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Abstract: Massive growth of the Internet traffic in last decades has motivated the design of high-speed optical 
networks. Resilient Packet Ring (RPR), also known as IEEE 802.17, is a standard designed for the 
optimized transport of data traffic over optical fiber ring networks. Its design is to provide the resilience 
found in SONET/SDH networks but instead of setting up circuit oriented connections, providing a packet 
based transmission. This is to increase the efficiency of Ethernet and IP services. In this paper, a weighted 
ring arc-loading problem (WRALP) is considered which arises in engineering and planning of the RPR 
systems (combinatorial optimization NP- complete problem). Specifically, for a given set of non-split and 
uni-directional point-to-point demands (weights), the objective is to find the routing for each demand (i.e., 
assignment of the demand to either clockwise or counter-clockwise ring) so that the maximum arc load is 
minimized. This paper suggests four variants of Particle Swarm Optimization (PSO), combined with a Local 
Search (LS) method to efficient non-split traffic loading on the RPR. Numerical simulation results show the 
effectiveness and efficiency of the proposed methods. 

1 INTRODUCTION 

This paper concerns load balancing problems on 
RPR, where the RPR is offered by IEEE 802.17 
(RPR Alliance, 2004). The RPR is in essence, a 
distributed Ethernet switch, in which the RPR nodes 
are connected with two counter-rotating rings 
(clockwise and counter-clockwise ring). The ring 
spans are either SONET of Gbit Ethernet. The 
(unidirectional) point-to-point traffic demands 
(10/100/1000 Ethernet and/or TDM) can be carried 
on either ring.  

Given a network and a set D of communications 
requests, a fundamental problem is to design a 
transmission route (direct path) for each request such 
that high load on the arcs/edges is avoided, where an 
arc is an edge endowed with a direction. The load of 
an arc is defined to be the total weight of those 
requests that are routed through the arc in its 
direction (WRALP) and the load of an edge is the 
number of routes traversing the edge in either 

direction (WRELP). In general each request is 
associated with a non-negative integer weight. 
Practically, the weight of a request can be 
interpreted as a traffic demand or the size of the data 
to be transmitted.  

The load balancing problems can be classified 
into two formulations: with demand splitting 
(WRALP) or without demand splitting (non-split 
WRALP). Split loading allows the splitting of a 
demand into two portions to be carried out in two 
directions, while a non-split loading is one in which 
each demand must be entirely carried out in either 
the clockwise or counter-clockwise direction. In 
either split or non-split cases, WRELP/WRALP ask 
for a routing scheme such that maximum load on 
arcs/edges is minimized. In this paper we study the 
WRALP without demand splitting. 

For research on the no-split WRELP, Cosares 
and Saniee (1994) and Dell’Amico et al. (1998) 
studied the problem on SONET rings. Cosares and 
Saniee (1994) proved that the formulation without 
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demand splitting is NP-complete. This means that 
we cannot guarantee to find the best solution in a 
reasonable amount of time. For the split problem, 
various approaches are summarized by Schrijver et 
al. (1998) and their algorithms compared in Myung 
and Kim (2004) and Wang (2005). 

The non-split WRALP considered in the present 
paper is identical to the one described by Kubat and 
Smith (2005) - non-split WRALP, Cho et al. (2005) 
- non-split WRALP and WRALP and Yuan and 
Zhou (2004) - WRALP. Their objective is to 
produce feasible solutions in a reduce amount of 
time (using algorithms that produce approximate 
solutions). Our objective is to compare the 
performance of our algorithms in achieving the 
optimal solution. A heuristic method can greatly 
improve the quality of a solution as the domain 
knowledge is introduced, but this process will cost 
much time.  

In this article we report the results of the 
application of four different variants of PSO, all of 
them newer implementations to solve this problem 
and we also present a novel binary local search PSO 
(LS-PSO) to solve this problem.  

The paper is structured as follows. In Section 2 
we present the problem; in section 3 we describe the 
algorithms implemented while in Section 4 we show 
the studied examples; in Section 5 we discuss the 
computational results obtained and, finally, in 
Section 6 we report about the conclusions. 

