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Abstract: A competitive co-evolutionary genetic algorithm was successfully employed to determine an optimal 
silvicultural regime for the South African Pinus patula Schl. Et Cham. The solution to the silvicultural 
regime included: initial planting density; frequency, timing and intensity of thinnings; final crop number; 
and rotation length. The growth dynamics for P.patula were estimated using dynamical models, the building 
blocks of the combined optimal control and parameter selection formulation, with a single objective 
function that was maximised for value production. The results were compared against a silvicultural regime 
determined using Pontryagin’s Maximum Principle. Both the regimes were then compared against the 
recommended silvicultural regime determined from years of experimental trials. The genetic algorithms 
regime was superior to the other two.  

1 INTRODUCTION 

A plantation forest is an investment for goods 
(entities with a market value) and services (entities 
important to our livelihood with no market value 
yet). The trees that grow on it are harvested for their 
timber or retained for other values, which may be 
conflicting and incommensurable, such as carbon 
sequestration, biodiversity, water quality, water 
quantity, and so on. For example, since biomass 
increases with stand age, postponing harvesting to 
the age of biological maturity may result in the 
formation of a large carbon sink but delayed income 
for harvestable trees. Stand level information is vital 
for understanding the flow and extent of goods and 
services over a forest estate or region. To 
simultaneously satisfy conflicting and 
incommensurable values for a forest stand requires 
an understanding of forest stand dynamics and how 
responsive these dynamics are to management 
controls and different physical environmental 
characteristics.  

This paper looks at a decision framework that 
determines a management control for optimising the 
value of a stand, which in this case only looks at 
maximising value for timber. The thinking behind 
this development is that if we can identify a decision 

framework that determines a management control 
for a single value, it may be less of an effort to 
extend the framework to include more values. The 
management control actions are time-dependent and 
include choosing the appropriate initial planting 
density, when to thin (timing), how much to thin 
(intensity), how often to thin (frequency), final crop 
number prior to clear-felling and rotation length. 
However, determining optimality for economic 
value for a forest stand is elusive, partly because of 
the difficulty in simulating and forecasting growth 
dynamics of a forest stand, price of harvested 
timber, and costs of haulage and harvesting. For 
instance, if a forest stand is harvested too soon then 
the price of timber fetched may not be enough to 
cover the costs of harvesting. On the other hand, if 
harvesting is delayed for too long then the mature 
trees may not be growing fast enough to justify their 
occupation of the land (Mesterston-Gibbons, 1995). 

1.1 Methods Employed 

Mathematical models and techniques are the default 
for simulation, forecasting and optimisation. Most 
invariably, the conveniency of models introduces a 
jumble of consequences i.e., the decision-making 
process based on the outcomes of simulation, 
forecasting and optimisation, may actually be 
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simplified but with complications that may range 
from problem formulation to handling large 
computations. For an economic value of a forest 
stand there are two dominant dynamic trends that 
may be modelled, i.e., growth and economic 
dynamics. Both dynamics may be integrated into an 
optimisation formulation such that optimal initial 
stand density, thinning strategy (i.e. frequency, 
timing and intensity of thinning), final crop number 
and rotation length may be predicted. Due to the 
time-dependent and multi-stage nature of the 
optimisation problem, dynamic programming 
(Bellman, 1957) has been employed to the task 
where net present value of the harvested timber was 
maximised (Yin and Newman, 1995). Chen et al., 
(1980) gave a generic formulation of this modelling 
approach and pointed out to its weaknesses that 
included inappropriate growth models and the pesky 
“curse of dimensionality”, which meant an inability 
to do an exhaustive search. The same weaknesses 
were reiterated by Arthaud and Pelkki (1997), 
Arthaud and Warnell (1994), Filius and Dul (1992), 
Pelkki (1994), Pelkki and Arthaud (1997). 

