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Abstract: Detection of smoke plumes using lidar provides many advantages with respect to passive methods of fire 
surveillance. However, the great sensitivity of the method results in the detection of many spurious signals. 
Correspondingly, the automatic lidar surveillance must be provided with effective algorithms of separation 
of the smoke-plume signatures from irrelevant signals. The paper discusses a simple and robust lidar pattern 
recognition procedure based on the fast extraction of sufficiently pronounced signal peaks and their 
classification with a perceptron, whose efficiency is enhanced by a fast nonlinear preprocessing. The 
algorithm is benchmarked against previously developed artificial-intelligence methods of smoke recognition 
via Relative Operating Characteristic (ROC curve) analysis. 

1 INTRODUCTION 

Extending the principles of radar to the optical 
range, lidar (light detection and ranging) presents 
significant advantages in comparison with passive 
surveillance methods, in particular a higher 
sensitivity and low dependency on light and weather 
conditions. Lidar detectors provide a large range of 
surveillance, restricted only by the laser-pulse 
energy and — for distances exceeding ~10 km — by 
the beam jitter resulted from atmospheric turbulence. 
Good directionality and precision of distance 
measurements enable lidar to provide an accurate 
location of smoke plumes. For efficient early forest-
fire detection, the smoke-plume pattern in the lidar 
signal (peak of the retroreflected power) must be 
promptly recognized by an adequate automatic 
procedure despite the presence of additional peaks 
due to noise and other targets. The present paper 
details the investigation of one such procedure based 
on the fast localization of peaks whose amplitude is 
sufficiently large to correspond to possible smoke-
plume signatures. These peaks are subjected to 
feature extraction and highly nonlinear binarization 

transformation, which increases the number of signal 
components. The binarized patterns are then 
classified with a single-layer perceptron. 

Lidar equipment (Fig. 1) consists of a radiation 
emitter (pulsed laser and beam-formation optics) and 
a radiation receiver (usually comprising of a light 
gathering optical train, photodetector and 
preamplifier). The emitter produces short and 
intense radiation pulses; a part of this radiation is 
scattered backwards and collected by the receiver, 
where its power is converted into an electric signal. 
The electric signal is amplified and directed to the 
data-acquisition unit, to be recorded in a digital form 
as a function of time. 

 

 
Figure 1: Lidar equipment and detection principles. 
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Lidars for automated surveillance are supplemented 
with a signal recognition system, performing 
classification of target signatures and issuing, if 
needed, an alarm signal containing information 
about the target that caused the alarm situation. 

2 BASIC RELATIONS 

The distance from the lidar to the target R may be 
calculated from the time delay t between the laser-
pulse emission and the reception of the 
backscattered signal, cRt /2= , c is the velocity of 
light. The raw lidar signal S is the receiver-unit 
output voltage recorded during some period of time 
immediately after the laser-pulse emission ( 0=t ). 
As far as the transition from the time to the distance 
dependence is reduced to a simple rescaling, usually 
the raw lidar signal is represented as a plot of S 
versus the distance R rather than the time t: 
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where G is the total electronic gain, 
( ) ( )RPRI rphubph ξ=  is the unbiased photodetector 

current ( phξ  is the photodetector responsivity and 

rP  is the retroreflected radiation power) and 0S  is 
the background component, accumulating all types 
of electric displacement and low-frequency noise 
that can be assumed to be constant during the 
relatively short measurement time: about 67 μs for a 
range of 10 km, according to relation (1). 

A theoretical estimation of rP  is given by the 
lidar equation: 
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where lE  is the output laser pulse energy, β  the 
backscattering coefficient of the medium, recA  the 
effective receiver area, trτ  and recτ  the transmitter 
and receiver efficiencies, and α  the extinction 
coefficient. 

At the early stage of a fire, the characteristic 
spread of the smoke plume in the direction of laser-
beam propagation spRΔ  (Fig. 2) is about 10 m. To 
be able to reveal specific few-meter scale structures 
that make the smoke-plume signatures different 
from other lidar returns, the data-acquisition unit 
must measure the photodetector output with a 
sampling interval Rδ  ~ 1.5 m, eventually yielding  

the discrete-time lidar signal in the form 
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Figure 2: The main spatial parameters of smoke-plume 
detection. 

