PARALLEL REWRITING IN NEURAL NETWORKS

Ekaterina Komendantskaya
School of Computer Science, University of St Andrews, U.K.

Keywords: Computational logic in neural networks, Neuro-symbolic networks, Abstract rewriting, Parallel term-
rewriting, Unsupervised learning, Computer simulation of neural networks.

Abstract: Rewriting systems are used in various areas of computer science, and especially in lambda-calculus, higher-
order logics and functional programming. We show that the unsupervised learning networks can implement
parallel rewriting. We show how this general correspondence can be refined in order to perform parallel
term rewriting in neural networks, for any given first-order term. We simulate these neural networks in the
MATLAB Neural Network Toolbox and present the complete library of functions written in the MATLAB
Neural Network Toolbox.

1 INTRODUCTION marised in (Aleksander and Morton, 1993; Smolen-
sky and Legendre, 2006). However, it happens to be
Term rewriting (Terese, 2003) is a major area of re- that some order is innate to neural networks: and this
search in theoretical computer science, and has foundorder is imposed by position of neurons in a given
numerous applications in lambda calculus, higher- layer, and by positions of layers in a network. So, al-
order logics and functional programming. Different though each neuron accepts only a scalar number as
forms of term-rewriting techniques underly various an input, a layer of neurons accepts a vector of such
areas of automated reasoning. numbers, and the whole network can accept a matrix
A simple example of an abstract rewriting system of numbers.
would be a string together with a rule for rewriting This gives us the first basic assumption of the pa-
the elements of the string. In more complex cases, per: a vector of neurons in a layer mirrors the
the string can be given by some first-order term, there structure of a string. This is why, we will use one
can be a system of rewriting rules rather than one layer networks throughout.
rule, and, of course, the rewriting rules can be such Related literature that concerns the structure pro-
that the initial string would be shortened or extended cessing with neural networks falls within three areas
through the rewriting process. Certain rewriting sys- of research: the core method to deal with symbolic
tems would always lead to normal forms, some - not, formulae and prolog terms (Bader et al., 2008); recur-
and the process of reducing to a normal form can be sive networks which can deal with string trees (Strick-
finite or infinite. We will give formal definitions and ert et al., 2005); and kernel methods for structures
explanations in Section 2. (Géartner, 2003). The approach we pursue here does
If we have to build neural networks capable not follow any of the mentioned mainstream direc-
of automated reasoning, we would need to imple- tions, but, as a pay-off, it is very direct and simple.

ment term-rewriting techniques into them; (Komen- Having made thdirst assumptiorabove, we still
dantskaya, 2009a). These methods can be furthemeed to determine which of the parameters of a neural
used in hybrid systems research. network will hold information about the elements of a

There are several obstacles on our way. First prob- given string. One easy solution could be to send a vec-
lem is that, according to a general convention, neu- tor consisting of the elements of a string as an input
ral networks do not process strings, or ordered se-to a chosen network. However, in this case the task of
guences. Every neuron can accept only a scalar agewriting this string would be delegated to a process-
a signal, and output a scalar in its turn. This gen- ing function of the layer, whereas we wish to realise
eral convention has been developed through decadeshe process by means of learning. This reduces our
of discussion, and different views on it are best sum- options: conventionally, there are two parameters that

452

Komendantskaya E. (2009).

PARALLEL REWRITING IN NEURAL NETWORKS.

