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Abstract: This paper presents a computational study on a fundamental aspect concerning with the dynamic of nitric 
oxide (NO) both in the biological and artificial neural networks, the Diffuse Neighbourhood (DNB). We 
apply the compartmental model of NO diffusion as formal tool, using a computational neuroscience point of 
view. The main objective is the analysis of DNB by the observation of the AI-NOD and CDNB variables, 
defined in this work. We present a study of influences and dependences with respect to associated features 
to the NO synthesis-diffusion process, and to the environment where it spreads (non-isotropy and non-
homogeneity). It is structured into three sets of experiences which cover the quoted aspects: influence of the 
NO synthesis process, isolated and multiple processes, influence of distance to the element where NO is 
synthesized, influence of features of the diffusion environment. The developments have been performed in 
mono and bi-dimensional environments, with endothelial cell features. The importance of this study is 
providing the needed formalism to quantify the information representation capacity that a type of NO 
diffusion-based signalling presents and their implications in many other underlying neural mechanisms as 
neural recruitment, synchronization of computations between neurons and in the brain activity in general. 

1 INTRODUCTION 

The understanding of brain structure and function 
and its computational style is one of the biggest 
challenges both in Neuroscience and Neural 
Computation. To reach this aim it is essential to 
know underlying mechanisms of the brain activity. 

The activity of the brain has as principal 
responsible the BNN, the cellular communication 
and learning. Neural recruitment, or synchronization 
of computations between neurons, the existence of 
an information indexing schema at the Biological 
Neural Network (BNN), or the LTP expression, are 
aspects that can depend in a direct way on an 
underlying neural signalling schema. We understand 
that such aspects will be able to have a considerable 
role in the information representation capacity, and 
so, in the BNN and ANN computation potential.  

Among all set of cellular signals that affect 
globally the brain activity, the volume transmission 
(VT) is located. Its underlying mechanism is the 
diffusion of neuroactive substances and diffusible 
signals, like Nitric Oxide (NO). NO is one of the 
liposoluble molecules generated by cells from the 
own tissue which allow a volumetric transmission. A 
key property of NO is its extreme diffusibility in 
both aqueous and lipid environments, which allows 
a fast three-dimensional spread of the signal 
irrespective of the presence of membranes (Suárez 
Araujo, 2000). Because of this, it freely diffuses 
through membranes affecting all neighbouring cells 
(Hawkins, et al., 1993), (Schuman, et al., 1994), 
(Zhuo, et al., 1998) and (Garthwaite, et al., 1995). 

The presence of a molecule in the brain such as 
NO, opens new perspectives in the study of the brain 
functioning. NO can help as an element of control 
for several systems. It can act as a retrograde 
neurotransmitter; it can be involved in learning and 
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memory, and in the LTP process. It is capable to 
produce hybrid neuromodulation, diffusive hybrid 
neuromodulation (DHN) (Suárez Araujo, 2000). NO 
has also opened a new dimension in our concept of 
neural communication, overlaying the classical 
synaptic neurotransmission, where information is 
passed between neuronal elements at discrete loci 
(synapses). 

An intrinsic feature of the NO diffusion is the 
formation of not-wired neighbourhoods, diffuse 
neighbourhoods (DNB), which supports the 
emerging of complex structures. The formation of 
these structures has been a subject studied by other 
authors (Krekelberg, 1996, 1997) and (Krekelberg 
and Taylor, 1998).  These studies have been specific 
studies concerning with the cortical map formation 
and their relationship with neighbourhoods in the 
Kohonen SOM. They have not considered the DNB 
as a possible underlying communication schema in 
BNN and ANN. Our studies consider this capacity.  

