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Abstract: In recent years it was shown that two artificial neural networks can synchronize by mutual learning. This fact
can be used in cryptographic applications such as symmetric key exchange protocols. This paper describes
the so-called permutation parity machine, an artificial neural network proposed as a binary variant of the tree
parity machine. A key agreement mechanism based on neural synchronization of two permutation parity
machines will be defined and the security of the key exchange protocol will be discussed.

1 INTRODUCTION

In cryptography, a well-known problem is the secret
key exchange between two parties that have no prior
contact, using an insecure channel (Schneier, 1996).
In this problem, two partnersAlice (A) andBob (B)
want to exchange messages using a public channel.
In order to keep the content secret and to protect it
against an eavesdropperEve (E), the partnersA and
B decide to encrypt their messages using a symmet-
ric encryption algorithm, for which they must share a
common secret key. To this end, there is a large num-
ber of practical key-establishment protocols, which
may be broadly subdivided into key-transport and
key-agreement protocols (Menezes et al., 1996). In
key-transport mechanisms, one party creates or ob-
tains a secret and securely transfers it to the other,
while in key-agreement protocols a shared secret is
derived by both parties as a function of exchanged
information. In both cases, the information that the
attackerE can eavesdrop on the insecure channel is
eventually not sufficient to discover the key.

A key-agreement mechanism based on the neu-
ral synchronization of two parity machines was first
proposed in (Kanter et al., 2002). It takes advan-
tage of the fact that synchronization by mutual learn-
ing is much faster than learning by example (Kan-

ter et al., 2002; Rosen-Zvi et al., 2002a; Rosen-Zvi
et al., 2002b). Such a protocol does not involve large
numbers and methods from number theory (Mislo-
vaty et al., 2002). Instead, it is performed by the
mutual adaptation process between the active partici-
pants as follows: Given two parity machines, one for
each partnerA andB, that have the same structure and
parameters. The machines eventually differ in their
initialization weights, and the weights are kept secret
all the time. The machines perform a synchroniza-
tion process so that they eventually end up with the
same weights. For this, the machines conduct a series
of iterations. In each iteration, the machines read in-
put data that are publicly available to both machines
and produce an output that is communicated between
the machines over a public channel. If the synchro-
nization process is successful, i.e., the weights in both
machines are equal, the weights can be used to form
a session key.

The idea to use neural synchronization for a cryp-
tographic key exchange protocol was studied for tree
parity machines and some practical applications were
proposed (Behroozi, 2005; Volkmer and Schaum-
burg, 2004; Volkmer and Wallner, 2005; Volkmer
and Wallmer, 2005a; Volkmer and Wallmer, 2005b).
Moreover, by a suitable choice of parameters, attacks
based on learning only have a small probability of
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success (Ruttor, 2006).
If one wants to compare the level of security

achieved by the neural key exchange protocol with re-
spect to other algorithms for key exchange, some as-
sumptions should be made based on Kerckhoff’s prin-
ciple (Menezes et al., 1996):

• The attackerE knows all the messages exchanged
between the partnersA andB, but she is unable to
change them so that she can only perform passive
attacks.

• The attackerE knows the structure of the net-
works used to exchange the messages, but she
does not know their initial weights.

• The security of the neural cryptographic protocol
relies on the difference between mutual and uni-
directional learning so that the learning process
need not be kept secret.

2 PERMUTATION PARITY
MACHINES

Permutation parity machines are multi-layer feed-
forward networks proposed as a variant of tree parity
machines with binary weights (Reyes et al., 2009).

2.1 Structure

Let G, K, andN be positive integers. Apermutation
parity machine can be considered as a neural network
with K hidden units that are perceptrons with inde-
pendent receptive fields (figure 1).

Each unit hasN input neurons and one output neu-
ron. All input values are binary,

xi, j ∈ {0,1}, 1≤ i ≤ K, 1≤ j ≤ N. (1)

The synaptic weights are drawn from a pool of bi-
nary data given by a so-calledstate vector s∈ {0,1}G,
where G ≥ K · N. More specifically, take anK ×
N matrix π = (πi j) whose entries are given as the
images of the one-to-one mappingπ : {1, . . . ,K}×
{1, . . . ,N} → {1, . . . ,G} : (i, j) 7→ πi, j. Then assign
the weights by taking the entries of the state vectors
according to the positions given by the matrix entries,

wi, j = sπi, j , 1≤ i ≤ K, 1≤ j ≤ N. (2)

The output of thei-th hidden unit requires to deter-
mine the component-wise exclusive disjunction (ex-
clusive or) between weights and inputs,

hi = xi ⊕wi = (xi, j ⊕wi, j) j, 1≤ i ≤ K, (3)

The vectorized random fieldhi provides the number
of positions at which inputs and weights differ,

hi = |{ j | xi, j ⊕wi, j = 1, 1≤ j ≤ N}|, 1≤ i ≤ K, (4)
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Figure 1: General structure of a permutation parity ma-
chine (Reyes et al., 2009).

where| · | denotes the size of a set.
The output of thei-th hidden unit yields a thresh-

old value for the random fieldhi. It equals 1 if the
random field is larger thanN/2, and equals 0 other-
wise; that is,

σi = θN(hi), 1≤ i ≤ K, (5)

where for each nonnegative integerh,

θN(h) =

{

1, h > N/2,
0, h ≤ N/2.

