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Abstract: Embryos of animal models are becoming widely used to study cardiac development and genetics. However, 
the analysis of the embryonic heart is still mostly done manually. This is a very laborious and expensive 
task as each embryo has to be inspected visually by a biologist. We therefore propose to automatically 
segment the embryonic heart from high-speed fluorescence microscopy image sequences, allowing 
morphological and functional quantitative features of cardiac activity to be extracted. Several methods are 
presented and compared within a large range of images, varying in quality, acquisition parameters, and 
embryos position. Although manual control and visual assessment would still be necessary, the best of our 
methods has the potential to drastically reduce biologist workload by automating manual segmentation. 

1 INTRODUCTION 

Model organisms have become more and more 
important for the study of vertebrate development. 
Due to its prolific reproduction and the external 
development of the transparent embryo, they are 
prime models for genetic and developmental studies, 
as well as research in toxicology and genomics. 
While genetically more distant from humans, the 
vertebrate models nevertheless have comparable 
organs and tissues, such as heart, kidney, pancreas, 
bones, and cartilage. 

During the last years tremendous advances in 
imaging system have been made allowing the 
acquisition of high-resolution images of embryos. 
Anyhow, the processing of such images is still a 
challenge (Vermot et al., 2008). To date, only little 
work has been presented addressing the analysis of 
embryo models images (Fink et al., 2009; Luengo-
Oroz et al., 2007; Liebling et al., 2006). For instance 
(Liebling et al., 2006) presents a method to acquire, 
reconstruct and analyze 3D images of the zebrafish 
heart. The reconstruction of the volume is based on a 
semi-automatic segmentation procedure and requires 

the help of the user. Fink et al., 2009 propose a 
method for detection and quantification of heartbeat 
parameters in Drosophilia deriving a signal from the 
images, avoiding segmentation. 

In case of studies of cardiac development, a 
segmentation of the heart provides additional 
information for its quantification. Therefore, we 
present several approaches to automatically extract 
its shape and each chamber from image sequence. In 
our experiment, transgenic embryos expressing 
fluorescent protein in the myocardium were placed 
under light microscopy allowing to capture 
fluorescent images of the heart at video rate. In 
particular, we are interested in segmenting the heart 
of zebrafish embryos after two days of post-
fertilization (2 dpf). In early stages of the zebrafish 
development the primitive heart begins a simple 
linear tube. This structure gradually forms into two 
chambers, a ventricle and an atrium. At 2 dpf the 
heart tube is already partitioned into atrium and 
ventricle as depicted in Figure 1. They are separated 
by a constriction which will later form the valve. At 
this stage the heart is already beating. More 
information on zebrafish heart anatomy can be found  
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in (Hu et al., 2000). 
The remainder is organized as follows: In section 

2 we present several approaches to segment the 
zebrafish heart and in section 3 two methods to 
identify the chambers. In section 4 we show some 
results and compare the segmentation methods 
respectively for the heart and its chambers. We give 
a conclusion of our work and outline future research 
in section 5. 

 
Figure 1: The 2 dpf zebrafish heart already consists of two 
chambers: the atrium (A) and ventricle (V). 

2 SEGMENTATION OF THE 
ZEBRAFISH HEART 

In this section we outline different approaches to 
segment the shape of the zebrafish heart. For the 
methods of subsection 2.3, 2.4, 2.5, we cast the 
images to 8-bit grey level images and stretch the 
grey level range into [0,255]. 

2.1 Adaptive Binarization 

This method is based on the assumption that the 
image of the heart consists of three brightness levels 
such as illustrated in Figure 2: one corresponding to 
the background and two corresponding to the 
fluorescent heart where strong contracted regions 
appear brighter due to a higher concentration of 
fluorescent cells. 
For pre-processing, we smooth image using a 
Gaussian filter to remove noise. Then, the region of 
the heart with highest brightness is segmented by 
first applying a Contrast-Limited Adaptive 
Histogram Equalization (CLAHE) (Zuiderveld, 
1994) using a uniform transfer function and then the 
automatic threshold method from Otsu (Otsu, 1979). 
In order to segment the second, less brighter region 
of  the  heart,  we  exclude  the  previous segmented  

 

 
Figure 2: The image of fluorescent heart consists of three 
brightness levels: one corresponding to the background 
and two to the heart. 

region and apply CLAHE and Otsu again. The 
final segmentation is obtained by combining both 
segmentation results. Postprocessing includes the 
filling of holes which can appear inside in the shape. 