Our work introduces and studies fundamental 
concepts in the formation of DNB, product of the 
dynamics of NO diffusion. We understand DNB as 
an auto-contained element in the behavior of NO 
and the study of its dynamics as essential, 
independent from the learning model or the neural 
architecture where it is embodied in. This will 
provide us a better understanding of the 
computational skills that NO has; computational 
skills based on the neural recruitment mechanisms, 
emergence of complex structures and increase of 
information capacity and processing. This justifies 
the need of a generalist and in-depth development 
like the one our work presents. We provide concepts 
located in the Theoretical Framework of the study of 
NO (Suárez Araujo, 2000). It will be able to manage 
studies of causal aspects of the NO dynamics, and 
comparative studies with concepts and classical 
architectures. 

In this paper, we focus our effort on the analysis 
of DNB dynamics and its possible influence in 
mechanisms and processes at the neural circuit 
and/or higher level. An important aim is to infer 
from the analysis a possible implication of VT in the 
increase of the information representation capacity 
in both BNN and ANN, in their architectures and in 
the functional complexity of its main computation 
element, the neuron. 

We present a computational analysis of DNB, 
based on our compartmental model of diffusion of 
NO (Suárez Araujo, et al., 2006). This work requires 
of a set of own concepts of the diffusive phenomena, 
which we have defined and that are: Directionality 
of NO dynamics (DNO), Average Influence (AI), 

Diffusion Centre of the DNB (CDN) and DNB Limit 
(DNBL). 

The importance of this study is providing the 
needed formalism to quantify the information 
representation capacity that a type of NO diffusion-
based signalling can present. 

2 METHOD 

Diffusion is the main axis in the study of the NO 
dynamics (Wood and Garthwaite, 1994), as well as 
the main responsible of the NO influence to different 
brain zones from a functional and structural point of 
view. This influence is materialized, essentially, by 
means of the Diffuse Neighbourhoods (DNB). This 
concept allows to analyze how NO influences move 
by means of diffusion as well as what is their 
dependence with non-isotropy and non-
homogeneity. The establishment and analysis of 
DNB, which we will perform using the 
compartmental model of NO diffusion, precise to 
formalize intrinsic aspects to the diffusion 
phenomena and to the NO dynamics. On one hand, 
we have the directionality measure of the NO 
dynamics, which provokes different spatial-temporal 
influences in the diffusion environment. This takes 
us towards the concept of Average NO Influence, 
key variable in the DNB definition. On the other 
hand, its dynamic, adaptive and no local character 
justifies the need of variables which formalize that 
dynamism and its effect as diffusion centre of the 
DNB and DNB limit. 

2.1 Compartmental Model of NO 
Diffusion and Concepts of Diffusion 

The compartmental model of NO diffusion (Suárez 
Araujo, et al., 2006) is a discrete computational 
model that allows us to study the dynamic of NO, 
generation, diffusion, self-regulation and 
recombination, in biological and artificial 
environments. Its main feature is its simplicity, it 
can be considered as a general formal tool with 
biological plausibility. It gathers real features of the 
diffusion environment such as the no homogeneity 
and the no-isotropy and possible morphology of the 
NO synthesis. 

It represents an important tool for designing and 
interpreting biological experiments on NO behaviour 
and its effect on brain structure and function. 

The model is based in compartmental systems 
(Anderson, 1983) and it is defined by a system of 
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first order differential equations, like eq. (1), where 
we can consider specific cyclic contour conditions.  

dCi

dt
=Di,i−1(Ci−1−Ci)+Di,i+1(Ci+1−Ci)−λiCi +Fi (1)

Where Di,i-1 and Di,i+1 are the coefficients of 
diffusion between the compartments i and i-1 and 
between i and i+1, respectively. λi is the self-
regulation parameter of NO. It is being considered, 
for this case, a self-regulation of NO dynamics 
proportional to the quantity of concentration, and Fi 
is the function of generation of NO.  

The computational analysis of DNB, using this 
model requires of a set of own concepts of the 
diffusion phenomena, which will be defined and that 
are: Directionality of NO dynamics (DNO), Average 
Influence (AI), Diffusion Centre of the DNB (CDN) 
and DNB Limit (DNBL). 