2 PROBLEM DEFINITION 

To effectively use the RPR’s potential, namely 
spatial reuse, statistical multiplexing and bi-
directionality, it is necessary to route the demands 
efficiently. Given a set of point-to-point 
unidirectional customer traffic demands of specified 
bandwidth, the demands should be assigned to the 
clockwise or to the counter-clockwise ring to yield 
the best performance. 

Let Rn be a n-node bidirectional ring with nodes 
{n1, n2, …, nn} labelled clockwise. Each edge 
{ek, ek+1} of Rn, 1≤ k ≤ n is taken as two arcs 
with opposite directions, in which the data streams 
can transmit in either direction. 
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A communication request on Rn is an ordered 
pair (s, t) of distinct nodes, where s is the 
source and t is the destination. We assume that data 
can be transmitted clockwise or counter-clockwise 
on the ring without splitting. We use P+(s, t) to 

denote the directed (s, t) – path clockwise 
around Rn, and P-(s, t) the directed (s, t) – 
path counter-clockwise around Rn.  

Often a request (s, t) is associated with an 
integer weight w>=0; we denote this weighted 
request by (s,t ; w). Let 
D={(s1,t1;w1),(s2,t2;w2),...,(sm,tm;vm)} 
be a set of integrally weighted requests on Rn. For 
each request/pair (si, ti) we need to design a 
directed path Pi of Rn from si to ti. A collection  

P = {Pi : i= 1, 2, ..., m} 
of such directed paths is called a routing for D. 

In this work, the solutions are represented using 
binary vectors. If a position has the value 1 the 
demand flows by the clockwise direction, 0 
otherwise (see Table 1). 

Table 1: Chromosome representation.  

 Pair(s, t) Demand 
 1:  (1, 2)  15 
 2:  (1, 3)  3 
 3:  (1, 4)  6   
 4:  (2, 3)  15 
 5:  (2, 4)  6 
 6:  (3, 4)  14 
 n=numberNodes=4 
 m=numberPairs=6 

 
 15  C 
 3   CC 
 6   CC 
 15  C 
 6   CC 
 14  C 
C -  clockwise 
CC – counter-clockwise 

 
Representation (x) 

Pair1 Pair2 Pair3 Pair4 Pair5 Pair6

1 0 0 1 0 1 

We assume that weights cannot be split, that is, 
for some integer xi =1, 1≤ i ≤ m, the total 
amount of data is transmitted along P+(s, t); 
xi=0, the total amount of data is transmitted along 
P-(s, t). The vector  

x=(x1, x2, …, xm) 
determines a routing scheme for D. 

The WRALP is formulated as follows: 

Wi,…,wm demands of the pairs (si,ti),…,(sm,tm)

xi, …, xm = 0 ),( tisiP
−

; 1  ),( tisiP
+ (1)

Load on arcs: 

L(x, +
ka )= ∑

++∈ ),(: tisiPai k

wi  

L(x, −
ka )= ∑

−−∈ ),(: tisiPai k

wi  (2)

∀k=1,…,n;    ∀i=1,…,m (3)
Fitness Function: 

max{max L(x, +
ka ),max L(x, −

ka )} (4)

Constraints (1) in conjunction with constraints 
(3) state that each demand is routed in either 
clockwise (C) or counter-clockwise (CC) direction. 
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For an arc, the load is the sum of wk for clockwise or 
counter-clockwise between nodes ek and ek+1. The 
objective is to minimize the maximum load on the 
arcs of a ring (4). 

3 PARTICLE SWARM 
OPTIMIZATION 

PSO is an intelligent optimization algorithm, 
originally developed by Kennedy and Eberhart in 
1995, inspired by the behaviour of bird flock's 
looking for food (Kennedy and Eberhart, 1995, 
1997). Like Genetic Algorithms (GA), PSO is a 
population-based optimization algorithm. 

