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Abstract: Typical attractor neural networks (ANN) used to model associative memories behave like disordered 
systems, as the asymptotic state of their dynamics depends in a crucial (and often unpredictable) way on the 
chosen initial state. In this paper we suggest that this circumstance occurs only when we deal with such 
ANN as isolated systems. If we introduce a suitable control, coming from the interaction with a reactive 
external environment, then the disordered nature of ANN dynamics can be reduced, or even disappear. To 
support this claim we resort to a simple example based on a version of Hopfield autoassociative memory 
model interacting with an external environment which modifies the network weights as a function of the 
equilibrium state coming from retrieval dynamics. 

1 INTRODUCTION 

Typical ANN behave in a rather complex way, 
recalling some features of disordered systems (see, 
for instance, Bovier, 2006). This complexity, for 
instance, is the source of the difficulties encountered 
when we use ANN to design associative memories 
(see, e.g., Amit, 1989; Kamp and Hasler, 1990; 
Medsker and Jain, 2000; Tang et al., 2007). In the 
latter case the attractor landscape is so complicated 
that practically we cannot obtain a full knowledge of 
its structure. Owing to this circumstance, we are 
unable to find a rule of correspondence between the 
initial and the final state of retrieval dynamics. This 
prevents from finding an efficient retrieval strategy 
which could allow, at least, a superficial comparison 
with retrieval performance of human subjects. Thus, 
ANN models of associative memory, as regards their 
eventual role of candidates for modelling some 
aspects of human memory, still are to be considered 
as toy models.  

We remark, however, that some models of ANN 
have been introduced by taking into account some 
features of a very complex system like the biological 
brain. It is therefore highly probable that this latter 
behave like a disordered system. Then, how can it 
occur that human brain, despite this fact, is able to 
use successful retrieval strategies for recalling facts, 
events, and names? In order to answer this question 
we start by stressing that the human brain is not an 
isolated system. It interacts with a physical, 
biological, and social environment, which is far from 
being passive, but reacts through suitable feedbacks. 
These latter play a very important role in shaping 
our goals and strategies when we perform a new 
retrieval process. Moreover, the brain subsystems 
implementing retrieval processes undergo the 
controlling influence not only of the external 
environment, but even of an internal environment, to 
be identified with the prefrontal cortex, which is 
identified as the main controller of most neural 
processing occurring within the brain (see, for a 

446
Pietronilla Penna M., Montesanto A. and Pessa E. (2009).
FEEDBACK CONTROL TAMES DISORDER IN ATTRACTOR NEURAL NETWORKS.
In Proceedings of the International Joint Conference on Computational Intelligence, pages 446-451
DOI: 10.5220/0002318604460451
Copyright c© SciTePress



 

review of these topics, Miyashita, 2004). And a 
biologically oriented model of the operation of 
prefrontal cortex has been able to simulate the recall 
performance of human subjects as observed in 
laboratory experiments (Becker and Lim, 2003). 
On the contrary, associative memory models based 
on ANN are isolated systems, lacking any 
interaction with some kind of environment, except in 
the phase of storage of items to be recalled. All that 
we can do is to observe the behaviour of a specific 
retrieval dynamics starting from a given initial state. 
Notwithstanding the existence of a (rather small) 
number of mathematical theorems about this 
dynamics, this fact does not enable us to make 
detailed predictions regarding specific cases of 
ANN. Of course, we cannot forget that there is a 
conspicuous body of knowledge about ANN gained 
by resorting to the methods of Statistical Mechanics 
(see, besides the references quoted before, Peretto, 
1992; Dotsenko, 1995; Engel and Van den Broeck, 
2001). However, most of this knowledge consists in 
asymptotic results, holding when the number of 
network units tends to infinity. And, as such, they do 
not help so much in studying small or medium-size 
networks where even a single unit or a single link 
could play a prominent role in influencing the 
retrieval dynamics. 
Faced with such a situation, we propose, in order to 
endow ANN-based associative memories with more 
realistic operational features, and at the same time to 
counteract the effects of disorder, to adopt an 
alternative strategy, consisting in embedding these 
models within a suitable environment. In other 
words, we suggest to study a wider system, 
including as interacting subsystems both an 
associative memory implemented through an ANN, 
and an environment, eventually modelled by 
resorting to a suitable neural network. We claim 
that, when the environment is endowed with the 
right features, the disordered aspects of ANN 
retrieval dynamics would be reduced, or even 
disappear. This would help in designing more 
biologically realistic and better performing 
associative memories. 
How to prove the validity of this proposal? Actually 
we do not have at disposal a mathematical theory 
concerning this topic. On the other hand, models of 
environment are not so common even in physics 
(see, for instance, Buchleitner and Hornberger, 
2002; Schlosshauer, 2007). And even the idea of 
exerting a control on retrieval dynamics, born within 
the context of chaotic ANN (see, e.g., Kushibe et al., 
1996; He et al., 2003; Hua and Guan, 2004), has 
been so far implemented in this same context 