NO Directionality, (NOD)  
NOD allows to assign an i state to every 
compartment, associated to the movement that NO 
has along each dimension. Basing on this, it can be 
measured the permanence time of compartment i, in 
such state, and to calculate the Average NO 
Influence that a source i compartment can be 
causing on a destination compartment j. 

NOD is formally defined for an i compartment 
by equation 2. Its value is function of the NO 
concentration dynamics associated to the adjacent 
compartments, according to the propagation schema 
defined for each dimension. 
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Basing on the NOD value in each dimension, an 
i compartment can be located on 3, 9 or 27 states, for 
environments with one, two or three dimensions,  
respectively, Table 1. 

Basing on time proportion, over the total time of 
the diffusion process in which compartments are 
located in one state, it can be calculated the Average 
Influence that an i compartment is performing into 
another j compartment. 

Table 1: Possible states of a compartment in mono-
dimensional environments and its NOD values. 

State Gi Condition 
← Gi < 0 
→ Gi > 0 
↔ Gi = 0 

Average Influence (AI) 
Average Influence between compartments by the 
NO dynamics (AI) is a magnitude that quantifies the 
influence k compartment is performing into r 
compartment. 
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Where i is every compartment that is located on 
T(k, p, r, T(p, q, r, T(…))), path, definition-recursive, 
which goes from k compartment to r compartment, 
passing by intermediate compartment p and using 
path T(p, q, r, T(…)). The function 0 < ψ(i, ET,t) < 1 
defines the time proportion, over the total process 
time t, that i compartment is located on the ET state 
in favor of the direction followed that path T defines. 
This magnitude is computed for a determined 
instant, being able to vary throughout time. 

Diffuse Neighbourhood (DNB) 
Diffuse Neighbourhood (DNB) of an i compartment, 
(4), is constituted by a set of compartments which 
fulfill certain criteria with relation to the AI i 
compartment is performing in them. 

( )( ){ }tjiIQjtVi ,,:)( =  (4)

Where Q(I(i, j, t)) is the Q criteria over the AI 
that i compartment performs in the j one, and j 
represents every compartment that fulfills Q. Q can 
be the exceed of a threshold value θ by the AI. This 
way, j∈Vi(t) ⇔ Q(I(i, j, t)) is fulfilled, where Q is 
defined according to the logical expression I(i, j, t) > 
θ. Another criterion could be that AI is located 
between two values, θ1 y θ2. So Q criterion would be 
defined by the logical expression θ1 < I(i, j, t) < θ2. 
The way in which Q criterion is defined causes 
different types of neighbourhoods, and the DNB of a 
compartment can change throughout time. This way, 
the DNB is dynamic and adaptive that generates 
complex structures. These aspects of the DNB can 
be featured by tracing the diffusion centres of every 
instance of the DNB throughout time. This diffusion 
centre of the DNB (CDNB) determines a position, 
which corresponds to the averaged position of all the 
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influences that compartments belonging to the 
neighbourhood perform between them 

∑∑
∈∈

=
ii VjVj

ji tjiItjiItV ),,(),,(),( rC  (5)

Where rj corresponds to the position j 
compartment has in the diffusion media. 

Diffuse Neighbourhood Limit, (DNBL) 
We define Diffuse Neighbourhood Limit (DNBL) of 
an i compartment as the max(|rj-ri|), where ri is the 
position vector of the i compartment, rj is the 
position vector associated to the j compartment, and 
such compartment corresponds to any of the 
compartments belonging to the DNB of the i 
compartment i,j∈Vi(t). 

3 RESULTS AND DISCUSSION 

We have performed a computational study of NO 
dynamics, using the compartmental model of NO 
diffusion by the observation of the AI-NOD and 
CDNB variables. 