The initial population (P) of particles can be 
created randomly or in a deterministic form. The 
deterministic form is based in a Greedy Algorithm 
proposed by Bernardino et al. (2008). Initially a 
deterministic strategy is followed and in a second 
phase is used the PSO algorithm to optimize the 
solution.  

Procedure Greedy: 

FOR each pair                  
   Give a direction (C – 1, CC – 0)  
pos = random (numberPairs) 
FOR k=j=pos until j=numberPairs + pos 
   IF (j > numberPairs)                     
         k=j- numberPairs 
   Change direction pairk  
   IF fitnessNewSolutionk<fitnessOldSolutionk   
         Replace the previous value of pairk 
   k++   
   j++ 

Whether continuous or discrete, the original and 
most essential idea of PSO is: difference in position 
leads to velocity and velocity leads to search.  

Supposing that the searching space is D-
dimensional and m particles form a swarm, each 
particle is looked as a point in the D-dimensional 
space, and the ith particle represents a D-
dimensional vector xi=(xi1, xi2,…, xiD). 
According to the fitness value, the particle is 
updated to move towards the better area by the 
corresponding operators till the best point is found. 
In the iterative process, each particle’s previous best 
position is remembered and denoted pi=(pi1, 
pi2,…, piD), and the globally best position in the 
whole swarm is recorded as pg=(pg1, pg2,…,  
pgD). The ith particle’s “flying” velocity is also a 
D-dimensional vector, represented as vi=(vi1, 
vi2,…, viD) (i= 1, 2,…, p). At each step, 
the velocity of all particles is adjusted as a sum of its 
local best value, global best value and its present 

velocity, multiplied by the three constants W, C1 and 
C2 respectively, shown in (5); the position of each 
particle is also modified by adding its velocity to the 
current position, see (6). 
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In (5-6) k represents the iteration number; r1, 
r2 are two random numbers selected from a uniform 
distribution in [0.0, 1.0]; W is the inertia 
weight. C1 and C2 are two constant numbers, which 
are often called the acceleration coefficients.  

The four PSO variants used to solve the WRALP 
are extensions of the basic PSO and were used to 
solve discrete binary problems. To improve the 
performance of the PSO algorithms developed we 
apply a separate local search (LS) process to refine 
individuals. 

The LS algorithm consists on the following 
steps: 

P1 = random (number of pairs) 
P2 = random (number of pairs) 
N = neighbourhoods of ACTUAL-SOLUTION (one 
neighbourhood results of interchange the 
direction of P1 and/or P2) 
SOLUTION = FindBest (N) 
If ACTUAL-SOLUTION is worst than SOLUTION 
    ACTUAL-SOLUTION = SOLUTION 

The performance of the child vector and its 
parent is compared and the better one is selected. If 
the parent is better, it is retained in the population.  

The algorithm continues until a certain number 
of cycles defined by the user, have passed. 

3.1 Discrete Binary Particle Swarm 
Optimization 

As the basic PSO operates in continuous and real 
number space, it can’t be used to optimize the pure 
discrete binary problem. To handle this problem, 
Kennedy and Eberhart (1997) proposed a discrete 
binary PSO (KBPSO) algorithm, where the particles 
take the values of binary vectors of length p and the 
velocity defined the probability of bit xij to take the 
value 1. KBPSO reserved the updating formula of 
the velocity (see (5)) while velocity was constrained 
to the interval [0.0, 1.0] by a limiting 
transformation function, that is, the particle changes 
its bit value by (7-8) in KBPSO: 

)1/(1)( ijv
ij evS −+=  (7)
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where the value of rand() drawn from the interval 
[0.0, 1.0] and the function S(v) is a sigmoid 
limiting transformation. 

3.2 Constriction Coefficient Particle 
Swarm Optimization 

The constriction coefficient (CBPSO) was 
introduced by Clerc and Kennedy (2002) as an 
outcome of a theoretical analysis of swarm 
dynamics. Velocities are constricted, with the 
following change in the velocity update: 
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whereκ is the constriction factor determined from 
the following two equations:    

4;21 >+= ϕϕϕϕ  (10)
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It should be noted, however, that Clerc’s velocity 
(9) is simply a special case of the original velocity 
(5) where the constants W, C1 and C2 are chosen 
according to (10) and (11). 