(6)

The output of a permutation parity machine is given
by the parity of the hidden units,

τ =
K

⊕

i=1

σi. (7)

The outputτ indicates whether the number of active
hidden units (σi = 1) is even(τ = 0) or odd(τ = 1).

For simplicity we only consider permutation par-
ity machines with two hidden unitsK = 2. Recently,
it was proved that two permutation parity machines
each of which with two hidden units can synchronize
by mutual learning in a finite number of steps (Reyes
et al., 2009).

2.2 Order Parameters and Joint
Probability Distributions

Order parameters are used to describe the correlation
between two permutation parity machines during the
mutual learning process. The level of synchronization
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can be estimated by using the Hamming distance to
calculate theoverlap between thei-th hidden units as

rAB
i = N −dH(wA

i ,wB
i ), 1≤ i ≤ K, (8)

while theoverlap between the state vectors can be ob-
tained by

RAB = G−dH(sA,sB). (9)

The correspondingnormalized overlap is given as

ρAB =
RAB

G
∈ [0,1]. (10)

The probability that exactlyr positions of the
weight vector of a hidden unit are drawn fromR over-
lapping positions of the corresponding state vector is
given by the hypergeometric distribution as

fr;G,R,N =

(R
r

)(G−R
N−r

)

(G
N

) , 0≤ r ≤ N. (11)

Let qr,N denote the probability that two corre-
sponding hidden units in the networksA andB have
overlapr and yield the same output. This probability
is given by (Reyes et al., 2009)

qr,N =

{

2 ·q0
r,N, if N odd,

q0
r,N + q1

r,N, otherwise.
(12)

where

q0
r,N =

1
2N

r

∑
m=⌈ r

2⌉

⌊N
2 −r+m⌋

∑
n=⌈N

2 −m⌉

(

r
m

)(

N − r
n

)

, (13)

and

q1
r,N =

1
2N

r

∑
m=⌈ r+1

2 ⌉

⌊N−1
2 −r+m⌋

∑
n=⌈N+1

2 −m⌉

(

r
m

)(

N − r
n

)

. (14)

3 KEY EXCHANGE PROTOCOL
BY MUTUAL LEARNING

Two interacting permutation parity machines can syn-
chronize their state vectors via mutual learning by the
following protocol (Reyes et al., 2009): Given two
permutation parity machines, one for each partnerA
andB, that have the same structure and parameters;
that is, the length of the state vectorsG, the num-
ber of inputsN and the number of hidden unitsK
are the same in both machines. However, each neural
network starts with a randomly chosen state vector;
these vectors can be different in both machines. The
synchronization process involves two kinds of rounds,
inner and outer rounds.

An outer round consists of a series of inner rounds
that is used to fill an initially empty buffer of length
G position by position in each network. When the
buffers are completely filled, the outer round replaces
the state vector by the respectively filled buffer.

During eachinner round the partners perform the
following steps:

• Choose aK ×N matrixπ and a binary input vec-
tor x = (xi j) of lengthK ·N; these data are gener-
ated uniformly at random, are known to both part-
ners and are publicly available.

• Calculate the outputsτA andτB of the machines
A andB according to (7), respectively. Exchange
the outputs using a public channel. If the output
bits τA andτB are equal, we speak of asynchro-
nization step. In this case, each machine takes the
output of the first perceptron,σA

1 in A andσB
2 in

B, and stores it in the next empty position of the
corresponding buffer. Thus the buffers are simul-
taneously filled bit by bit. Otherwise, the buffers
remain unchanged.

The inner rounds are repeated until the buffers are
completely filled. Then the state vectors are updated
with their buffers and the outer round ends. A new
outer round starts with emptying the buffers and pro-
viding a new series of inner rounds. Two situations
can occur during a synchronization step:

• The outputs of the first hidden units are equal
(σA

1 = σB
1) and so the overlap between the buffers

increases (increasing step).

• Otherwise,σA
1 6= σB

1 and thus the overlap between
the buffers decreases (decreasing step).