In Proceedings of the International Joint Conference on Computational Intelligence, pages 452-458
DOI: 10.5220/0002319704520458

Copyright © SciTePress

PARALLEL REWRITING IN NEURAL NETWORKS

can be trained in neural networks: these are weightspurpose of first-ordeterm rewriting. We prove that
and biases. Weights are used more often in learningfor an arbitrary Term Rewriting System, these neural
and training, and so we choose weights to representnetworks perform exactly the parallel term rewriting.

the string we wish to rewrite.
Thus, the second major assumptionastjusting
weights of a network is similar to rewriting terms.
So, given a string, we construct one layer of neu-
rons, with the weight vector equal tos, and the lin-
ear transfer functiorfr(x) = x. We will work with

When moving from simple examples of rewriting
systems to more specific and complex ones, all we
have to do is to re-define the functidtnused in the
definition of the learning ruldw = L(y,x). While
for some examples, as the one we have just con-
sidered,L is completely conventional, for other ex-

input signals equal to 1, so as to preserve the exactaMples we define and test new functionsvf i te,

value ofw at the first step. Next, we wish the pro-

rewite_nult), using MATLAB Neural Network

cess of training of this weight to correspond to steps Simulator. The most complex of these functions -

of parallel rewriting. How close is conventional unsu-
pervised learning implemented in neural networks to
the term rewriting known in computational logic?
Consider a simple form of a Hebbian learning:
given an inpuk = 1 to the layer, and having received
an outputy, the rate of changé&w for w is com-
puted as follows:Aw = L(y,x), with L some cho-
sen function. In a special case, it mayds = nyx,
wheren is a positive constant called tinate of learn-
ing. We take, for exampler) = 2. At the first it-
eration, the output will be equal ter, and so the
network will computeAw = 2w. At the next itera-
tion, the network will modify its weight as follows:
WW = w + Aw = w + 2w = 3w. And this value will
be sent as the output, see also Section 3.
Interestingly enough, the conventional Hebbian

rewite_nult - can supporrewriting by unsuper-
vised learningor any given Abstract or Term rewrit-
ing System.

Finally, in Section 5, we conclude the paper.

2 REWRITING SYSTEMS

In this section, we outline some basic notions used in
the theory of Term-Rewriting, see (Terese, 2003).

The most basic and fundamental notion we en-
counter is the notion of an abstract reduction (or
rewriting) system.

Definition 1. Anabstract rewriting systetfARS) is a
structurea = (A, {—q |0 € |}) consisting of a set A
and a set of binary relations-»q on A, indexed by a

network we have just described above does rewriting set |. We write(A, —1,—2) instead of(A, {—q |0 €

as we know it in computer science. In terms of term
rewriting, it takes any string, and rewrites it according
to the rewriting rulep : x — 3x, albeit, as we will see
in Section 2, we can use only ground instancep.of
Given a string[1,2,3,1,2,3,3,1,2] the network will
transform it into[3,6,9,3,6,9,9, 3, 6].

This justifies the third main assumption we use
throughout:unsupervised (Hebbian) learning pro-
vides a natural and elegant framework for imple-
menting parallel rewriting in neural networks .

{1.2}}).

A term rewriting systenfTRS) consists of terms
and rules for rewriting these terms. So we first need
the terms. Briefly, they will be just the terms over a
given first-order signature, as in the first-order pred-
icate logic. Substitution is the operation of filling in
terms for variables. See (Terese, 2003) for more de-
tails. Given terms, we define rewriting rules:

Definition 2. A reduction rulg(or rewrite rule) for a
signatureX is a pair (I,r) of terms of TefZ). It will

These three assumptions lay the basis for the mainpe written |1— r, often with a namep : 1 —r. Two

definitions of Section 3. Additionally, in Sections
3 and 4, we show the ways to formalise the more
complex cases of term-rewriting by means of unsu-

pervised learning. These cases arise when one has
more than one rewriting steps, and these steps are

not instances of one rewriting rule, when the length
of a given string changes in the process of rewriting,

restrictions on reduction rules are imposed:
o the left-hand side | is not a variable;

e every variable occurring in the right-hand side r
occurs in the left-hand side | as well.