3.3 Modified Discrete Binary 
Particle Swarm Optimization 

According to an information sharing mechanism of 
PSO, a modified discrete PSO (MBPSO) was 
proposed by Shen and Jiang (2004) as follows. The 
velocity vij of every individual is a random 
number in the range of [0.0, 1.0]. The resulting 
change in position is then defined by the following 
rule: 

(0 ( ) ( )f v then x new x oldij ij iji α< < =  (12)
(0 1 2(1 ) ( )f v then x new pij ij iji α< < + =  (13)
(1 2(1 ) 1 ( )f v then x new gij ij iji α+ < < =  (14)

where α is a random value in the range of [0.0, 
1.0] named static probability.  

To circumvent convergence to local optima and 
improve the ability of the modified PSO algorithm 
to overcome local optima, five percent of particles 
are randomly selected, and each site of the selected 

particles has a probability of 0.5 to vary the value 
in a stochastic manner.  

Using a static probability that decreases and 
some percent of randomly fling particles to 
overcome local optima, the MBPSO remains having 
satisfactory converging characteristics. 

3.4 The Probability Binary Particle 
Swarm Optimization  

Wang et al. (2008) propose a novel probability 
binary PSO (PBPSO). In PBPSO, a novel updating 
strategy is adopted to update the swarm and search 
the global solution. The variant equations (5) and (6) 
are all reserved for iterative evolution in PBPSO, 
and a different formula is used to determine a binary 
bit pxij, which can be denoted as follows: 

)/()()( minmaxmin RRRxxL ijij −−=  (15)
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where L(x) is a linear function, its output value 
belongs to (0,1); rand() is a stochastic number 
selected from a uniform distribution in [0.0, 
1.0]; and [Rmax, Rmin] is a  predefined range 
for gaining the probability value with L(x) 
function. 

Compare to KBPSO, now the vector xi is a real 
number vector rather than the binary vector. To 
obtain a probability value distributed in [0.0, 
1.0], is used the linear function L(x) to calculate 
it, which determines pxi to be 1 or 0. The binary 
vector pxi = (pxi1, pxi2… pxiD) can be 
worked out, and then we can apply this binary vector 
into the combinatorial optimization problem. 

4 STUDIED EXAMPLES 

We evaluate the utility of the algorithms using 
identical examples produced by Cho et al. (2005). 
The studied examples arise by considering six 
different ring sizes – 5, 10, 15, 20, 25 or 30 nodes. A 
ring in a telecommunication network will typically 
contain between 5 and 20 nodes. Thus, we consider 
the 5, 10 and 15 node rings to be ordinary-sized 
rings and the 20, 25 and 30 node rings to be 
extremely large rings.  

For convenience, they are labeled Cij, where 
1<i<6 represents the ring size and 1<j<3 
represents the demand case. 
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5 RESULTS 

Since its conception, much work has been done to 
understand and develop the ideal parameters for 
PSO implementation. The goal was to develop an 
algorithm with an optimal balance between global 
exploration and exploitation of local maxima. One 
of the first issues encountered during PSO 
implementation was the ability to control the search 
space explored by the swarm. Early work done by 
the KBPSO developers (mostly trial and error) 
suggested that the best choice for C1 and C2 is 2.0 
for each (Eberhart and Shi, 2001). This essentially 
became standard in the literature until recent results 
called the values into question. Several values of 
inertial weights have been suggested, attempting to 
strike a balance between global exploration and local 
exploitation. It was suggested varying the inertial 
weight linearly from 0.9 to 0.4 over the course of 
the run  (Eberhart and Shi, 2001).  

Parametric studies, using CBPSO have suggested 
that the optimal choice for φ1 and φ2 is 2.8 and 
1.3, respectively (Carlisle and Doizier, 2001).  

Shen and Jiang (2004) consider α=0.5 when 
using MBPSO. Static probability α normally starts 
with a value of 0.5 and decreases to 0.33 when 
the iteration terminates. 