We have focused our efforts in the analysis of 
one of the great potentialities of NO as diffusive 
signalling, the emergency of DNB and so, of 
complex structures. We have established influences 
and dependences with respect to associated features 
to the NO synthesis-diffusion process, and to the 
environment where it spreads (non-isotropy and no-
homogeneity) (Syková, 2001). We have structured 
the study into three sets of experiences which cover 
the quoted aspects: influence of the NO synthesis 
process, isolated and multiple processes, influence 
of distance to the element where NO is synthesized, 
influence of features of the diffusion environment, 
isotropy and homogeneity, presenting our obtained 
results in this section. 

The first two studies have been performed in a 
mono-dimensional environment, figure 1, with 
endothelial cell features. The values of the diffusion 
and auto-regulation constants are, respectively, D = 
3,3·103 μm2s-1and λ = 1,3863 s-1 and average life 
t½=0.5s. (Malinski, et al., 1993) 

 
Figure 1: Environment of 401 compartments. The 
synthesis processes are in the compartment 201 for 
synthesis alone, and at 101, 201 and 301 for multiple 
syntheses. 

 
Figure 2: I(201, 251, t), I(201, 301, t), I(201, 351, t) AI 
Profiles that compartment 201 produces into 
compartments 251, 301, 351. 

Figure 2 shows the AI which exerts the 
compartment 201 into compartments placed at 
different distances from it. It is observed the AI 
dependence with the distance to the NO-generator 
compartment and time. The synthesis process at 
compartment 201 starts at t = 0 s., takes 0.2 s. and 
presents trapezoidal morphology (Suárez, et al., 
2006). We have observed that I(201, 251, t) gets its 
maximum, Imax(201,251,t) ≅ 45%, at t ≅ 2.75 s. 
Initially, compartments produce influence into other 
compartments, in a fast way, the more the less 
distance. This is fundamental to propitiate neural 
recruitment processes, computations 
synchronizations, adaptations to changes of 
environment. Thus, when synthesis is over, there 
already exists an AI greater than 15% of Imax(201, 
251, t). After reaching its maximum, I(201, 251, t) 
decays at a faster speed, getting at t = 5 s., negligible 
values. I(201, 301, t) takes a 25% more than I(201, 
251, t) in reaching the maximum, and I(201, 351, t) 
a 30% more, being the max influences much lower 
in these compartments. When increasing the distance 
in 50µm, the max AI value falls in a 50%, and when 
increasing it in 50 µm. more, Imax decreases a 75%, 
Figure 1. This analysis takes us to another concept 
as “the importance of neighbourhood” is threshold 
value of I which compartments have to reach to 
consider them as belonging to a DNB. Thus, DNB 
are dynamic and adaptive, being formed gradually in 
time by means of the incorporation of compartments 
and, at the same time, modifying their order at the 
neighbourhood. Importance will be an indicator of 
the generated DNB stability; the more stable the 
DNB, the lower its importance. This changing 
character of DNB handles working in non-stationary 
environments, real environments. It can help the 
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formation of cortical maps (Krekelberg, 1996) and 
(Krekelberg and Taylor, 1998), hybrid complex 
structures, DNB + wired neighbourhoods, as well as 
the incorporation of volume learning into BNN and 
ANN. 

All these computation and/or information 
representation potentialities will be more justified 
with the emergence of complexity in DNB when we 
increase complexity in NO generation processes. 

We have studied the dynamics in an environment 
where there coexist several simultaneous synthesis 
processes. We analyzed the AI in compartment 251, 
when synthesis process exists in two symmetrical 
positions to 251 at both sides. We have observed a 
dynamics where compartments with minimum 
influence exist. I(201, 251, t) as well as I(301, 251, 
t) are lower than 3,5%, Figure 3. Thus, a value of 
importance higher than this 3,5% implies this 
compartment does not belong to both 
neighbourhoods, even though it is at short distance 
from the NO generation. It can be understood that 
compartment 251 plays an isolator role of the 
several complex structures that are formed. This 
feature can indicate the existence of isolation zones 
in the biological level, which can cause 
computational segmentation and information 
indexing. 