A reduction rulep : | — r can be viewed as a scheme.
Aninstance op is obtained by applying a substitution

and also, when one uses first-order terms instead ofd: The result is aratomic reduction stef’ — r°.
abstract strings. In Section 3, we define the archi- The left-hand sidelis called aredexand the right-

tecture and a simple unsupervised learning rule for hand side ¥ is called itscontractum

neural networks that can perform abstract rewriting,

Given a term, it may contain one or more occur-

with some restrictions on the shape and the number ofrences of redexes. A rewriting step consists of con-

rewriting steps. In Section 4, we refine the architec-

tracting one of these, i.e., replacing the redex by its

ture of these neural networks and adapt them for the contractum.

453

1JCCI 2009 - International Joint Conference on Computational Intelligence

Definition 3. Arewriting stepaccording to the rewrit-
ing rule p : 1 — r consists of contracting a redex
within an arbitrary context:

ClI°] = C[r°]

We call—, the one-step rewriting relation generated

by p.

Definition 4. e A term rewriting systems a pair
R = (Z,R) of a signatureX and a set of rewrit-
ing rules R forZ.

e Theone-step rewritingelation of , denoted by
—R, is defined as the unidg{—, |p € R}. Sowe
have t—r s when t—; s for one of the rewriting
rulesp e R.

Example 1. Consider a rewrite rulg : F(G(x),y) —
F(x,x). Then a substitutiom, with a(x) = 0 and
o(y) = G(x), yields the atomic reduction step

p: F(G(O)aG(X)) -p F(Oa O)

with redex FG(0),G(x)) and contractum FO,0).
The rule gives rise to (e.g.) the rewriting step

F(z G(F(G(0),G(x)))) —p F(z G(F(0,0)))
Here the context is iz, G(0O)).
Example 2. Consider the TRS with rewriting rules

p1:F(ax) — G(xX) (1)
p2:b — F(b,b) (2)

e The substitutiorix := b yields the atomic rewrit-
ing step Ka,b) —,, G(b,b).

e A corresponding one-step
G(F(av b)vb) —p1 G(G(bv b)vb)

¢ Another one-step rewriting is & (a,b),b) —p,
G(F(ab),F(b,b)).
The notion of aparallel rewriting is central for

establishing confluence; (Terese, 2003).

Definition 5. Let a term t contain some disjoint re-
dexes §%,...,5; that is, suppose we have=t
Cls1,%,...,5n|, for some context C. Obviously, these
redexes can be contracted in any order. If their con-
tracta are respectively’ss,,...,s,, in n steps the
reductt = Cls],s,,...,s,] can be reached. These n
steps together are calledgarallel step

rewriting is

Performing disjoint reductions in parallel brings

3 UNSUPERVISED LEARNING
AND ABSTRACT REWRITING

In this section, we define neural networks, following
(Hecht-Nielsen, 1990; Haykin, 1994).

An artificial neural network(also called a neu-
ral network) is a directed graph. Anit k in this
graph is characterised, at tinigby its input vector
(Vi (1),...vi, (1)), its potentialp(t), its biasby and its
value ¥(t). In what follows, we will use integers.

Units are connected via a set of directed and
weighted connections. If there is a connection from
unit j to unitk, thenwy; denotes theveightassoci-
ated with this connection, arig(t) = w;vj(t) is the
inputreceived byk from j at timet. At each update,
the potential and value of a unit are computed with
respect to amnput (activation)and anoutput (trans-
fer) functionsrespectively. The units considered here
compute their potential as the weighted sum of their

inputs:
(% WiV (t)) . *

The units are updated synchronously, time be-
comest + At, and the output value fdg, vg(t + At),
is calculated frompg(t) by means of a givetransfer
function F, that is, v (t + At) = F (pk(t)).

A unitis said to be dinear unitif its transfer func-
tion is the identity. In this casey(t + At) = p(t).

We will consider networks where the units can be
organised in layers. Aayeris a vector of units.

In the rest of the paper, we will normally work
with layers of neurons rather than with single neu-
rons, and hence we will manipulate with vectors of
weights, output signals, and other parameters. In this
case, we can drop the subscripts and write simply
for the vector of weights.