Another approach employed by many to maximise 
the economic value of a forest stand, involves 
determining silviculturally sound stand strategies 
using simulation models. A financial analysis based 
on net present value is then applied to the strategies. 
The strategy with the highest net present value is 
then chosen as the optimum (Kuboyama and Oka, 
2000). Such an approach may mean sub-optimal 
outcomes because the silvicultural and financial 
decisions are made independently. It also severely 
limits the outcomes that may be simulated and there 
is no way of telling how close or far away the tried 
outcomes are from the “true” optimal outcome.  

More recently, other analysts have tackled this forest 
stand problem using discrete-time dynamical models 
for simulating the growth dynamics and 
Pontryagin’s Maximum Principle (PMP), for an 
exhaustive search, averting the curse of 
dimensionality (Chikumbo et al., 1997, Chikumbo 
and Mareels, 2003). Discrete-time dynamical 
models, commonly used in systems engineering, are 
based on a common axiom that the current 
observation at time t is dependent on the previous 
observation at time t-1for a first-order model (Ljung 
1987). This means that dynamical models are 
expressed in terms of orders of magnitude of their 
previous values. The choice for using discrete-time 
dynamical models in this type of formulation is that 
their mathematical structure has linear parameters 
that control shape and scale of a variable trend, 

making it easier to reflect change in the dynamics of 
the trend, where the parameters themselves are a 
function of control actions (Chikumbo et al., 1999).  

A combined optimal control and parameter selection 
formulation made it possible to estimate the initial 
stand density (one parameter), final crop number 
(another parameter), thinning strategy (optimal 
control) and the rotation length of a forest stand. 
Therefore, the problem was transformed into a 
terminal constraint problem by specifying the final 
crop number in the formulation. As a result the 
formulation became sensitive to terminal time, 
making it possible to determine the optimal rotation 
length. The terminal time was determine by 
incrementing the rotation length in small yearly 
steps and solving the problem, until ill-conditioning 
made it impossible to solve the problem. Therefore, 
determining the terminal time was never a case of 
the model being “clever” enough to know when to 
terminate a rotation, but rather sensitive to the 
terminal time obtained through a trial and error 
exercise identify the optimal rotation length. 

In general, the task of designing and implementing 
algorithms for the solution of optimal control 
problems is a nontrivial one(Anderson and Moore, 
1989; Michalewicz, 1999). This is because the 
optimal control problems are quite difficult to deal 
with numerically and therefore many dynamic 
optimisation programs available for general users 
are typically an offspring of static packages (Brooke 
et al., 1988) or forward recursive heuristics 
(Chikumbo, 1996). Only recently are genetic 
algorithms being applied to optimal control 
problems in a systematic way (Michalewicz et al., 
1992). 

1.2 Genetic Algorithms 

In this paper the author ups the ante to solve the 
combined optimal control and parameter selection 
problem using a competitive co-evolutionary genetic 
algorithm (GA). Such an approach has many 
advantages in that, unlike PMP, which is calculus-
based and therefore dependent on the restrictive 
requirements of continuity and derivative existence 
of functions, a GA uses payoff  (objective function) 
information, making it robust, as in, a wider problem 
domain application (Goldberg 1989). Because 
derivatives are not a feature of a GA, the 
formulation lends itself to greater flexibility in 
defining the objective function or multiple 
objectives. The organisation of this paper is outlined 
here. Data description is brief and is followed by a 
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section with the models that were used for the 
control design, viz., state equations. The 
optimisation criterion is then defined and the results 
of the GA optimisation presented and discussed in 
the context of the PMP results and currently 
recommended silvicultural strategies for the South 
African P. patula. In the final section conclusions 
are drawn and further work indicated. 

2 DATA 

The re-measurement data used for developing the 
discrete-time dynamical models came from Pinus 
patula Schl. et Cham., correlated curve trend 
spacing trials, Nelshoogte, Transvaal, South Africa. 
Detail of the spacing trials and how the data were 
prepared for model development may be found in 
Chikumbo and Mareels (1995). A theoretical 
economic aggregate was used in the formulation 
because of lack of data. The economic aggregate 
was based on stumpage, the maximum price that a 
competitive buyer is willing to pay for harvested 
timber, less the expected costs in harvesting and 
haulage. Theory has it that a forest plantation 
increases in stumpage value with time and follows a 
sigmoidal trend, its slope increasing up to an 
inflection point (Chikumbo, 1996). This was easily 
represented as a second-order dynamical model with 
an asymptotic limit of one. Using real world data 
will only change the two time constants and 
asymptotic limit of the second-order dynamical 
model, retaining the characteristic signature of the 
stumpage trend (Chikumbo and Mareels, 2003). The 
thinking therefore, is that the theoretical stumpage 
model will influence the control model in a similar 
way as a realistic one. 