2.2 Clustering 

This method is based on unsupervised classification 
in order to distinguish between object and 
background pixels. First, each pixel is characterized 
by the mean luminance value of the 3×3 mask 
centered at the pixel. A unidimensional feature space 
results. Then, we use a k-means classifier (k=3) in 
order to separate the pixels into three clusters. This 
method relies like the previous one on the 
assumption than that there are three different 
brightness levels. The cluster to which belongs the 
pixel at position (0,0) is then defined as the 
background and others as the region of the heart. 
Similarly than above, we apply hole filling as 
postprocessing. For more information on k-means 
clustering can be found in (Bishop, 2007). 

2.3 Voronoi-based Segmentation 

The Voronoi segmentation (Imelinska et al., 0002) is 
based on repeatedly dividing an image into regions 
using Voronoi diagram and classifying the regions 
as either inside or outside the target based on 
classification statistics, and then break up the 
regions on the boundary between the two 
classifications into smaller regions and repeat the 
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classification and subdivision on the new set of 
regions. The classification statistics can be obtained 
from an image prior which is a binary image of 
preliminary segmentation. 

In order to compute the image prior, we apply 
first a bilateral filter to smooth the image while 
preserving edges. Afterwards, the gradient 
magnitude is computed using a recursive Gaussian 
filter and Sigmoid filter to map the intensity range 
into [0,255]. Then a threshold is applied to the 
gradient magnitude to obtain a binary mask. As the 
binary mask may contain holes, we apply a 
morphological closing operation and fill the holes to 
complete the object’s shape. Then the main region of 
the heart is isolated from noise in the binary image 
by a region growing algorithm to the binary with the 
brightest pixel in the image as seed point. Typically, 
the brightest pixel in the gray-level image belongs to 
the region of the heart. After the Voronoi 
segmentation we apply again morphological closing, 
hole filling, isolation of the main region, and 
morphological erosion to smooth the contours. 

2.4 Level Set 

The idea of this method is similar to the previous 
one. First a pre-segmentation accomplished which is 
then refined, but here we use the level set approach 
(Li et al., 2005) for refinement. We choose this 
method because of its fast performance. 

The method starts with a morphological 
reconstruction to suppress structures that are lighter 
than their surroundings and that are connected to the 
image border. Then, edges are detected using the 
Canny edge detector. Dilation, hole filling, and 
erosion are applied to the contour image. The 
biggest region is considered as the region of the 
heart while the others are considered as noise. We 
complete the form by applying again dilation and 
hole filling. 

A Gaussian filter is applied to smooth the 
original grey level image for noise removal. Then 
we apply the level set method (Li et al., 2005) with 
contours of the binary mask as initialization. We 
chose the edge indicator function 1/(1+g) as 
suggested by the author where g is the gradient 
magnitude of the Gaussian filtered grey level image. 

2.5 Watershed 

This approach is different to the previous one as it 
does not rely on a pre-segmentation by binarization. 
It is based on Watershed segmentation. 

First the border structures are supressed by 
morphological reconstruction. This is followed by a 

strong low-pass filtering (Gaussian filter) in a 
morphological reconstruction by erosion using the 
inverse of morphological gradient. This attenuates 
unwanted portions of the signal while maintaining 
the signal intensity as the Watershed method is 
known to oversegment the image. Afterwards, a 
small threshold is applied to set the background to 
zero and the image intensity is adjusted so that such 
that 1% of data is saturated at low and high 
intensities. We apply to this gradient magnitude the 
watershed segmentation. An oversegmented image 
may result with typically one region belonging to the 
background and several regions belonging to the 
heart. The latter ones are joined to form the region of 
the heart. 

3 IDENTIFICATION OF THE 
CHAMBERS 

The objective is now to divide the heart into the 
chambers based on the results of the methods 
presented in the previous section. 