There are two major kinds of learning distin-
guished in Neurocomputing: supervised and unsuper-
vised learning. In this paper, we focus only on unsu-
pervised learning.

Unsupervised learnindn its different forms has
the following common features. A network is given a
learning rule, according to which it trains its weights.
Adaptation is achieved by means of processing exter-
nal signals, and applying the learning rileTo train
the weightw;(t), we apply a learning functioh to

significant speed-up to computations. However, very the input and output signaig(t) andw(t), and get
often the parallel steps are conceived or implemented Aw,;(t) = L(v(t),vj(t)). We will call the vectorAw
as a sequence of disjoint rewriting steps. As we show the change vectofor the weight vectow. As a par-

in the next sections, term-rewriting implemented in

ticular case of this formula, one can haie(t) =

neural networks does the parallel step not as a se-n(w(t),vj(t)), wheren is a positive constant called

guence, but truly in parallel.

454

therate of learning At the next time step+ 1, the
weight is changed tay; (t + 1) = wij(t) + Aw(t).

PARALLEL REWRITING IN NEURAL NETWORKS

the network to rewrite. Suppose we have a rewrit-
ing rulep; : [@] — [b], with vectorsa andb of equal
length, and we want to apply this rewriting rule. Fol-
lowing the usual conventions, and taking the input
signal to be 1, the learning rule will take the out-
put vectorvi and apply some learning functidnto

Vi, to form the change vectakwy,, and compute
wik™" = weld + Awyy. The only thing left is to de-
fineL.

As we mentioned in the introduction, in some
cases we can use conventional Hebbian learning. For
example, taking the rate of learning to be equal to 2,
we can obtain the difference vectAwy, = 2vs, for
the network from Example 3. This will amend the
weightwy "W = wy, + Awqg = Vg + 2vg = 3vs. Such
a network would perform rewriting for ground instan-
tiations of the rulex — 3x. Applied to Example 3,
it would give the resul{3;6;9;3;6;9;9; 3; 8 see Fig-
ure 1. But note that Definition 2 prohibits the use of
the rewriting rules which contain a variable as a re-
dex, and so we use three ground instances of this rule,
substituting 12, 3 for x.

However, transformation of a rewriting rule into a
linear function is not normally given, and not always
possible. Therefore, we need to develop a more gen-

"--,]12--"

Figure 1: ARNNnet at training steps 1 and 2.

We could perceive this learning functidnas a
rewriting rule for the weightvy;, and the process of
training would be the process of rewriting in this case.
A suitable architecture for a network capable of per-
forming abstract rewriting by unsupervised learning is
given in the next definition, under the namlestract
rewriting neural networl ARNN). For simplicity, we
will first cover only ARS with one rewriting rule.

We adopt the following notation. For a given vec-
tor v, we denote its length bly. For a given string,

the vector that corresponds to it is denotgdand the eral approach. We defirle and call itr ewr i te; in

length of this vector is denoted iy the MATLAB library (Komendantskaya, 2009b) this
Definition 6. Given an ARS1 = (A,{—1}), and a function is called ewri t e2.

sequence s of elements of A, an architecture for the
abstract rewriting neural netwo(ARNN)net forsis
defined as follows. LetWe the vector of elements of
S. Let |, be the length ofy& Thennet is constructed
from one layer k of\} neurons. Its weight vectorav

is equal to v. The transfer function is taken to be
identity. The network receives input sigial

Definition 7. (Function Rewrite). Let 2 =
(A,{—1}) be an ARS, sbe the given string, wits
corresponding vector, angh : [a] — [b] be the rewrit-
ing rule, where a and b are vectors of the same length
m. Take zero vector Z of length |Computep) =
—([a] —[b]). For every n={1,...,Is}, do the follow-

) o 4 p) ing: If n,n+1,...(n+15— 1)th elements of the vector
This definition realises the first two basic assump- v, are equal to a, pup; on the n..(n+l,— 1)th

tions we outlined in Introduction. In the future, we pjace of Z.
will freely transform sequences of symbols into vec-
tors, in the way we have done in the Definition 6. Be-
cause the input signal is equal to 1, the network built
as in Definition 6 will always outputs, as we further
illustrate in the next example.