 
Figure 3: I(201, 251, t), I(301, 251, t), I(101, 251, t) AI 
Profiles that compartments 201 and 301 exert into 
compartment 251, and compartment 101 into compartment 
251, when there exist two, and three, simultaneous 
synthesis processes, respectively. 

It has been performed the study of the IM-NOD 
profiles throughout time, when 3 simultaneous NO 
synthesis processes exist, separated by 100 μm. one 
another (compartments 101, 201 and 301). 
Analyzing the IM-MOD compartment 101 exerts 
into compartment 251, it is observed the additive 
character that multiple and aligned generation 

causes, Figure 3. To thwart this effect, it becomes 
necessary the variability of the average NO lifetime 
in the neural tissue. This is one of the biological 
phenomena which can justify the environment non-
homogeneity. 

Finally, it is shown the dependence that DNB 
dynamics and CDNB have to environment non-
isotropy and non-homogeneity. We have worked in 
a bi-dimensional environment with very low values 
of the diffusion constant in two zones, which makes 
the NO dynamics to be almost null. The diffusion 
constant is in the range 3,3·103 ± 0,2·103 μm2s-1 in 
the rest of the environment. There are induced two 
NO synthesis processes in two compartments i, k. It 
is observed a formation of non-symmetrical and 
non-local DNBi and DNBk at times t = 0,6 s. and t= 
1,3 s., Figures 4a and 4b. Thus it is noticed a 
changing trajectory in CDNB and its possible 
dependence in the way DNB does. For t = 0,6 s., in 
both neighbourhoods, CDNB matches with the 
compartment where synthesis was caused; however 
for t = 1,3 s. in Vi the position of CDNB has 
changed, moving in agreement to that 
neighbourhood shape. 

4 CONCLUSIONS 

We present a work developed from a computational 
neuroscience point of view which provides a step 
forward in the understanding of the VT and their 
implications in the biological and artificial neural 
networks. 

We have performed a computational analysis of 
one of the great potentialities of NO as diffusive 
signalling, the DNB. We have used the 
compartmental model of NO diffusion, showing its 
high capacity to study the dynamics of NO.  

We have proposed and defined concepts 
associated to the diffusion phenomena which present 
significant capabilities to characterize the NO 
dynamics. These concepts are Directionality of NO 
dynamics, Average Influence, Importance of the 
Neighborhood, Diffusion Centre of the DNB and 
DNB Limit. 

We have established that the generation and 
dynamical behavior of the DNB depend on 
associated characteristics to the NO synthesis-
diffusion processes, and to the environment where it 
spreads (non-isotropy and non-homogeneity). The 
complexity in DNB emerges when the complexity in 
NO generation processes is increased.  In this paper, 
it is also showed the existence of isolation zones in 
the biological level, which can cause computational 
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b) 

Figure 4: Snapshot of the formation of two 
neighbourhoods, DNBi, DNBk and position of CDNB 
(indicated by a circle) in different times. Non-isotropic 
and non-homogeneity environment of 16x16 
compartaments. Black zone corresponds to null NO 
dynamics. a) t = 0,6 s., b) t = 1,3 s. 

segmentation and information indexing, and the 
possibility to generate non local and non symmetric 
DNB. With this study, it is possible to explain some 
important environment features like the non-
homogeneity. Finally, all these results allow us to 
detect the implications of VT, by means of DNB, in 
the increasing of information representation 
capacity, in the neural recruitment, in the 
synchronization of computations between neurons, 
in the neural modulation, in both scenarios, 
biological and artificial. These implications will also 

allow confirming the possible role of the NO on 
several neural circuits as the sleep-wake cycle 
control.  

We will go onto these analysis about behavior of 
DNB, developing complementary studies as 
complex systems using bifurcation theory and 
analysis. 
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