According to (1) and (2), smoke plumes manifest 
themselves in raw lidar signals as peaks whose 
amplitude and shape vary due to the stochastic 
changes in the particle distribution within the smoke 
plume under the action of gas-dynamic forces, 
buoyancy and wind. The smoke-plume signatures 
are observed against a background contaminated by 
electronic and atmospheric noise (Fig. 3). Electronic 
noise of a well constructed receiver usually 
demonstrates no dependence on the distance and can 
be estimated from a signal segment recorded far 
beyond the range of the instrument, where no signal 
attributable to retroreflection is expected. 
 

 
Figure 3: Composition of the raw lidar signal. 
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are narrow pulse-like waveforms, since the 
backscattering occurs at almost a single distance. 
The shape of these peaks is mainly defined by the 
bandwidth of the detection channel and the rate of 
the analog-to-digital conversion. 

3 RECOGNITION STRATEGY 

3.1 Characterization 

As seen from (3), the shape of the smoke-plume 
signatures in the lidar signal depends in a 
complicated way on the profiles of the extinction 
and backscattering coefficients along the beam 
propagation direction. Although important for 
prediction of the lidar range, gas-dynamic smoke-
plume models do not provide a solid basis for the 
extraction of the characteristic features of the 
smoke-plume signature. Due to this lack of reliable 
parametric models, automated fire surveillance is 
mainly based on artificial-intelligence algorithms 
such as neural network (NN) methods. 

In principle, lidar identifies targets with the 
precision of a few meters, thus allowing for a very 
accurate location of the fire. The angular target 
position (the azimuth ϕ and elevation ϑ, see Fig. 2) 
is given by the laser beam direction, but the 
calculation of the distance to the smoke plume Rsp is 
carried out by the signal analysis unit. 

NN architectures and algorithms suited for lidar 
data extraction have been discussed in the literature 
since the 1990s (Bhattacharya et al., 1997). It was 
established that waveforms containing small 
retroreflection from distributed targets could not be 
directly presented to a neural network. A simple and 
fast preprocessing method was developed for 
facilitating the recognition, ensuring, at the same 
time, that the processed waveforms properly reflect 
subtle variations in the original waveforms. 
Following the same principles as the radial-basis 
function algorithms (Bishop, 1995; Haykin, 1999), 
the recognition efficiency of a perceptron-based NN 
is enhanced by a special binarization procedure that 
uses a 2D grid in the signal-distance plane for the 
waveform representation and a point-to-node 
proximity criterion for assigning one or zero to the 
grid nodes. Each node is treated as a separate input 
component, increasing the network input dimension, 
number of adjustable weights and, according to 
Cover's theorem (Haykin, 1999), improving pattern 
separability. 

3.2 Problems 

The application in question is characterized by the 
following difficulties: 

1. The length of the discrete-time sequence  to be 
processed, RRi δ/maxmax = ~6.7×103, is much 
larger than in other lidar applications, such as 
underwater object detection (Mitra et al., 2003). As a 
result, the conventional NN algorithms 
(Bhattacharya et al., 1997; Mitra et al., 2003) cannot 
be straightforwardly applied because they require 
excessive computation time and resources. In 
addition, fire may occur anywhere within the 
surveillance range, so no narrower region of interest 
can be selected a priori. 

2. Smoke-plume signatures are compact. As seen 
from Eq. (3), for a starting fire the characteristic 
spread of a smoke-plume signature ssRΔ , within 
which the backscattering factor β is sufficiently 
large to produce the signal above the noise level, is 
restricted by the spread of the plume: 

10≈Δ≤Δ spss RR m. Well-developed fires result in 
much wider plumes, but denser smoke increases the 
laser-beam extinction up to the values α ~ 0.2 m–1 
(Kozlov and Panchenko, 1996). In these 
circumstances, the smoke-plume signature decreases 
down to the noise level at distances of the order of 
α–1 due to the Beer-Lambert absorption of both the 
laser beam and retroreflected light, resulting in 

ssRΔ ~ 5 m. Measured as number of points in the 
digitized signal, RRN ssss δ/Δ= , the signature 
spread is always much less than that for the cases 
described by Bhattacharya et al. (1997) and Mitra et 
al. (2003), typically consisting of 5-10 points. The 
short signature width and the great variety of 
possible waveforms impede application of statistics-
based algorithms for noise reduction and signal 
compression, which effectively reduce the 
computational load in many other applications 
(Mitra et al., 2003). 

3. The fact that the distance to the target Rsp must 
be determined during the recognition may 
complicate the NN structure: for the straightforward 
algorithms, it turns the multiple input - single output 
classification scheme into one with multiple outputs, 
in which the additional neurons codify, in an analog 
or digital way, the value of Rsp. 