The functiornr ewr i t e takes three arguments - the
output vectowny, and two vectorsga) and[b] that cor-
respond to the left-hand side and the right-hand side
of the rewriting rulep. It outputs the change vector
, that containg] at precisely those positions wheeg
Example 3. Given aset A= {1,2,3}, andasequence gnneared irvs, and zeros at all other positions. To
s=1,2,31,2,3,31,2, the corresponding ARNN i gimy]ate this in MATLAB, one has to choose a train-
constructed as follows. We take one layer k of 9 jhg mode - in the standard library the unsupervised
neurons, and define the weighfwto be the vector yaining function is called r ai nbuwb. Then we de-

Vs =[1;2;3;1;2;3;3;1;2 Once initialised, the net- fine 4 new learning functiohear nr that is used by
work WI|| output the_same vector: If we Ioo!< atthe he training function. The learning function imple-
equationx, and put j= 1 (there is only one input), ments the functionewr it e.

and v = 1, then the potential pwill be equal to w. Note these subtle interconnections between the
See Figure 1. This example and many more are also nctions participating in training. The unsupervised
available in the fileexperi ments _ sin(Komen- y4ining function (rai nbuwb) activates the learning
dantskaya, 2009b). function (ear nr) that computeaw, and the latter is

We have a learning rule to add, in order to enable given by implementing the functionewr i te. This

455

1JCCI 2009 - International Joint Conference on Computational Intelligence

hierarchy is imposed by MATLAB Neural Network
Toolbox, and we respect it throughout the paper.

Example 4. We continue Example 3, and introduce a
rewriting rulep; : [2 3] — [2 1]. Now we can compute
rewrite(vs|[23,[21)=[0;0;—2;0;0;—2;0;0;0.
After one iterationnhet performs a parallel rewrit-
ing step computing:[1;2;1;1;2;1;3;1;2 see the
file experinents_s. mat in (Komendantskaya,
2009b).

Lemma 1. Given an ARSt = (A, {—1}), such that
the rewriting rule’s redex and contractum are of the
same size, given a sequengem$elements of A, there
exists an Abstract Rewriting Neural Network (ARNN)
that performs the parallel rewriting step fox $n 4.

Proof. The architecture of such a network is given in
Definition 6, and the learning function (calledar nr
in the MATLAB library) implementsL = rewite
from Definition 7. O

We have illustrated, on a limited class of ARSSs,
that term-rewriting evolves naturally in unsupervised
learning neural networks. In the next section, we want
to exploit this idea to its full potential and apply it to
more complex rewriting systems.

4 TERM REWRITING NETS

In this section we consider ARSs and TRSs in their
full generality. Two major extensions will be needed.

We will need to arrange special training functions that
would allow to replace a redex by contractum when
they have different sizes. This first problem arises be-

a zero vector ¥ of length I. Find occurrences of the
subvector a in ¥ Concatenatexwith each such sub-
vector in . Completionoutputs the vectorthat
contains y after each occurrence of a, but otherwise
contains all the elements of in their given order.

In the library of functions we present (Komen-
dantskaya, 2009b), this function is called
conpl etion_r. Completion can easily be embedded
into definitions of the term-rewriting networks.

We now generaliseew i t e from Definition 7 by
addingconpl eti on toit.

Definition 9. (Generalised Rewrite). Let s be a
given string, and ybe the corresponding vector. Let
p1:[a] — [b] be a given rewriting rule, such that a
and b are vectors of arbitrary length nd . Let
becompletedss.