3.1 Convexity Defects 

The method assumes that there is a constriction 
between the two chambers (see Figure 1) causing 
two convex points in the contour of the heart’s 
shape. Therefore, we compute the convexity defects 
of the contour using its convex hull. Generally more 
than two convexity defects are found due to 
irregularities in the contour caused by the 
segmentation as depicted in Figure 3. Moreover, we 
assume that the convexity defects denoting the 
constriction between the chambers are parallel. 
Thus, we choose the four most important convexity 
defects, i.e. the four points with the highest distance 
from the convex hull, and compute the angle for 
each pair as: 

ߠ ൌ ݏ݋ܿܿݎܽ ൬
. ଵݒ vଶ
|ଵ ||vଶݒ|

൰ (1)

where v1,v2 are respectively the vectors between the 
start and end points of the first and second convexity 
defects. If the angle is lower than a small threshold, 
then the pair of convexity defects is considered as a 
possible candidate for the constriction, otherwise it 
is rejected. Finally, we choose the pair with the 
highest mean distance as the points of the 
constriction from the remaining. We compute the 
straight line interpolating the points which separates 
both chambers. As there is often a high variation of 
the straight line along the image sequence, we 
correct it by Double Exponential Smoothing-Based 
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Prediction (DESP) (LaViola Jr., 2003) using the 
results of the previous images. 

 
Figure 3: The segmented heart (inside line) and the convex 
hull (outside line) with convexity defects of the shape 
(points). 

3.2 Watershed 

This method is based on the results of the Watershed 
segmentation of subsection 2.5. The general idea is 
to divide the segmented shape into the two chambers 
by applying a second watershed segmentation. 
Therefore, the background is masked out and a 
watershed segmentation is applied in this area after a 
strong low-pass filtering. If two regions result, then 
they correspond to a rough identification of two 
chambers. Otherwise the regions have to be joined 
until only two regions remain. Therefore, we use the 
chamber identification of the previous image. We 
compute the intersection of a region in the current 
image with the identified chambers of the previous 
image. Then, the region is identified to belong to the 
chamber where the intersection is maximal. It can 
happen that only one region is obtained by the 
Watershed segmentation. Then, the segmentation of 
the previous image is used for further processing of 
the current image. 

This chamber identification is very rough 
whereas the outline is not coincident with that one of 
subsection 2.5 as can be seen in Figure 4. Thus 
unassigned pixels remain. In order to assign them to 
one of the chambers, an Euclidean distance 
transform is computed for each chamber. Then, the 
non-assigned pixels of the segmentation are joined 
with the chamber for which the distance transform is 
smaller. 

 
Figure 4: The Watershed segmentation (outline line) and 
the first rough identification of the chambers (inside line). 

4 RESULTS AND DISCUSSION 

In this section, we show and discuss the results 
obtained with the methods presented above. First, 
we compare the algorithms for segmenting the shape 
of the heart from section 2 using an accuracy 
measure. Then, we evaluate visually the results of 
chamber segmentation algorithms from section 3.  

4.1 Comparison of Segmentation 
Algorithms 

Several methods exist to measure the performance of 
segmentation algorithms (Zhang et al., 2008; Sezgin 
and Sankur, 2004). Here, we choose to compare the 
segmented images with ground truth images which 
were obtained by manual segmentation.  

We used the Jaccard coefficient (Cox and Cox, 
2001; Ge et al., 2007) as performance measure for 
each segmentation method. This coefficient 
measures the coincidence between the segmentation 
result R and the ground truth A. Then, the 
segmentation accuracy is measured as: 

ܲሺܴ, ሻܣ ൌ
|ܴ ת |ܣ
|ܴ ׫ |ܣ ൌ

|ܴ ת |ܣ
|ܴ| ൅ |ܣ| െ |ܴ ת  |ܣ

(2) 

with |·| as the number of pixels of the given region. 
The nominator |ܴ ת  means how much of the |ܣ
object has been detected while the denominator 
|ܴ ׫  is a normalization factor to scale the |ܣ
accuracy measure into the range of [0,1]. Likewise 
pixels falsely detected as belonging to the object 
(false positives) are penalized by the normalization 
factor. Thus, this accuracy measure is insensitive to 
small variations in the ground truth construction and 
incorporates both, false positives and negatives, in 
one unified function (Ge et al., 2007). 
In our experiments we used 26 image sequences 
with a resolution of 124×124 pixels. For each image 
sequence we segmented the first 20 images with the 
above presented methods and compared them with a 
ground truth segmentation. We only chose 
sequences with fair image quality for evaluation as 
otherwise the accuracy of the manual segmentation 
is too subjective (Figure 5).  
The results of Jaccard coefficient for each sequence 
are presented in Table 1. The Voronoi-based and 
both thresholding methods outperform the watershed 
and level set methods. A visual inspection of the 
segmentation results reveals similar results. 
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Table 1: Mean accuracy for the segmentation algorithms. 