3 STATE EQUATIONS 

Discrete-time dynamical models were used to 
represent the state of the forest stand (which is the 
system) and included, the stand basal area model 
(Chikumbo et al., 1999), average height function 
(Chikumbo, 1996) and the economic aggregate 
model (Chikumbo and Mareels, 2003). Application 
of dynamical models to forest growth is not new and 
has been demonstrated in the last 15 years 
(Chikumbo et al., 1992).  

The optimisation was designed as a state space 
representation (Ljung, 1987) where the input was the 
management control action (to be estimated) that 

influenced the dynamics of the forest stand 
(represented by the state equations or dynamical 
models) with an output that was represented by a 
volume function (Chikumbo, 1996) as shown in 
Figure 1. 

The state equations were as follows:  

sph(t) = sph(t − 1) − u(t) (1)

sba(t) = a1(sph(t − 1)) 

 sba(t − 1) + … b1(sph(t − 1)) 
(2)

ht(t) = a2(sph(t − 1)) ht(t − 1) + … 

b2(sph(t − 1)) dq(t − 1) 
(3)

stpge(t) = a3stpge(t − 1) + a4stpge(t − 2)… + 
b3(1 − a3 − a4) 

(4)

a1(y) = 0.93 + 0.01 y − 0.047 y2 + 0.01 y3 (5)

a2(sph(t)) = 0.782, 

for sph(t) ≥1000 … stems ha−1 
(6)

= 0.85, 

for 1000 > sph(t) ≥  … 400 stems ha−1 

= 0.913, 

for 400 > sph(t) ≥  … 124 stems ha−1 

a3 = 1.566 (7)

a4 = −(a3)2/4 (8)

b1(y) = 2.32 + 4.24y − 0.0035y2 (9)

b2(sph(t)) = 0.19 + 0.03y, 

for sph(t) ≥  … 1000 stems ha−1 
(10)

= 0.095 + 0.05y, 

for 1000 >… sph(t) ≥  400 stems ha−1 

= 0.035 + 0.1y, for 400 > … 

sph(t) ≥  124 stems ha−1 

b3 = 1 (11)

y = sph/1000 (for scaling purposes) (12)

where, 

dq = quadratic mean diameter in centimetres. 

The parameters of equations (2) and (3), i.e., a1, a2, 
b1 and b2 were depended on the initial/residual stand 
density, making them responsive to changes in 
growth dynamics before and after thinning 
(Chikumbo et al., 1999). 
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Figure 1: State space representation of the forest stand model, where, t = time in years; sba = stand basal area in m2ha−1; ht 
= stand mean height in metres; stpge = dimensionless stumpage; u = number of trees harvested in stems ha−1; and sph = 
initial or residual stand density in stems ha−1. 

The stand volume function was conveniently 
developed to fit into a quadratic objective functional 
formulation and was as follows: 

V(t) = 0.4047 sba(t) ht(t) (13)

where, 
V = stand volume in m3ha−1. 

4 PARAMETER SELECTION 
AND OPTIMAL CONTROL 
FORMULATION  

Let Jn(u) be defined as the maximum achievable 
total volume over n periods. Thus 

Jn(u) = max
u ( t )

u(t)

sph(t)t=T−( n−1)

T

∑ [0.4047sba(t)ht (t)] (14)

subject to the constraints, t ≥ T-(n-1) with upper and 
lower bounds on the control, 
0 ≤ u(t) ≤ 200,∀t ∈ [ t0 ,T ] . To bias this cost 
functional to maximize harvested volume and 
revenue Jn(u) becomes: 