Form a zero vector Z of lengtky|

Computep’ = —([a] — [b]), if 1a = lp; otherwise
concatenate the shortest of them with the vector of
zeros of the lengtha — Iy, and compute’ = —([a] —
[b]) of length m.

For every n= {1,...,l,.}, do the following: If
n,n+1,...(n+15— 1)th elements of the vectof are
equalto a, pup’ onthenn+1,...(n+I15—1)th place
of Z. The resulting vector is ttehangevectorAw.

Generalised ew i t e outputs the change vector
for v;, its implementation in MATLAB Neural Net-
work toolbox can be found in (Komendantskaya,
2009b). As in the previous section, theduced(or
rewritter) term can be found by computingg®"¥ =
Vs+ Aw. This agrees with the training mechanism
used in neural networks and we usaw it e to gen-
eralise Lemma 1:

cause in neural networks, we use vectors instead ofLemma 2. Given an ARS2 = (A,{—1}), and a

strings. Secondly, we must enrich the learning rule
in such a way that several rewriting steps, possibly
arising from several rewriting rules, can be applied in
parallel.

Suppose we have a strifrom Example 3 and
a rewriting rulep, : [1 2] — [4 5 §. Following the
method described in the previous section, we can
build a network with weightw = vs. The train-
ing function will automatically attempt to compute
w+ Aw, this is possible only if the error vectdw
is of the same length as; otherwise the vector addi-
tion is not defined. But clearly, the rewriting rute
will produceAw that is longer thamv. To bringw into
appropriate form, we introdua®npl et i on.

Definition 8. (Completion Algorithm). Let s be a
given string, and ybe the corresponding vector. Let
p1: [a — [b] be a given rewriting step, such that a
and b are vectors of length &and b, and |, > 5. Then
completevs as follows. Compute+ I, — I3, and form

456

sequence s of elements of A, there exists a term-
rewriting neural network (TRSNN) that performs the
parallel rewriting step for g in 4.

Proof. The architecture of such a network is given
in Definition 6, and the learning rulé €arn_trs in
the MATLAB library) implementd =rew it e from
Definition 9, see (Komendantskaya, 2009b). O

So far, we have considered only rewriting on num-
bers. If we wish to apply the TRNN to terms, we
would need some numerical vector representation of
the first-order syntax. We simply take the standard
ASCII encoding provided by MATLAB and com-
manddoubl e. In general, any one-to-one encoding
will be as good.

Example 5. We take the atomic rewriting stepf
from Example 1. We train the TRNN constructed in
Lemma 2 to rewrite the term(E G(F (G(0),G(x)))).
For this, we take numerical vector encoding v of

F(z,G(F(G(0),G(x)))). The weight vector is set
to v. We get the learning functiohearn_trs

to implement the generalisedewrite. On the
next iteration, the network outputs the answer
F(z,G(F(0,0))); seeexperi ment s_TRS. nat in
(Komendantskaya, 2009b).

The last extension we wish to introduce here con-
cerns the number of rewriting rules. So far, we con-
sidered only cases with one rewriting rule. How-
ever, there can be several disjoint redexes to which
different rewriting steps are applied. Clearly, com-
position of rewriting steps does not convey this idea,
(Terese, 2003). To implement the parallel term rewrit-
ing for several rules, we need to customise the func-
tionsconpl etion_r andrewite. Thus, they need

to have as many arguments as desired - depending on

the number of different and disjoint rewriting steps.
For examplerew i t e was defined to have three ar-
gumentsv - the vector we rewrite, andl,r2, if the
rewriting rule ispy : r1 — r2. In case of two rewriting
rules, we will additionally have argument8 andr4
- forthe rulepy : r3 — rd4.

Similarly to the TRSNN that process TRSs with
one rewriting rule,conpl etion andrewite will
be applied hand-in-hand. We assume now that
we already have the generalised completion defined
for several rewriting rules, see (Komendantskaya,
2009b). We define the generaliseelr i t e for sev-
eral rewriting rulesriewr i t e_nul t in MATLAB).

