jf fγ∇ = + ∇a J a F x a .  (26) 

Here,  

 
( ) ( )( )

( ) ( )

1 T

2
1

T

2 j

p j g j i j i
i

g j i j i

f f

f

σ

−

=

⎡∇ = − − −⎢⎣

⎤+ − − ⎥⎦

∑a a a a a

a a a a
, 

( ) ( ) ( )( )T

1 , , Qf f=F x x x , and ( )jJ a  is its 

Jacobian matrix.  The objective is to reduce ( )jg a  
to its minimal value of zero, and an appropriate 
choice for updating ja  is 

  ( ) ( ) ( )( )1
0 all

k k k
j j jfα+ = − ∇a a a ,  (27) 

where ( ) ( )( )( )0 allarg min k k
j jg f

α
α α= − ∇a a  is the 

critical point.  We can apply any single-variable 
function optimal method to find the minimum value 
of ( )( )1k

jg +a  by an appropriate choice for the value 

α .  In our algorithm, we use Newton’s forward 
divided-difference interpolating polynomial, detailed 
in (Richard L. Burden; J. Douglas Faires., 2001). 

Two things must be noted.  One is the tolerance 
problem.  The minimal value of (25) just make the 
objective reach to the minimal value, but it mustn’t 
make ( ) 0,jg j= ∀a , which is the reason why we 
select steepest descent method because 

( ) 0, ,q pf q p≠ ∀a  due to the theorectical errors and 
estimate errors in (20).  The other is the initial 
problem.  We employ the initial solutions as equal 
distributed vectors in the super space of ja , for 
example, in our simulation of mixing matrix with 
2 3×  sizes, 

 

11 0
2

10 1
2

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦

A . 

5 EXAMPLES WITH SPEECH 
AND THREE SENSORS 

To demonstrate our proposed algorithm, we adopt a 
system with 2 3×  matrix, that is, the system has 
two mixtures of three speech signals.  A large 
simulations are carried on.  Without any loss of 
generality, we assume that the columns of the 
mixing matrix have unit Euclidian norms.  The 
speech signals are sampled as 8kHz, consist of 
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10,000 samples with 1,250ms length, and are 
normalized to unit variance 1sσ = .  The signal 
sequences are partitioned into five disjoint blocks 
consisting of 2000 samples, and for each block, the 
third-order cumulants are computed for lags zeros.  
Hence, in total for each sensor cumulants 5 values 
are estimated and employed, i.e., the employed ROS 
in the domain of block-lag pairs is given by 
  ( ) ( ){ }1,0,0 , , 5,0,0Ω = , 

where the first index in each pair represents the 
block index and the second and the third the lag 
indices.  The sensor signals are obtained from (1) 
with 2 3×  mixing matrix, 

 
0.7580 0.4472 0.9094
0.6523 0.8944 0.4160
⎡ ⎤

= ⎢ ⎥− −⎣ ⎦
A .  (28) 

We set the maximum iterative number is 30, and 
stop the iteration step if the correction of the 
estimated is smaller than a certain tolerance 10-3. 

5.1 Discussion of Coefficients About 
Steepest Descent Methods 

The penalty factor γ  and variance σ  are two 
important coefficients in (24) and (25), depicted in 
Figure 1.  Figure 1 shows that the included angles 
are affected by different values of γ  and σ .  1θ  is 

unchanged as to eq. (24), 2θ  and 3θ  change with 

the choice of γ  and σ .  We set 15, 1γ σ= =  in 
our algorithm according to the figure. 
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Figure 1: The Included Angles change with γ  and σ . 

The penalty item ( )p jf a  in (25) is aimed to 
avoid converging to one of the estimated optimal 
points.  As the first and second columns of the 
mixing matrix are relatively simpler than the third 
one, we discuss the third columns majorly.  Table 1 

shows the series of estimation of the third column of 
mixing matrix.  Although the initial points have the 
same initial value, we still get the ideal optimal 
value under the function of penalty item in (25), 
where the trajectory of the optimal procedure 
carefully searches the ultimate point avoiding 
converging to the previous optimal points.  The 
function in (24) is assigned to valley-filled feature, 
which make the previous minimum value filled. 

Table 1: Estimation of the third column of mixing matrix. 

No. 3a  No. 3a  

1 0.79 -0.61 16 0.86 -0.51 

2 0.79 -0.61 17 0.87 -0.5 

3 0.8 -0.6 18 0.87 -0.48 

4 0.8 -0.6 19 0.88 -0.47 

5 0.81 -0.59 20 0.89 -0.46 

6 0.81 -0.59 21 0.89 -0.45 

7 0.82 -0.58 22 0.9 -0.44 

8 0.82 -0.57 23 0.9 -0.43 

9 0.83 -0.56 24 0.91 -0.42 

10 0.83 -0.56 25 0.91 -0.41 

11 0.84 -0.55 26 0.92 -0.39 

12 0.84 -0.54 27 0.92 -0.38 

13 0.85 -0.53 28 0.93 -0.37 

14 0.85 -0.52 29 0.93 -0.36 

15 0.86 -0.51 

5.2 MIBI Problem 

Figure 2 depicts column vectors of mixing matrix 
and its estimation.  The column vectors of estimated 
mixing matrix Â  are indicated by solid lines and 
dots, and the column vectors of A  by dashed lines 
and stars. 
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Figure 2: Column vectors of mixing matrix and its 
estimation.  The star represents the column vectors of 
mixing matrix, and the dot represents their estimations. 
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The estimated mixing matrix is 

 
0.7741 0.6141 0.9678ˆ
0.6331 0.7893 0.2515
⎡ ⎤

= ⎢ ⎥− −⎣ ⎦
A , 

and the included angles , 1, 2,3,4j jθ = are 1.4380, 
11.3183, and 10.0130.  We see that the estimated 
columns approximately equal the ideal ones by 
comparison with the matrix in(28). 

6 CONCLUSIONS 

A new MIBI algorithm in (20) and (27) is proposed 
based on third-order temporal property, which is 
able to estimate underdetermined mixing scenarios 
with 3 sources and two sensors.  The third-order 
cumulants with different time and lags are 
considered on a relatively simpler ROS, especially 
for noise-free region.  We then project the MIBI 
problem in (1) on the system of homogeneous 
polynomial equations in (21) of degree three.  
Steepest descent method is improved for estimating 
the columns of the mixing matrix by adding a 
penalty item in objective function. Simulations show 
its effectiveness with more accurate solutions. 
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