4. Due to the fact that a constant background can 
be represented as a sum of uniformly distributed 
peaks, the problem of peak recognition is not 
linearly separable a priory and cannot be solved 
without introduction of preprocessing and/or non-
linearity. 
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3.3 Knowledge and Invariances 

According to general indications (Anderson, 1988), 
to solve the problems presented in Sec. 3.2, a 
specialized NN algorithm must be developed, 
incorporating all prior information in order to 
simplify the overall structure and facilitate the 
recognition. Depending on its nature, the knowledge 
about the input signal can be represented as a 
transformation, selection rule and/or invariant and 
then built into the system via specific design or 
preprocessing procedures (Haykin, 1999).  

The analysis of the lidar signal, briefly presented 
in subsections 2.1, 2.2 and 3.2, makes it possible to 
point out the following peculiarities: 

1. The smoke-plume signatures manifest 
themselves in the raw lidar signal as peaks whose 
characteristic width ssRΔ  (several meters) is much 
less than the typical distance to the smoke plume Rsp 
(from hundred meters to several kilometers). 

2. The position of the smoke-signature maximum 
corresponds to the desired distance to the smoke 
plume. 

3. The local noise level may be estimated as the 
root-mean-square of the signal just before and after 
the peak and the segment of the lidar signal of the 
length ~ ssRΔ3 , containing the smoke-signature 
maximum in its center, is supposed to provide 
information of both the smoke-signature shape and 
the local noise. The ratio of the peak amplitude to 
the mean local noise, called peak-to-noise ratio 
(PNR), represents an important scale-independent 
characteristic of the peak magnitude, closely linked 
with the probability of the peak to be a target 
signature rather than clutter. For this reason, it is 
worthwhile to treat PNR as an invariant 
characteristic feature to be extracted and presented 
for recognition in a separate way. 

Within the range max10 RRRss ≤≤Δ  the shape 
factor of the smoke-plume signature is invariant with 
respect to the distance R (Utkin et al., 2009). 
Obviously, the noise distorts the smoke-plume 
signatures more at greater distances, and the pattern-
recognition problem in question can be treated as 
distance-independent in the sense that the 
recognition conditions for a tenuous smoke plume 
are equivalent to those for a dense plume observed at 
a greater distance provided that the signal-to-noise 
ratio is the same. 

3.4 Implementation 

The  knowledge  and  invariances  are  built  into the 

system via the following preprocessing procedure:  
The raw lidar signal consisting of several thousand 
points ( RRi δ/maxmax = ) is viewed by the 
preprocessing software through a window of several 
tens of points ( RRss δ/3~ Δ ) that moves along the 
signal curve. The window motion stops if the local 
signal maximum coincides with the window center 

wR  and the corresponding peak-to-noise ratio 
)( wRPNR  is calculated. If ( ) thrw PNRRPNR < , 

where the threshold value thrPNR  (typically, from 3 
to 5) is chosen in accordance with the sensitivity of a 
given lidar system, the peak is considered to be too 
small for being a smoke-plume signature and the 
observation window continues its motion along the 
lidar-signal curve. Otherwise the signal pattern 
within the window is sent to the recognition unit. 
The corresponding feature value )( wRPNR  is 
introduced directly to the NN through a special input 
(Fig. 4). 

Eventual alarm generation is performed on the 
basis of pattern classification (smoke-signature 
dichotomy) with a single-layer neural network 
(perceptron), which is functionally equivalent to the 
adaptive linear filter (Haykin, 1999).  

 

 
Figure 4: Stages of the smoke-signature recognition 
procedure. 
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Borrowing the approach from the radial-basis 
function network theory (notably, it can be shown 
that the binarization processing correspond to a 
radial-basis function technique with some specific 
norm), classification efficiency of the perceptron is 
enhanced by nonlinear threshold binarization 
transformation to higher dimensional space, similar 
to Bhattacharya's processing of lidar signal 
(Bhattacharya et al., 1997) for the detection of fish 
in near-shore waters: The signal pattern is mapped 
on a rectangular 2D grid. Each sample point is 
checked against the grid-crossing points. If a sample 
point falls within half a grid space on either side in 
both the horizontal and vertical directions, a one is 
assigned at that point; otherwise, a zero is assigned. 
Each sample point is tested in the same way, 
yielding at the end a matrix of zeros and ones, 
eventually converted into a longer binary pattern 
vector reflecting all the peculiarities of the pattern, 
provided that a sufficiently fine grid is chosen. 

