
BI-OBJECTIVE OPTIMIZATION OF THE PLASMON-ASSISTED
LITHOGRAPHY

Design of Plasmonic Nanostructures

Caroline Prodhon1, Demetrio Macı́as2, Farouk Yalaoui1, Alexandre Vial2 and Lionel Amodeo1
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Abstract: We discuss the influence of the objective function within the context of plasmons-assisted lithography. From
previous publications, numerical experiments have shown that the maximization by means of an Evolutionary
Strategy of either the visibility or the contrast of the plasmons interference pattern related to the problem does
not lead to the ideal situation in which both criteria are maximal. The idea is then to tackle simultaneously
these two objective-functions. However, as they are strongly dependent, a more promising strategy is to focus
on the minimal and maximal near-field scattered intensities involved in both previously studied criteria. We
think that an Evolutionary Strategy based on a bi-objective optimization of these new criteria will provide
more satisfactory solutions with respect to the physical constraints imposed.

1 INTRODUCTION

In the few past decades, an important amount of work
has been devoted to the application of Evolution-
ary Strategies (ES) for the solution of different kinds
of problems in several scientific disciplines (Djurisic
et al., 1997; Hodgson, 2000). The nanotechnologies,
a fairly new branch of physics, are not an exception
and reported results on the use of these methods is
becoming common (Herges et al., 2003; Kildishev
et al., 2007). One reason is that ES have proven suc-
cessful to solve problems on which classical methods
fail.

A particular application is for a little studied facet
of the inverse physic problem that consists in op-
timally synthesizing a nanostructure for plasmons-
assisted nanolithography. This optimization opens the
way to a more intelligent and systematic methodology
for the characterization of a nanostructure prior to fab-
rication. That is, it avoids the waste of time and ma-
terials that often results from the iterative adjustment
by trial and error of the experimental parameters. Al-
though this approach is commonly employed, there is
no guarantee of the optimality of the geometry of the
nanosturucture fabricated.

Encouraging results have been obtained thanks

to Evolutionary approaches. Nevertheless, the func-
tional form of the objective function and the definition
of the search space were not a sufficient condition to
obtain a satisfactory physical solution, that in the con-
text of that application required the simultaneous ful-
fillment of two apparently conflicting objectives. In
this paper, we further discuss this issue aiming to have
a better understanding on the influence of the defini-
tion of the objective function on the solution of a real-
world optimization problem in near-field physics.

In Section 2, we formulate the problem and briefly
discuss the difficulties for its solution. Section 3 is
devoted to the choice of the objective-function and the
proposed idea based on bi-objective optimization for
the characterization of a nanostructure. We give our
main conclusions and final remarks in Section 4.

2 SCATTERING OF LIGHT

We consider the scattering of light from a one-
dimensional multilayered geometry (see Fig.1).

The regionx3 > d
2 + ζ1(x1) is a homogeneous

medium characterized by its refractive indexn0. The
region d

2 + ζ1(x1) > x3 > − d
2 + ζ2(x1) is filled with

a metal with complex frequency-dependent index of
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refractionn1(ω). The upper and lower interfaces ,
ζ1(x1) andζ2(x1), are assumed to be two arbitrarily
corrugated surfaces separated by a distanced, which
also is the mean thickness of the metallic film. The
medium in the regionx3 < − d

2 +ζ2(x1) is a homoge-
neous dielectric of constant refractive indexn2. Al-
though in remainder of the presentation we have con-
sidered only three regions for this particular appli-
cation, this is not a restrictive condition. However,
as it will become evident in the following, a larger
number of interfaces would unnecesarily increase the
complexity of the direct scattering problem, without
contributing with additional information to the op-
erational principles of the optimization method em-
ployed here.
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Figure 1: Geometry of the scattering problem.

The plane of incidence is thex1x3- plane. With ref-
erence to Fig. 1, the surface is illuminated from the
regionx3 > d

2 +ζ1(x1) with a p- or s- polarized plane
wave. The single nonzero component of the electric
or magnetic vector of the incident field has the form

ψ2(x1,x3|ω)inc = ψoexp{i[kx1−αo(k)x3]}, (1)

whereαo(k) =

√

(ω/c)2−k2, ω is the frequency of
the field, andc is the speed of light in vacuum. A
time dependence of the form exp(−iωt) is assumed,
but explicit reference to it is suppressed.
As described by (Gu et al., 1993), the application of
Green’s Integral Theorem to each region in Fig. 1,
together with the respective boundary conditions for
each interface, lead to the following system of cou-
pled integral equations

ψ(0)(x1|ω)θ(x3− (d/2+ ζ1(x1))) = ψinc(x1|w)+

+ lim
ε→0

∫ ∞

−∞
dx′1

[

ϕ(1)(x′1|ω)H(0)(x1|x
′
1)

]

− lim
ε→0

∫ ∞

−∞
dx′1

[

χ(1)(x′1|ω)L(0)(x1|x
′
1)