through ad hoc rules. Moreover, the validity of these 
latter has been assessed only in terms of the distance 
of retrieval trajectory from the wanted attractor. 

As a consequence of this state of affairs, we feel 
that, in order to start an investigation about the role 
of environment in reducing disorder within ANN-
based associative memories, the first thing to do is to 
introduce a (hopefully simple) model of such a kind 
of memory embedded within a suitable environment. 
This paper is devoted to a presentation of this model 
and to a report about the results of a number of 
simulations of model retrieval behaviour. The 
‘degree of disorder’ of observed behaviours has been 
assessed through a number of indices, related to 
measures of sparseness of data distributions already 
adopted in domains such as neurophysiology.  

2 THE MODEL 

The adopted model of associative memory is based 
on a simple Hopfield neural network including N 
units, with total interconnections. As usually, the 
weights of all self-connections are permanently set 
to zero. In the storage phase the connection weights 
are computed through the standard Hebb rule: 
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known rule: 
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The asynchronous retrieval dynamics grants for the 
reaching of an equilibrium state at the end of every 
retrieval process. 
Within this model we then introduce three 
successive retrieval phases: 
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1) an initial retrieval phase, performed according to 
the rules described above applied to a suitable set of 
initial patterns; at end of each initial retrieval phase, 
triggered by each pattern belonging to this set, we 
can only take note of the obtained equilibrium state; 

2) an interacting retrieval phase, performed by 
resorting to the same set of initial patterns used in 
the initial retrieval phase; within this phase the 
network interacts with an external environment, 
which modifies the network connection weights as a 
function of the equilibrium state reached at the end 
of each retrieval, and according to rules which will 
described below in a more detailed way; 

3) a final retrieval phase, still performed with the 
same set of initial patterns, and obeying the same 
rules of the initial retrieval phase, but with the new 
connection weights obtained at the end of the 
interacting retrieval phase. 
The interacting retrieval phase is based on the 
existence of a particular pattern iu  (chosen by the 
experimenter) which plays the role of wanted 
equilibrium state. This phase is subdivided in a 
number of epochs, still chosen by the experimenter. 
Within each epoch we use, each once, as initial 
patterns all the ones belonging to the set of initial 
patterns introduced above. In correspondence to 
each retrieval, we measure the Hamming distance 

Hd  between the obtained equilibrium state and the 

wanted equilibrium state iu . If mH dd ≤ , where 

md  is a model parameter, then all connection 
weights are updated according to the following rule: 

)( ijjrijij wuww −+=′ η  (4)

In the contrary case the updating rule assumes the 
form: 

)( ijjpijij wuww −−=′ η  (5)

In both cases the new values of connection weights 
are obtained by applying a suitable symmetrisation 
procedure to the weights resulting from the updating 
rules (4) or (5). In short, the new weight values are 
given by: 

)2/()( Nwww jiijij ′+′=  (6)

In turn the parameters rη  and pη  vary as a function 
of the epoch number k according to laws of the 
form: 
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where 0η , 1η , 0β , 1β  are further parameters. It is 
easy to recognize in the rules (4), (5), (7.a), (7.b) the 
ones already used in the celebrated Learning Vector 
Quantization (LVQ) network (Kohonen, 1995). Thus 
the interacting retrieval phase could also be 
described as due to an interaction between the 
Hopfield network and an environment consisting in 
some form of LVQ network. 