J
n
(u) =  max

u ( t )

u(t)

sph(t)t=T −(n−1)

T

∑ [ 0.4047sba(t)ht(t)]...

sba(t)

sph(t)
stpge(t)  

(16)

For n = 1, 

J1(u) = max
u (T )

u(T )

sph(T )
[ 0.4047sba(T )...

ht(T )]
sba(T )

sph(T )
stpge(T )

 (17)

that is, we have a single constrained static 
optimisation problem that can be solved, if u(T) =  
sph(T), hence  

 J
1
(u) = [0.4047sba(T )ht(T )]

sba(T )

sph(T )
stpge(T ) . 

Clearly at the final period, a total harvest has to be 
done. The importance of the harvest is still 
undetermined as this is a function of all previous 
control actions. 

Consider n = 2 and 

J 2 (u) = max
u (T −1)

u(T −1)

sph(T −1)
[ 0.407sba(T −1)...

ht(T −1)]
sba(T −1)

sph(T −1)
stpge(T −1) + ...

u(T )

sph(T )
[ 0.4047sba(T )ht(T )]

sba(T )

sph(T )
stpge(T )

 (18)

and so on, until n = T+1 and the original problem 
has been solved. This is the method of dynamic 
programming, sometimes called backwards 
induction. Adding the parameter selection constraint 
for the initial planting density and final crop number, 

900 ≤ z(1) ≤ 1900  (19)

200 ≤ z(2) ≤ 300  (20)
where, 

 z(1) = initial planting density (in stems ha-1), 
and 

 z(2) = final crop number (also in stems ha-1), 

makes the computation cumbersome.  However, the 
above problem was solved using PMP such that the 
first-order necessary condition for optimality would 
be satisfied because of the inclusion of the 
Hamiltonian in PMP (Dixon, 1972; Chikumbo and 
Mareels, 2003).  Note that PMP and dynamic 
programming are essentially the same (Fan and 
Wang, 1964) although PMP achieves an exhaustive 
search by breaking the problem into a sequence of 
sub-problems that are approximated by a constrained 
nonlinear programming problem, solved by standard 
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mathematical programming algorithms (Teo et al., 
1989). In this case NLPQL (Schittkowski, 1985), a 
sequential quadratic programming algorithm for 
solving constrained nonlinear programming 
problems, was used to solve the combined optimal 
control and parameter selection problem. A set of 
explicit functions and their derivatives with respect 
to the state, control and parameters need to be 
supplied to solve the problem.  

Note that there is no known method of determining 
the global maximum (or minimum) for the general 
nonlinear programming problem. Only when the 
objective function and the constraints satisfy certain 
properties, is the global optimum sometimes found 
(Michalewicz, 1999).  

5 THE GENETIC ALGORITHM 
MODEL 

Genetic algorithms (GA) are engineering techniques 
that mimic chromosomal metaphors and population 
dynamics for solving optimisation problems, in 
particular combinatorial ones. For the combined 
optimal control and parameter selection problem the 
chromosomal data structure (as shown in Figure 2) 
was designed in such a way that the first gene was a 
fixed age 0 for when the planting occurs. The 
second, third and fourth genes were age ranges in 
years, 6-8, 12-15, and 18-20, respectively for 
determining the timing of thinnings. The fifth gene 
was the terminal time for the rotation length with a 
range of 25-44 years. The sixth gene was the initial 
planting density representing z(1) as in equation 
(19). The seventh, eighth and ninth genes were the 
thinning intensities with ranges 0-300, 0-200, and 0-
200 stems ha-1, respectively. They corresponded to 
the age ranges in the second, third and fourth genes. 
The fitness function was the same as in equation 
(16). For the genetic operators to produce legitimate 
offspring at all times (for efficiency), specialized 
recombination and mutation operators were chosen 
that maintained the order of the genes. Therefore, 
the problem became a permutation one. 

The crossover was a discrete integer-valued 
recombination that performed an exchange of the 
integer values between the chromosomes. For each 
position the parent chromosome that contributed its 
integer value to the offspring was chosen randomly 
with equal probability. The mutation process that 
randomly altered populations, involved taking the 
current population and producing the same number 
of randomly initialized integer valued chromosomes. 