Definition 10. (Rewrite for Several Rewriting
Rules.) Let s be the given string, and lae the corre-
sponding vector. Leps : [a1] — [b1], ..., pn: [@n] —
[bn] be disjoint atomic rewriting steps, such that each
a; and b are vectors of arbitrary lengthy) and . Let

v; be thecompletedvs.

Form a zero vector Z of lengtf |

For every i€ {1,...,n}, do the following: com-
putep; = —([a] — [bi]), if 5 = lp;; Otherwise concate-
nate the shortest of them with the vector of zeros of the
length|la —Ip|, and then computg] = —([&] — [bi])
of length ;)i/.

For every i€ {1,...,n}, find the occurrences of
the first element of the vectoy m Vv, and form the
vector y of indexes of the occurrences. Concatenate
all such y in one vector y, and sort its elements in
ascending order. For all le vy, for alli € {1,...,n},
do the following. If kk+1,...,(k+ ng — 1th ele-
ments of the vectory\are equal to @ putp; on the
kk+1,...(k+ Iy —1)th place of Z.

Rewritemult outputs the difference vectéw for
w =V, if v} is taken to be the weight vector of a net-
work. And we come to the main theorem of the paper.

PARALLEL REWRITING IN NEURAL NETWORKS

Theorem 3. Given an arbitrary ARSz (or an arbi-
trary TRS®), and a string s of elements of A (or any
term t of®), there exists a neural network that per-
forms a parallel rewriting step for s according to the
rewriting rules ofa (or §).

Proof. The architecture of such a network is given
by Definition 6, the training function is conventional
(t rai nbuwb), the learning rulel(ear n_mul t) imple-
mentsrew ite_nmult from Definition 10. The initial
weight of the network is equal to the vectgi(respec-
tively, v{), wherev; andv; arecompletedvectors ob-
tained by applying the functioconpl eti on_mul t to

Vs andv;, respectively. See (Komendantskaya, 2009b)
for a ready-to-use library. [l

Note that the network described in this paper is
built in a very generic way, and in practice, we only
have to define such a network once (as we did in Fig-
ure 1), for one string or term. For other terms or
strings of different length, one would simply need
to re-define the length of the layer, given by MAT-
LAB commandhet . | ayers{1}. si ze, the new value

of the weightw, given by commanaet . i w{1, 1},
and plug in the given rewriting rules into the learning
function. This can be easily automatised.

Example 6. We return to Example 2. Suppose we
have chosen the substitutian= [x := c|, and need

to perform a parallel rewriting step for @& (a,c),b)
using p1 and p2. We again take the template def-
inition of a neural networknet from Example 3.
We customize it by computing the numerical vec-
tor v for G(F(a,b),b), and taking | be the length
of the network’s only layer. The learning function
| earn_.mul t implementsrewritemult. The
network outputs G5(c, c), F (b,b)) - the result of per-
forming parallel rewriting step for G~ (a,c),b), pf,
andpy. See also the filexperi ment s_TRS. mat

in (Komendantskaya, 2009b) for the MATLAB imple-
mentation of it.

In order to perform &equence of parallel rewrit-
ing stepsone needs to iterate the unsupervised train-
ing of the given network:n parallel rewriting steps
will be performed inn time steps. Additionally, we
will need to embed the functiooonpl eti on_mul t
into the training function, such that at each iteration
of learning, the network could amend the number of
neurons and the weights.

When embedded into the training function, the
conpl et e_nmul t will give an effect of agrowing neu-
ral gas(Fritzke, 1994), that is, the network may grow
at each training step. The growth will always be
bound by the length of the contracta appearing in the
rewriting rules, and the contracta are always finite,
and often not too big.