In the work of Wang et al. (2008) small values of 
Rmax and Rmin are harmful to PBPSO as the 
algorithm cannot perform meticulous search well, 
and the optimization results are both poorest in the 
executions made. The simulation results showed that 
the Rmin=-50 and Rmax=50 may be encouraged 
as PBPSO both achieving the best optimization 
results. In our tests that is not the case (see Figure 1). 

Population size is another parameter that needs a 
careful selection. Large populations, while providing 
the most thorough exploration of the solution space, 
increase the cost of more fitness evaluations and 
computation time. For the PSO, it has been found 
that relatively small population sizes can sufficiently 
explore a solution space while avoiding excessive 
fitness evaluations. Parametric studies have found 
that a population size of about 30 is optimal for 
many problems (Carlisle and Doizier, 2001).  

Obviously, the parameters of the PSO variants 
will seriously affect the real optimization 
performance (see Figure 1). To know the PSO 
variants well, we study and test all the combination 
parameters of the different variants. Previous works 
have proven that the traditional values of parameters 
in PSO can keep algorithm work well, but since this 
problem has a different specificity we perform a new 

parameter studying using the test instance C32 (see 
table 2).  

Table 2: Best combination parameters. 

Problem Parameters 

KBPSO 0.5<w<0.9 0.8<C1=C2≤2 Descend = 
{true,false} 

MBPSO 0.5<α<0.7 Descend = {true,false} 

CBPSO 0.6<φ1<3.2 1.2<φ2<3.3 

PBPSO -1≤Rmin1≤-20 -1≤Rmax1≤20 

With or without varying linearly the inertial 
weight / α at the course of the run the results 
produced are very similar. With 30 particles the 
algorithms can reach in a reasonable amount of time 
a high number of optimal solutions.  

Table 3 presents the best obtained results. The 
first column represents the problem number 
(Problem), the second and the third columns show 
the number of nodes (Nodes) and the number of 
pairs (Pairs), the fourth column shows the minimum 
fitness values obtained and finally the fifth column 
shows the number of iterations used to test each 
instance. The number of iterations was selected 
based upon preliminary observation. The algorithms 
have been implemented using C++ and were 
executed using a processor Intel Core Duo (2.66 
GHZ, Windows XP). The algorithms were tested 
using randomly initial solutions and deterministic 
initial solutions. 

Table 3: Results. 

Problem Nodes Pairs Optimal Fitness Number Iterations 
C11 5 10 161 200 
C12 5 8 116 100 
C13 5 6 116 10 
C21 10 45 525 250 
C22 10 23 243 200 
C23 10 12 141 200 
C31 15 105 1574 300 
C32 15 50 941 250 
C33 15 25 563 200 
C41 20 190 2581 1000 
C42 20 93 1482 500 
C43 20 40 612 250 
C51 25 300 4265 1500 
C52 25 150 2323 500 
C53 25 61 912 300 
C61 30 435 5762 2500 
C62 30 201 2696 1000 
C63 30 92 1453 500 

Table 4 presents the best-obtained results. The 
first column represents the problem number (Prob.) 
and the remaining columns show the results obtained 
(T – run time in seconds and I – number of 
iterations). The run time corresponds to the average
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Figure 1: Problem C32 – Comparison between parameters. 

 
Figure 2: Average number of iterations / execution times using the best parameters combination (only best solutions). 

Table 4: Results – run times and number of iterations. 