Method Mean accuracy Standard deviation Max accuracy Min accuracy 
Adaptive binarization 0.870 0.052 0.946 0.725 
Clustering 0.876 0.057 0.954 0.759 
Voronoi segmentation 0.890 0.046 0.937 0.769 
Level set 0.850 0.062 0.965 0.724 
Watershed 0.856 0.044 0.896 0.717 

 

 
Figure 5: Rejected samples. Overlapping chambers and 
blurred images. 

The level set method gives good results on high 
contrast edges, but in regions where edges are 
blurred, the level set does not approach well the 
shape of the heart resulting in holes in the object 
shape or a too large shape. Moreover, we found it 
difficult to determine a common set of parameters 
suitable for all sequences. 

The contours of the watershed method appear 
very rough and are often too tight. This might be due 
to the strong low-pass filtering in the post-
processing which causes an edge mismatch. Equally 
a false classification of the regions into background 
and foreground may cause an inaccurate 
segmentation. 

The Voronoi-based segmentation method reveals 
the best results in term of accuracy measure. The 
contours are typically slightly irregular; some 
postprocessing could be applied to smooth them. In 
case of low-contrast contours it may behave similar 
to the level set method. The overall results are quite 
satisfying. 

The adaptive binarization tends to have a slightly 
larger contour, but approaches well the object shape. 
This might cause the lower accuracy results, but the 
overall segmentation results are good. Sometimes in 
case of low-contrast edges the object shape may be 
incomplete.  

The clustering method tends also to larger 
contours, but slightly tighter than the adaptive 
binarization method. Therefore, a higher accuracy is 
achieved. However, in case of low-contrast edges it 
reveals more often incomplete shapes than the 
adaptive binarization. Note that the accuracy can 
vary as the randomized choice of initial cluster may 
result in slightly different segmentation results. 

The computational cost cannot be directly 
compared as the implementations use different 
programming languages and libraries (the adaptive 
binarization, clustering, and Voronoi methods are 
implemented in C++ using respectively OpenCV, 
OpenCV and Torch, and ITK; the level set and 
watershed methods are implemented in Matlab). 
However, the execution time for each image is 
reasonable and estimated at about one second 
independently of the method. 

4.2 Chamber Identification 

In this section, we present some results of the 
convexity defects and watershed methods used to 
divide the heart into two chambers. The convexity 
defects method was evaluated only in combination 
with the adaptive binarization and clustering 
methods, as they present good segmentation results 
(see previous section). 

For evaluation we used only 24 out of the 26 
sequences from above, because in two other ones the 
chambers are superimposed (Figure 5). Such cases 
are not taken in consideration in current 
developments, and we therefore chose to discard 
those sequences. 480 images were then segmented 
using each of the described method, and visually 
inspected to evaluate whether the heart was correctly 
divided.  Our results are shown in Table 2, where the 
best result is obtained for the adaptive binarization 
method. 

Table 2: The ratio of correct chamber identification per 
image for the chamber identification algorithms. 

Method Ratio 
Adaptive binarization + convexitydefects 0.704 
Clustering + convexity defects 0.577 
Watershed 0.456 

5 CONCLUSIONS AND FUTURE 
WORK 

We presented a first attempt of automatically 
segmenting the shape and the chambers of the 
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zebrafish embryonic heart from time-lapse 
fluorescence microscopy image sequences.  

For segmenting the shape of the heart, the 
Voronoi-based and both thresholding methods 
outperform the watershed and level set methods. The 
Voronoi-based segmentation gives the best results in 
terms of the accuracy measure, as thresholding 
methods tend to fail in cases of low-contrast edges.   

The watershed segmentation results in quite 
rough contours. Anyhow, it is an interesting 
approach as it is the basis for chamber identification. 
The results of the level set method are not satisfying. 
For chamber identification the adaptive binarization 
method in combination with the detection of 
convexity defects outperforms clearly the other 
methods.  

Besides segmentation in order to extract 
morphological information, we are also working on 
other processing methods to extract cardiac function 
metrics from image sequence. Such methods are 
able to provide additional information for cardiac 
development study with very high accuracy. 
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