]

, (2)

0 = lim
ε→0

1
4π

∫ ∞

−∞
dx′1

[

ϕ(1)(x′1|ω)H(11)(x1|x
′
1)

]

− lim
ε→0

1
4π

∫ ∞

−∞
dx′1

[

ε1(ω)

ε0
χ(1)(x′1|ω)L(11)(x1|x

′
1)

]

− lim
ε→0

1
4π

∫ ∞

−∞
dx′1

[

ϕ(2)(x′1|ω)H(12)(x1|x
′
1)

]

− lim
ε→0

1
4π

∫ ∞

−∞
dx′1

[

χ(2)(x′1|ω)L(12)(x1|x
′
1)

]

, (3)

ψ(2)(x1|ω) =

lim
ε→0

1
4π

∫ ∞

−∞
dx′1

[

−ϕ(1)(x′1|ω)H(21)(x1|x
′
1)

]

− lim
ε→0

1
4π

∫ ∞

−∞
dx′1

[

ε1(ω)

ε0
χ(1)(x′1|ω)L(21)(x1|x

′
1)

]

− lim
ε→0

1
4π

∫ ∞

−∞
dx′1

[

ϕ(2)(x′1|ω)H(22)(x1|x
′
1)

]

− lim
ε→0

1
4π

∫ ∞

−∞
dx′1

[

χ(2)(x′1|ω)L(22)(x1|x
′
1)

]

(4)

and

0 = lim
ε→0

1
4π

∫ ∞

−∞
dx′1

[

ϕ(2)(x′1|ω)H(s)(x1|x
′
1)

]

− lim
ε→0

1
4π

∫ ∞

−∞
dx′1

[

ε2

ε1(ω)
χ(2)(x′1|ω)L(s)(x1|x

′
1)

]

, (5)

whereε0 = n2
0, ε1(ω) = n2

1 and ε2 = n2
2. Also,

ϕ(1)(x1|ω), χ(1)(x1|ω), ϕ(2)(x1|ω) and χ(2)(x1|ω) in
Equations (2), (3),(4) and (5), respectively, are known
as source functions and are given by

ϕ(1)(x1|ω) = ψ(0)(x1,x3|ω)









x3=d/2+ζ1(x1)+ε
, (6)

χ(1)(x1|ω) =
[

−ζ′1(x1)
∂

∂x1
+

∂
∂x3

]

ψ0(x1,x3|ω)









x3=d/2+ζ1(x1)+ε
,

(7)

ϕ(2)(x1|ω) = ψ2(x1,x3|ω)









x3=−d/2+ζ2(x1)

, (8)

χ(2)(x1|ω) =
[

−ζ′2(x1)
∂

∂x1
+

∂
∂x3

]

ψ2(x1,x3|ω)









x3=−d/2+ζ2(x1)

.

(9)

The source functions (6) and (7) are the field and its
normal derivative evaluated on the interfaced/2+

BI-OBJECTIVE OPTIMIZATION OF THE PLASMON-ASSISTED LITHOGRAPHY - Design of Plasmonic
Nanostructures

307



Figure 2: Surface-Plasmons Interference.

ζ1(x1); whereas the source functions (8) and (9) cor-
respond to the field and its normal derivative evalu-
ated on the surface−d/2+ζ2(x1). The kernels of the
integral equations (2)-(5) are explicitly written in the
appendix A of (Gu et al., 1993).
Following them, the coupled integral equations (2)-
(5) are solved numerically to determine the source
functions (6)-(9), which are necessary to compute the
total fieldψ(0)(x1|ω) in the regionx3 > d

2 + ζ1(x1) or
the fieldψ(2)(x1|ω) transmitted through the metallic
film into the regionx3 < − d

2 + ζ2(x1).
The total or transmitted intensities can be written as
the squared modulus of they respective fields, that is

I (α)(x1|ω) = |ψ(α)(x1|ω)|2, (10)

whereα = 0,2
The formalism just described has been extensively
used for the solution of different kinds of problems in
near- and far-field scattering and SERS (Sanchez-Gil
et al., 2002), or in Plasmonics (Giannini and Sanchez-
Gil, 2007). A particular application of this fairly new
branch of Nanosciences, that has attracted the atten-
tion of different research groups, is the Plasmons-
Interference-Assisted Nano-Lithography. As shown
by (Derouard et al., 2007), this technique offers the
possibility to conform the topography of a photosen-
sitive material through the interference of wave-like
solutions of Maxwell’s Equations called Plasmons.
This phenomenon is schematically described in Fig.2,
where as a consequence of the interaction bewteen the
squared grating and the incident field, two counter-
propagating plasmons generate interference pattern
on the flat interface of the metallic (silver) film.
In addition to the experimental and numerical
evidence presented by (Derouard et al., 2007),
some efforts have been conducted to maximize the
visibility of the interference pattern depicted in
Fig.2, through the optimization of some geometrical
features of the nano-structure considered and the
illumination conditions. (Macı́as and Vial, 2008)

optimize the visibility

V(x1|p) =
I (p)(x1|p)max− I (p)(x1|p)min

I (p)(x1|p)max+ I (p)(x1|p)min
(11)

where the components of the vectorp =
{θ0,h1,h2,w}T are the variables of interest. The
optimization ofV(x1|p) provides feasible solutions
with high visibility. However, this approach presents
an important drawback as regards a weak contrast