Prob. KBPSO LS-KBPSO CBPSO LS- CBPSO MBPSO LS-MBPSO PBPSO LS-PBPSO
 T I T I T I T I T I T I T I T I 

C11 <0.001 <5 <0.001 <5 <0.001 <5 <0.001 <3 <0.001 <5 <0.001 <3 <0.001 <5 <0.001 <2 
C12 <0.001 <5 <0.001 <3 <0.001 <5 <0.001 <3 <0.001 <5 <0.001 <3 <0.001 <5 <0.001 <2 
C13 <0.001 1 <0.001 1 <0.001 1 <0.001 1 <0.001 1 <0.001 1 <0.001 1 <0.001 1 
C21 <0.001 <15 <0.001 <15 <0.001 <20 <0.001 <20 <0.001 <60 <0.001 <20 <0.001 <15 <0.001 <15
C22 <0.001 <10 <0.001 <10 <0.001 <15 <0.001 <10 <0.001 <30 <0.001 <10 <0.001 <5 <0.001 <3 
C23 <0.001 <5 <0.001 <3 <0.001 <5 <0.001 <3 <0.001 <10 <0.001 <3 <0.001 <5 <0.001 <3 
C31 <0.3 <50 <0.3 <30 <0.3 <80 <0.3 <60 <0.3 <150 <0.3 <40 <0.2 <30 <0. 1 <20
C32 <0.001 <15 <0.001 <10 <0.001 <20 <0.001 <12 <0.001 <30 <0.001 <15 <0.001 <10 <0.001 <8 
C33 <0.001 <12 <0.001 <5 <0.001 <12 <0.001 <5 <0.001 <15 <0.001 <10 <0.001 <10 <0.001 <5 
C41 <1 <130 <0.5 <70 <1 <250 <1 <100 <1.5 <400 <0.5 <72 <0.5 <90 <0.1 <40
C42 <0.2 <45 <0.1 <20 <0.5 <110 <0.3 <40 <0.3 <150 <0.1 <30 <0.1 <40 <0.05 <20
C43 <0.001 <10 <0.001 <7 <0.001 <15 <0.001 <10 <0.001 <30 <0.001 <10 <0.001 <6 <0.001 <5 
C51 <1 <350 <1.5 <150 <1.5 <600 <2 <200 <3 <750 <2 <140 <1 <500 <0.75 <70
C52 <0.5 <250 <0.2 <40 <0.3 <100 <0.4 <50 <0.5 <250 <0.3 <40 <0.1 <100 <0.1 <25
C53 <0.05 <40 <0.1 <25 <0.1 <70 <0.1 <30 <0.3 <150 <0.3 <20 <0.05 <40 <0,01 <15
C61 <4 <1200 <5 <250 <6 <1500 <6 <400 <7 <2000 <7 <300 <4 <1200 <2 <100
C62 <1.5 <200 <0.75 <60 <2 <250 <1.5 <100 <2 <400 <0.75 <60 <0.6 <400 <0.4 <40
C63 <0.2 <50 <0.2 <20 <0.1 <78 <0.15 <30 <0.3 <65 <0.15 <20 <0.1 <25 <0.075 <15

                 
Aa

time that the algorithms need to obtain the best 
solution. For each instance/variant, we perform 100 
executions and the average computation time of the 
algorithms is calculated using the 20 best results. For 

the executions we use different seeds and we just 
consider the best combination parameters. All the 
algorithms reach the optimal solution. 
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In comparison, the LS-PSO obtains results in 
smaller number of iterations. LS-PBSO is the faster 
algorithm (see Figure 2). For large problems it 
produces solutions with a smaller number of 
iterations and in a smaller time.  The main advantage 
of including the LS algorithm is that it obtains 
almost always a good solution with the correct 
combination of parameters. In 100 executions with 
the best combination parameters and the same 
number of iterations it obtains a higher number of 
optimal solutions as can be seen in Figure 3.  

C32 - 100 iterations

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

KBPSO CBPSO MBPSO PBPSO

Without Local Search With Local Search
 

Figure 3: Problem C32 - Percentage of best solutions. 

6 CONCLUSIONS 

This paper proposes a novel LS algorithm combined 
with four binary PSO variants to solve the WRALP. 
The performance of all algorithms is compared.  

The four PSO binary variants (with or without 
LS algorithm) used to solve the WRALP prove to be 
very effective in the resolution of the WRALP. LS-
PSO exhibits better optimization performance in 
terms of speed and global search. LS-PBPSO variant 
provides solutions in smaller number of iterations 
and in a smaller execution time.  

The continuation of this work will be the search 
and implementation of new methods for speeding up 
the optimization process.  
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