3 THE SIMULATIONS 

We performed two kinds of simulations: 
a) one based on a set of initial states including 1000 
different patterns, and with the following parameter 
values: N = 30, M = 6, md = 1, 0η = 0.1, 0β = 0.1, 

1η = 0.2, 1β  = 0.01, number of epochs = 20; the 
initial states, the patterns to be stored, and the 
wanted equilibrium state were chosen at random; 
b) nine different simulations, each one including 24 
different sets of 100 different initial patterns (for a 
total of 2400 different initial patterns, the same in all 
9 simulations), in which all previous parameter 
values were unchanged, except for md  which 
assumed all integer values between 1 and 9; these 
simulations were designed to investigate about the 
role of md  in avoiding the effects of disorder within 
Hopfield model. 
In order to assess the results of these simulations, we 
first built the distribution of Hamming distances 
between the obtained equilibrium states and a 
specific reference pattern (also this one randomly 
chosen), both at the end of initial retrieval phase and 
at the end of final retrieval phase. Then we 
introduced suitable indices devoted to measure of 
sparseness of these distributions. Namely, the more 
such a distribution is sparse, the more the retrieval 
behaviour is disordered. Thus, we expected that, if 
the strategy of control exerted by the environment 
during the interacting retrieval phase was successful, 
the sparseness of this distribution at the end of the 
final retrieval phase would have been lesser than at 
the end of the initial retrieval phase. 
Unfortunately it is not so easy to find in literature 
measures of sparseness of distributions, and we were 
forced to rely on the ones introduced in the domain 

IJCCI 2009 - International Joint Conference on Computational Intelligence

448



 

of neurophysiology (see Willmore and Tolhurst, 
2001; Olshausen and Field, 2004). More precisely 
we used the following four indices: 

i) the number HN  of non-empty classes of 
Hamming distances; 

ii) the kurtosis of the distribution of Hamming 
distances, defined as: 

3
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where id  denotes the occupation number of the 
class corresponding to a Hamming distance given by 
i, and μ  and 2σ  are, respectively, the expected 
value and the variance of the distribution of 
Hamming distances; 

iii) the coefficient of variation, defined by: 

μ
σ

=C  (9)

iv) the Treves-Rolls coefficient defined by (Rolls and 
Tovee, 1995): 
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1
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It is unknown whether these coefficients are or not 
good indicators of the presence of disorder. In any 
case, simple-minded considerations suggest that: 

A) higher values of HN  should correspond to a 
more disordered behaviour; 

B) higher values of K  should correspond to a less 
disordered behaviour; 

C) higher values of C  should correspond to a more 
disordered behaviour; 

D) higher values of T  should correspond to a less 
disordered behaviour. 

Let us now focus our attention on the results of the 
simulations a). The values of the four indices of 
sparseness for the distribution of Hamming 
distances, obtained at the end of the initial retrieval 
phase, are: 

HN = 8 , K = 37562.35 , C = 186.6947 , 
T = 2.868955x10-5 

At the end of the final retrieval phase, instead, we 
obtained the values: 

HN = 2 , K = 203406 , C = 466.6988 , 
T = 4.591183x10-6 

When looking at these data it is immediately evident 
from the values of HN  (and therefore of K ) that 
the retrieval behaviour of the Hopfield network in 
the final retrieval phase is far less disordered than in 
the initial retrieval phase. The interaction with the 
environment in the interacting retrieval phase has 
therefore been successful in producing a decrease of 
the ‘disorder degree’. The strange variation of C  
(and therefore of T ) should not be taken into 
consideration, as the computation of these 
coefficients at the end of the final retrieval phase, 
when HN = 2, is somewhat meaningless. Besides, 
the values of T  appear too small to be used for a 
meaningful comparison. 
Let us now consider the results of the simulations b). 
In this case we must resort, rather than to individual 
values of previous coefficients, to the average values 
of them, computed on the whole set of simulations 
performed in correspondence to each value of md . 
Their outcomes can be more easily interpreted if we 
plot, as a function of md , the difference (averaged 
on the values obtained for each of the 24 different 
sets of initial patterns) between the values of HN  at 
the end of the initial retrieval phase and at the end of 
the final retrieval phase (Figure 1), the average 
difference (computed as before) between the values 
of K  at the end of the final retrieval phase and at 
the end of the initial retrieval phase (Figure 2), the 
average difference between the values of C  at the 
end of the initial retrieval phase and at the end of the 
final retrieval phase (Figure 3), and the average 
difference between the values of T  at the end of the 
final retrieval phase and at the end of the initial 
retrieval phase (Figure 4). 