 
Figure 2: The chromosome structure used in the 
competitive co-evolutionary GA formulation. 

To guard against premature convergence, 5 
subpopulations of 100 individuals each were 
evolved independently in an unrestricted migration 
topology (where individuals/chromosomes may 
migrate from any subpopulation to another) that saw 
exchange (or migration) of genetic material at 
every10 generation-interval over a 1000 generation-
period. This multi-population formulation is 
sometimes referred to as an island model (Levine, 
1994) and happens to be a convenient model for 
parallel implementation, important for very large 
problems where computation time may be critical. 

The selection process was all that differentiated the 
5 subpopulations and all else kept the same. Three 
selection processes were used that is, stochastic 
universal sampling, tournament selection, and 
roulette wheel selection (Pohlheim, 2006). The 
roulette wheel selection did not seem to perform 
well and ultimately only two selection processes 
were utilised amongst the 5 subpopulations. 
Competition between the subpopulations was 
enabled such that the size of a subpopulation was 
made dependent on the current success of that 
subpopulation, hence the name, competitive co-
evolutionary genetic algorithms. Successful 
subpopulations received more resources and less 
successful ones transferred resources to where they 
were most likely to generate the greatest benefit. The 
cycle of events in each generation is shown in Figure 
3 although migration and competition selection were 
set to occur 10 generation-intervals. 

Computation time is always an issue for some, but 
for this combined optimal control and parameter 
selection problem, it was solved under 3 minutes on 
an iMac 2.16 GHz Core 2 Duo with 2 GB SDRAM. 

6 RESULTS AND DISCUSSION 

The PMP algorithm provided a solution for a 44-
year rotation period with all the upper and lower
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Figure 3: The structure of a competitive co-evolutionary 
genetic algorithm. The processes marked with an asterisk 
take place after every 10 generations. 

control points set as follows: 
0 ≤ u(t) ≤ 200,∀t ∈ [0,44] . The turnaround time of 
the execution was under 3 minutes similar to the GA 
one. The upper and lower control bounds for the 
PMP formulation could not be replicated for the GA 
formulation without problems as it meant a 
numerous amount of “illegal chromosomes” being 
generated. To make such a formulation for the GA 
to work, where the chromosome is the control vector 
for the whole rotation, with the first gene being the 
initial planting density, would have meant including 
a “repair algorithm” that would have been costly in 
computation time. Also such a formulation would 
have made it hard to determine the optimal rotation 
length given that the chromosomes had a fixed 
length. Messy GAs (Goldberg 1993) can handle 
chromosomes of different lengths but are beyond the 
scope of this paper. They are able to evaluate the 
best building blocks from modestly sized 
populations of longer chromosomes, thereafter 
cutting down the string length by throwing off the 
genes of lesser importance. Design calculations are 
performed for population sizing, selection-deletion 
timing, and genetic thresholding. One could say this 
is where the strength of PMP really shows because 
of the availability of the derivatives of the dynamic 
system, the PMP will still behave, regardless of the 
upper and lower bounds on the control vector 
(within reason of course). 

The GA being a heuristic needed a rethink in the 
design of the chromosome and from a 44-gene 
structure to a mere 9-gene chromosome produced 
remarkable results. It is evident here that although 
the PMP formulation is efficient (providing the 
functions of the dynamics of the system are smooth 
and differentiable to the second derivative), a 
cleverly designed chromosome can be equally 
efficient. Tables 1-3 show the silvicultural results 

from the PMP formulation, the recommended 
silvicultural regime from the Department of 
Forestry, South Africa (Kassier, 1991), and from the 
competitive co-evolutionary GA, respectively. 

Table 1: The silvicultural regime derived from the PMP 
formulation. 

AGE (years) Standing trees 
(stems ha-1) 

Control (stems ha-1

-u(t)) 

0 1000  
21 600 (400) 
33 200 (400) 
44 0 (200) 

Table 2: The recommended silvicultural regime, Dept., of 
Forestry, South Africa. 