457

1JCCI 2009 - International Joint Conference on Computational Intelligence

5 CONCLUSIONS Willem Klop for inspiration.

We have shown that unsupervised learning used in

Neurocomputing implements naturally the parallel REFERENCES

rewriting, both for ARSs and TRSs. For a simple and

limited class of rewriting systems, where only one Aleksander, I. and Morton, H. (1993Neurons and Sym-

rewriting rule is allowed, and its redex and contrac- bols Chapman and Hall.

tum are of the same length, the abstract rewriting is Bader, S., Hitzler, P., and Holldobler, S. (2008). Connec-

described naturally by a simple form of unsupervised tionist model generation: A first-order approadteu-

learning. For ARSs and TRSs in their full general- rocomputing 71:2420-2432.

ity, we have constructed neural networks that perform Fritzke, B. (1994). Fast learning with incremental rbf net-

parallel rewriting steps with the help abmpletion works. Neural Processing Letterd:1-5.

algorithm embedded into the learning rule. Gartner, T. (2003). A survey of kernels for structured data
The neural networks defined here are fully for- SIGKDD Explorations5(1):49-58.

malised in the MATLAB Neural Network Toolbox, Haykin, S. (1994). Neural Networks. A Comprehensive

and the library of functions is available in (Komen- Foundation Macmillan College Publishing Company.

dantskaya, 2009b). The implementation brings com- Hecht-Nielsen, R. (1990). Neurocomputing Addison-

putational optimisation to the theory of TRS, in that Wesley.

it achieves true parallelism, as opposed Eo the clas-komendantskaya, E. (2008). Unification by error-

sical view on parallel term rewriting as a “sequence correction. InProceedings of NeSy’08 workshop at

of disjoint reductions”. Since term-rewriting plays a ECAI'08, 21-25 July 2008, Patras, Gregceolume

central role in typed theories and functional program- 366. CEUR Workshop Proceedings.

ming, this implementation may prove to be an im- Komendantskaya, E. (2009a). Neurons or symbols: why

portant step on integration of the computational logic does or remain exclusive? IRroceedings of

with learning techniques of neurocomputing; see also ICNC'09.

(Komendantskaya, 2009a). Komendantskaya, E. (2009b). Term rewriting in neural

The arguable part of the presented work is whether networks: Library of functions and examples writ-
the new (unconventional) learning functions we de- te”d'” MATLAkBr”ekara' ”e'tqwothFOO'b.ox- WWW.CS.St-
fined are admissible in neural networks. There can ANCIQY>-ac.UIc exierm-Rewnting.Zip.)
be two responses to this criticism. The first and Smolansléy,MT.T?)nd Legendre, G. (2006Jhe Harmonic
general response (see also (Komendantskaya, 2008)% \ i ress.
is that the devision between unconventional (“sym- Strickert, M., Hammer, B., and Blohm, S. (2005). Unsuper-
bolic”) and conventional (“arithmetic”, “statistical”) ?ﬂzeg;%gf;'?' € sequence processirgeurocomput-
functions is arguable, as there is no formal criteria o ' - _ _
that separates the two. Depending on a programming''€5€ (2.002)'-'—””‘ Rewriting SystemsCambridge Uni-
language we use, arithmetic functions can be repre- versity press.
sented symbolically (Komendantskaya, 2008), or, as
we did here, symbolic functions can be represented
numerically. Another, more concrete and practical re-
sponse, is that the clear advantage of the networks we
presented here is the ease of implementation in hybrid
systems: one and the same network can easily switch
between the conventional and “symbolic” learning
functions, without any structural or other transforma-
tions.

ACKNOWLEDGEMENTS

The work was sponsored by EPSRC PF research grant
EP/F044046/1. | thank Roy Dyckhoff for useful dis-
cussions. Finally, | thank the authors and presenters
of EIDMA/DIAMANT minicourse Lambda Calculus
and Term Rewriting Systerbienk Barendregtand Jan

458