 

Figure 1: Average difference between the values of HN  

in the initial and final retrieval phase vs md . 
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Figure 2: Average difference between the values of K  in 
the final and initial retrieval phase vs md . 

 

Figure 3: Average difference between the values of C  in 

the initial and final retrieval phase vs md . 

In all these four cases an increase of the plotted 
average differences with growing md  is to be 
interpreted as an evidence for the decrease of the 
‘disorder degree’ with growing md . Looking at the 
Figure 1 it is immediate to see that, besides the fac 
that the difference between HN  values is almost 
always negative (denoting an eventual increase of 
the ‘disorder degree’ after the interacting retrieval 
phase), the values of md  do not seem to have a 
significant influence on it, except for the strange 
case md = 5, and for the marked growing trend 

associated to the higher values of md  (when md = 9 
the difference becomes positive, denoting a decrease 
of the ‘disorder degree’ after the interacting retrieval 
phase). The latter circumstance seems to suggest that 
the use of the rule (4) for changing weight values, 
coupled with the choice of values adopted for the 
parameters 0η and 0β , is most effective than the 
use of rule (5) in reducing the ‘degree of disorder’ in 
the interacting retrieval phase. Namely, as the value 
of md  increases, the percentage of use of rule (4) 
increases likewise. 
Similar considerations appear to be valid when 
looking at the Figures 3 and 4. In particular the latter 

not only shows a (fluctuating) growing trend of the 
difference between the values of T , but evidences 
that this difference is almost always positive. Thus it 
appears that probably the Treves-Rolls coefficient is 
the most suited measure of sparseness when we try 
to evidence a reduction of the ‘disorder degree’. A 
different discourse must be made for the Figure 2, 
where the irregular trend seems to point to the fact 
that probably Kurtosis is not a suited measure of 
sparseness in this context. Namely, as it is well 
known from standard Statistics, this coefficient has 
been introduced mostly to evidence the deviations of 
Gaussian-like distributions from the Gaussian ones. 
On the contrary, within our context all simulations 
showed that the obtained distributions were almost 
always very different from any kind of Gaussian-like 
form. 

 

Figure 4: Average difference between the values of T  in 
the final and initial retrieval phase vs md . 

4 CONCLUSIONS 

The obtained pattern of data is somewhat irregular, 
but allows to reach some provisional conclusions, 
which can be listed as follows: 

c.1) there are indications that the proposed 
mechanisms give rise to some decrease of the 
‘disorder degree’ after the interacting retrieval 
phase; however, the irregular nature of these 
indications seems to put in evidence the need for a 
deeper study of the influence of the values of model 
parameters; 

c.2) the Figures 1-4 evidence that probably the 
Treves-Rolls coefficient is the most suited measure 
when we must detect a decrease of the ‘disorder 
degree’; the other coefficients appear to be less 
reliable; 

c.3) the rule (4), which is nothing but the original 
Kohonen’s rule, appears to be more efficient than 
rule (5) in taming disorder; 
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c.4) some exceptional behaviours, which can be 
observed in Figures 1-4, such as the ones 
corresponding to md = 5, remain unexplained; 
however, they could disappear by increasing the 
number of simulations. 
Our final conclusion is that, despite the fact that the 
one described in this paper is nothing but an 
exploratory study, the obtained results are 
encouraging. The mechanism proposed for the 
reduction of the ‘disorder degree’ appear to work 
and to be worth investigating in a deeper way. 
Therefore the ideas underlying our model could 
concretely support a strategy for taming disorder in 
ANN-based associative memory models through the 
introduction of a feedback control exerted by an 
external environment. 
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