When the vertical grid spacing equals the lidar 
sampling distance so that all the signal points are 
located on the vertical grid lines, the above 
algorithm reduces to a simple point binarization of 
the signal with resolution corresponding to the 
horizontal grid spacing. The threshold binarization 
procedure, corresponding to the point binarization in 
which a one is assigned to each grid point situated 
below any point already assigned to one, is even 
easier for hardware implementation (a batch of 
threshold detectors with linearly increasing 
thresholds) and results in less sparse and more 
compact binarized samples: the bottom line always 
contains ones and can be discarded. 

Notably, the number of binarization levels is a 
free parameter of the recognition scheme. 
Decreasing the number of levels, one can produce 
rougher binary signal description and, at the same 
time, reduce the signal dimension and the number of 
adaptive parameters of the recognition process. 
Being chosen on the basis of the bias-variance trade-
off (Haykin, 1999), the number of binarization levels 
plays the same role as the number of training epochs 
in the iterative learning rules. 
The supervised learning procedure is implemented 
through the least-squares filtering. For a given 
training set, it readily yields a unique deterministic 
solution (Haykin, 1999) for the desired 
interconnection weights as a product of 
pseudoinverse of the matrix composed from the 
binarized training samples and the vector of 
corresponding classification tags (here, 1 for the 
smoke-signature peaks and –1 for the spurious signal 
peaks).  

Following Bishop's recommendations (Bishop, 
1995), the instability arisen from the sparse nature of 
the binary-sample matrices and incomplete ranks is 
overcome by stabilized pseudoinversion on the basis 
of singular-value decomposition (Press et al., 1986). 
The binary input has two additional entries: one for 
the constant activation bias (+1) and the other for the 
PNR value that passes to the perceptron without 
binarization. The alarm signal is accompanied by the 
current position of the moving window center 

spw RR ≈  that corresponds to the maximum of the 
retroreflected radiation and thus provides the desired 
distance to detected smoke plume. 

 
Figure 5: ROC curves corresponding to the developed 
threshold-binarization algorithm and the three committee 
machines described by Fernandes et al. (2004). 

4 RESULTS 

Fig. 5 illustrates comparison of the developed 
threshold-binarization algorithm with three more 
complicated artificial-intelligence methods 
developed for smoke-signature recognition in the 
lidar signal (Fernandes et al., 2004). The threshold-
binarization algorithm demonstrated superior 
efficiency in the area of false alarm rate greater than 
0.65%, resulting to 100% detection of the smoke 
signatures in the validation set at the false alarm rate 
as low as 0.84% (91 false detections at recognition 
of 10891 noise peaks in 112 recorded lidar signals). 

At the same time, the proposed algorithm:  
 yields nearly one order of magnitude faster 

training; 
 the developed supervised learning procedure is 

not connected with the choice of the best 
classifier, so it can be strictly formalized and 
performed by users without special instruction; 
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 the learning procedure is fast and of predictable 
duration: it does not involve repetitive/iterative 
routines like training epochs in the case of 
gradient-descent methods and 

 the global minimum of the classification error 
for given training set is readily achieved by a 
sequence of matrix operations of guaranteed 
stability. 

 
At very close distances to the lidar, ssRR Δ≤10 , the 
shape factor of the smoke-plume signature does 
depend on spR . However, it was observed that the 
shape distortion does not affect the recognition 
capability of the system for this region, mostly due 
to very high PNR feature value that activates the 
alarm output even if the input from the binary-
sample nodes is not univocal. 

5 CONCLUSIONS AND FUTURE 
WORK 

The neural-network algorithm in question is 
extremely flexible; it was successfully used for 
automated signal processing in a variety of lidars, 
including a system for forest fire surveillance 
already deployed in Central Portugal within the 
framework of the AGRO project supported by 
Portuguese Ministry of Agriculture.  

As compared to alternative methods of 
automated fire detection, which mostly focus on 
radiometry and video/infrared imaging (San-Miguel-
Ayanz et al., 2005), the present active technique, due 
to its potentially higher sensitivity, offers quicker 
response to the alarm situation. In addition, 
automation of the 1D lidar signal processing is an 
easier task than fire or smoke-plume recognition in 
the 2D images provided by video/infrared cameras. 

Future developments of the described algorithm 
are connected with invoking additional information 
extracted from statistical properties of the collected 
lidar returns. 
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