C(x1|p) = I (p)(x1|p)max− I (p)(x1|p)min (12)

which implies that there will not be enough power
to modify the topography of the photo sensitive mate-
rial. Based on the fact that

V(x1|p) =
C(x1|p)

I (p)(x1|p)max+ I (p)(x1|p)min

(Prodhon et al., 2009) propose to useC as objective
function. This provides better solutions in terms of
contrast, while keeping reasonable value of visibil-
ity. Furthermore, the objective-variables are closer to
the physical feasibility of the context of work. (Prod-
hon et al., 2009) conclude that the choice of criteria
fitness function has significant effects on the results.
Nevertheless, the ideal situation in which contrast and
visibility are maximal does not seem attainable when
these two objective functions are tackled separately.
Another drawback in the formulations of (Macı́as and
Vial, 2008) and (Prodhon et al., 2009) is that their
forward scattering solvers are based on the Finite-
Difference Time-Domain method (FDTD). Despite
its popularity, this approximative numerical method
presents important problems of numerical conver-
gence. Also, the accuracy of its results strongly de-
pends on the size of the elementary cell. For this
reason, in this work, we propose to use the rigorous
numerical integral method described in the previous
paragraphs for the computation ofI (α)(x1|ω).

3 OPTIMIZATION OF THE
INTERFERENCE PATTERN

An idea to achieve high quality solutions is to keep a
vision the more global as possible on the whole prob-
lem, i.e. to carry a search ensuring high values on
both C andV. SinceC andV are strongly depen-
dent, a bi-objective optimization on these two crite-
ria may not be the best way to obtain the expected
results. A more promising strategy is to focus on
the near-field scattered intensity involved in both pre-
vious studied criteria. LetI (p)(x1|p)max = Imax and

IJCCI 2009 - International Joint Conference on Computational Intelligence

308



I (p)(x1|p)min = Imin, a formulation ofC as regard to
the maximum and minimum intensity is:

Max C(x1|p) ⇔ Max (Imax− Imin) (13)

⇔ Max(Imax) and Min(Imin)
(14)

The same transformation can be done onV.

Max V(x1|p) ⇔ Max (
Imax− Imin

Imax+ Imin
) (15)

⇔ Max
( Imax

Imin
− Imin

Imin
)

( Imax
Imin

+ Imin
Imin

)
(16)

Let α = Imax
Imin

Max V(x1|p) ⇔ Max(
α−1
α+1

) (17)

⇔ Max(
α+1−1

α+1
−

1
α+1

) (18)

⇔ Max(1−
2

α+1
) (19)

⇔ Max(α) (20)

⇔ Max(Imax) and Min(Imin)
(21)

Thus, from (14) and (21):

Max V(x1|p) ⇔ Max (Imax) and Min (Imin)

⇔ Max C(x1|p)

Even if physical limitations can reduce the ex-
pectancy of reaching bothC ≈ 1 andV ≈ 1, this
relation shows that the previous optimization mod-
els were weak since a maximization onC should be
equivalent to a maximization onV (results not ob-
served until now). Furthermore, it is clear that both
Imax and Imin should be tackled in the process to
achieve good results. Thus a bi-objective approach
seems more promising. Note though thatImax and
Imin are linked by the electric field scattered in the
near-field of the surface. To handle the problem, we
propose to apply the Pareto Archived Evolutionary
Strategy (PAES). PAES is a multi-objective optimizer
which uses a simple local search evolution strategy.
It exploits an archive of non-dominated solutions to
estimate the quality of new candidate solutions. The
validation of this work is under process and should be
corroborated by the results from the experiments.

4 CONCLUSIONS

In this paper, we have discussed the influence of the
objective function within the context of plasmons-
assisted lithography. It has been shown that the max-
imization by means of an Evolutionary Strategy (ES)

of either the visibility or the contrast of the plasmons
interference pattern does not lead to the ideal situ-
ation in which both criteria are maximal. The idea
proposed to obtain more promising results is then to
tackle simultaneously two objective functions. How-
ever, since the contrast and the visibility are strongly
dependent but both involve the near-field scattered in-
tensity, we propose to focus on the maximal and min-
imal values taken by this function. We suggest the
use of an ES based on a bi-objective optimization of
these new criteria to provide more satisfactory solu-
tions with respect to the physical constraints imposed.
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