This learning process is repeated until the net-
works are eventually synchronized. Upon synchro-
nization, the state vectors can reach either aparal-
lel alignment given by sA = sB or an anti-parallel
alignment given assA = sB, where the binary com-
plement is taken component-wise. An anti-parallel
alignment is produced as a result of a sequence of
only decreasing steps and requires the number of in-
puts per hidden unit to be odd, while a parallel align-
ment emerges by a series of only increasing steps and
can occur whether the number of inputs per hidden
unit is even or odd (Reyes et al., 2009). In case of an
anti-parallel alignment, an additional learning step is
required to make both state vectors equal. This step
can be provided by a simple parity verification which
can be performed without an additional exchange of
information between the networks. Figure 2 shows
the evolution of the normalized overlapρAB during
the synchronization process obtained by simulations.
Observe that as the overlap moves away from 0.5, it
rapidly attains the values of 0 or 1 which indicate the
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Figure 2: Evolution of the normalized overlapρ = ρAB dur-
ing synchronization obtained from simulations withG =
128.

synchronization of the two machines (after 12 or less
outer rounds).

The only secret in this protocol is represented by
the initial values of the state vectors. However, an au-
thentication method can be implemented if both par-
ties use separate, but identical pseudo-random num-
ber generators to obtain the inputs and the matrix, us-
ing a secret seed state shared by them (Volkmer and
Schaumburg, 2004). In this case, the neural protocol
is expected to be secure even against a man-in-the-
middle attack.

4 SECURITY OF NEURAL
CRYPTOGRAPHY

A passive attackerE can perform different kinds of
attacks against the neural key exchange protocol. The
proposed cryptographic scheme is very different from
standard schemes and thus the attacks are somewhat
nonstandard (Klimov et al., 2003). These attacks are
generally based on optimizing the prediction of the
states of hidden units or are based on evolutionary al-
gorithms.

4.1 Simple Attack

For the simple attack (Kanter et al., 2002), the at-
tackerE uses a permutation parity machine that has
the same structure and parameters as those ofA and
B, and the attacker’s machine starts with a state vector
initialized with random values as well. The attacker
applies the same learning rule as the partnersA and
B. However, she replaces her own outputτE by the
output of one of the partners, sayτA, which she can

eavesdrop over a public channel. If the output bits of
the partners are equal, i.e.,τA = τB, then inE ’s ma-
chine the output of the first perceptron,σE

1 , is stored
in the next empty position of its buffer. This is what
the partners also will do in their respective networks.

Thus attackerE uses the internal representation
(σE

1 , . . . ,σE
K) of her own network in order to estimate

the weights ofA’s network even ifE ’s output is differ-
ent. The probability of increasing steps in the attack-
ing network with respect toA corresponds to the con-
ditional probability that a synchronization step occurs
betweenA andB in which the outputs of the percep-
tronsσE

1 andσA
1 are equal,

PE
R,inc = PR

(

σE
1 = σA

1 | τA = τB)

= PR
(

σE
1 = σA

1

)

, (15)

where the second equation uses the fact that the learn-
ing process ofE is independent of the mutual learning
process betweenA andB.

The probability that thei-th hidden unit produces
the same output is given by (Reyes et al., 2009)

PR(σE
i = σA

i ) =
N

∑
r=0

qr,N · fr;G,R,N , 1≤ i ≤ K, (16)

whereR denotes the overlap of the state vectors, and
fr;G,R,N andqr,N are given by (11) and (12), respec-
tively.

Figure 3 shows the results of various simulations
of the evolution of the normalized overlapρAE be-
tween the state vectors ofA and E in case of the
simple attack. While the partnersA and B achieve
synchronization in a few outer rounds (figure 2), the
overlap between attackerE and partnerA fluctuates
without any tendency that synchronization could be
attained.
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Figure 3: Evolution of the normalized overlapρ = ρAE be-
tween the state vectors of partnerA and attackerE during
the simple attack obtained from simulations withG = 128.
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4.2 Geometric Attack

The geometric attack (Klimov et al., 2003) generally
behaves better than the simple attack. The attacker
E again imitatesB without any interaction withA. If
τA = τE , the attacker applies the same learning rule
as the partners. However, ifτA 6= τE , there exists a
hidden uniti such thatσA

i 6= σE
i . In this case,E tries

to correct the internal representation of her parity ma-
chine using the local fieldshE

1 , . . . ,hE
K as additional

information. For this, observe that the level of con-
fidence associated with the output of one hidden unit
decreases when the local field is close to the threshold
of its activation function (Ein-Dort and Kanter, 1999).

In the case of permutation parity machines, the
probability of σA

i 6= σE
i is high for a low absolute

value |hE
i −N/2| such that the attacker changes the

outputσE
i of the hidden unit which has minimal value

|hE
i −N/2|.