AGE (years) Standing trees 
(stems ha-1) 

Control (stems ha-1

-u(t)) 

0 1372  
8 650 (722) 

13 400 (250) 
18 250 (150) 

25+ 0 (250) 

Table 3: The silvicultural regime derived from the 
competitive co-evolutionary GA. 

AGE (years) Standing trees 
(stems ha-1) 

Control (stems ha-1

-u(t)) 

0 906  
6 624 (282) 

15 454 (170) 
20 252 (198) 
31 0 (252) 

Although the PMP silvicultural regime in Table 1 
might be optimal, it somewhat raises questions as to 
whether it can be implemented successfully. 
Planting 1000 stems ha-1 and trying to retain them 
until the age of 21 years for a first thinning, creates 
competition, for light, water and soil nutrients that 
will ultimately lead to suppressed growth and 
mortality. In production forestry thinning is 
designed as a control action in advance of 
competition in order to reduce mortality. Also a final 
crop number of 200 stems ha-1 at a late age of 33 
years maintained until age 44, may mean less growth 
gains because the rate of crown expansion and 
growth vigour at those ages would be approaching 
or would have reached asymptotic limits (Oliver and 
Larson, 1990). 
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The recommended silvicultural strategy in Table 2 
looks like it is well thought without the pitfalls of 
the PMP-derived one. The negatives of the strategy 
is that starting off with an initial planting of 1372 
stems ha-1 would be more expensive and the first 
thinning at age 8 years of 722 stems ha-1 seems 
excessive, which may mean a higher risk of stem 
damage for the residual trees. The final crop of 250 
stems ha-1 may be harvested any time from age 25 
years. 

The GA strategy in Table 3 seems to be the most 
intuitive one. This is because the initial planting 
density of 906 stems ha-1 would cost comparatively 
less than the other two strategies. The thinnings at 
all ages are therefore, not as excessive as in the other 
two cases, especially in the first thinning where it is 
only 282 stems ha-1. The final crop number is the 
same as the one for the recommended strategy. 
Given that the final thinning is at age 20 years, there 
is certainly still some growth vigour at that age for 
the residual trees, to take advantage of growing 
space, nutrients and water. A clearfell at age 31 
years would in no doubt guarantee larger logs that 
will command a high premium. 

Therefore, the strategies from Tables 2 and 3 look 
similar, although the GA manages to improve 
recommendations that are based on analysis of years 
of field experimental trials of P. patula in many 
parts of South Africa. As for the PMP-derived 
strategy, the state equations may need more state 
equations such as a mortality function, in order 
hanging on to too many trees for too long which 
would induce competition and ultimately mortality. 
The use of a mortality function in a PMP 
formulation for finding an optimal silvicultural 
strategy was found to be critical in highly productive 
sites for the Australian Eucalyptus nitens. It was 
demonstrated that the PMP formulation predicted a 
lower initial planting density so as to limit high 
mortality rates (Chikumbo and Mareels, 2002). 

7 CONCLUSIONS 

Given the growth dynamics of a forest stand and an 
economic aggregate, a combined optimal control and 
parameter selection model may be formulated that 
will predict an optimal harvesting strategy, initial 
stand density, final crop number and the rotation 
length. Though a dimensionless economic aggregate 
(stumpage) was used in the formulation, it still 
represented the expected sigmodal or second-order 
dynamics reminiscent of real world trends for 

stumpage. The GA generated results that were 
comparable to the one recommended by the South 
African Department of Forestry. On close analysis 
the GA results seemed to show a more practical 
harvesting strategy than the PMP-derived one. The 
PMP formulation may need another state equation 
such as a mortality function in order to predict 
harvesting strategies that are more practical. Future 
work will involve multi-objective optimisation were 
more values (other than just economics) will be 
taken into consideration for finding a number of 
non-dominated solutions, the Pareto-optimal set 
(Horn 1997). The GA has become established as the 
method at hand for exploring the Pareto-optimal 
front in multi-objective optimisation problems 
(Zitler et al., 2000).  
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