The evolution of the normalized overlapρAE be-
tween the state vectors of partnerA and attackerE in
case of the geometric attack is depicted in Figure 4 as
a result of various simulations. Similar to the simple
attack, the simulations exhibit that the geometric at-
tack does not lead to synchronization even after about
40 outer rounds, while the partners synchronize after
at most 12 outer rounds.
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Figure 4: Evolution of the normalized overlapρ = ρAE be-
tween the state vectors of partnerA and attackerE during
the geometric attack derived from simulations withG =
128.

4.3 Other Attacks

A brute-force attack would require an ensemble of
2G−1 PPMs working in parallel in order to assure its
success. This attack is not feasible when the size of
the state vectorG is large. However, the idea of using
more than one network to perform an attack seems

still attractive; schemes that use an ensemble of net-
works were proposed for tree parity machines.

One of these schemes is known asmajority at-
tack (Shacham et al., 2004). For this, the attackerE
uses an ensemble ofM tree parity machines. When-
ever the partners update the weights as their outputs
are the same, i.e.,τA = τB, the attacker calculates the
output bitsτE,m of her machines, 1≤ m ≤ M. If the
output bitτE,m if the m-th attacking machine differs
from τA, the attacker corrects one of its local fields as
in the geometric attack. Then the attacker takes the in-
ternal representations(σE,m

1 ,σE,m
2 , . . .σE,m

K ), 1≤ m ≤
M, and selects the most common one. This majority
vote is then adopted by all attacking machines for the
application of the learning rule.

However, if this attack is performed in the same
way for permutation parity machines, then after one
outer round the state vectors of all the attacking ma-
chines become equal, because the internal representa-
tion, particularlyσE

1 , directly defines the values that is
assigned to the state vector. Thus the majority attack
is reduced to the geometric attack after performing
one outer round.

On the other hand, thegenetic attack (Klimov
et al., 2003), (Ruttor et al., 2006) is based on an evolu-
tionary algorithm instead of optimizing the prediction
of the internal representation. In the case of tree par-
ity machines, the attackerE starts with one randomly
initialized machine, but can use up toM machines.
Whenever the outputs of the partners are equal, i.e.,
τA = τB, the following algorithm is applied:

• Mutation step: If the attacker’s population holds
at mostM/2K−1 machines, there are 2K−1 variants
created. These variants correspond to all 2K−1 in-
ternal representations which reproduce the current
outputτA. Then the weights in the attacking ma-
chines are updated according to the learning rule
using these internal representations.

• Selection step: If the attacker’s population holds
more thanM/2K−1 machines, only the fittest ma-
chines are kept. For this, machines are discarded
from the population that predicted less thanU out-
puts τA successfully (τA = τB) during the lastV
learning steps. A limit ofU = 10 and a history
of V = 20 are suggested as default values for this
step (Ruttor et al., 2006).

The situation completely changes if permutation
parity machines are used instead of tree parity ma-
chines. The effects of the learning rule in case of per-
mutation parity machines can only be observed after
one outer round, when the state vectors are updated.
However, the mutation steps are performed during the
inner rounds. Thus the state vectors are not affected
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and as a result the outputs of all the created machines
will be equal.

The efficiency of the genetic attack mostly de-
pends on the algorithm which selects the fittest ma-
chine. In the ideal case, the tree parity machine that
has the same sequence of internal representations as
A is never discarded. However, in case of permuta-
tion parity machines, it is not possible to determine
which attacking machines should be discarded and
which should be kept.

5 CONCLUSIONS

Permutation parity machines are binary variants of
tree parity machines and may be used to implement
a key-agreement mechanism based on their ability to
perform synchronization by mutual learning. More-
over, inner and outer rounds involved in the learning
rule phase make the permutation parity machines suit-
able for bit-packaging implementations accelerating
the synchronization process while keeping the secu-
rity of the protocol.

The attacks described in this paper were originally
proposed for a key exchange protocol based on tree
parity machines. In this case, the weights gradually
change by using the learning rule such that a proper
weight adaptation of the attacker’s machine during
a single iteration increases the probability of further
proper weight adaptations that eventually lead to a
successful attack.

On the other hand, in the case of permutation par-
ity machines, the output during each inner round is
produced by a different set of weights and the assign-
ment of the weights becomes a series of independent
events whenG ≫ K ×N. Thus a proper weight adap-
tation performed by the attacker during an inner round
barely influences the result of the following adapta-
tions and therefore the success of these kind of attacks
is unlikely.

Consequently, permutation parity machines seem
to form a viable alternative to tree parity machines in
neural cryptography.
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